Package | Description |
---|---|
gov.sandia.cognition.algorithm |
Provides general interfaces and implementations for algorithms.
|
gov.sandia.cognition.algorithm.event |
Provides useful components for handling algorithm events.
|
gov.sandia.cognition.collection |
Provides commonly useful collection implementations.
|
gov.sandia.cognition.data.convert |
Provides utilities for doing data type conversion.
|
gov.sandia.cognition.data.convert.number |
Provides utilities for doing data type conversion with numbers.
|
gov.sandia.cognition.data.convert.vector |
Provides utilities for doing data type conversion with vectors.
|
gov.sandia.cognition.evaluator |
Provides interfaces and classes to do with the
Evaluator interface. |
gov.sandia.cognition.factory |
Provides interfaces and implementations of general factory objects.
|
gov.sandia.cognition.framework |
Provides the interfaces for the Cognitive Framework.
|
gov.sandia.cognition.framework.learning |
Provides a mechanism for putting learned objects into the Cognitive
Framework.
|
gov.sandia.cognition.framework.learning.converter |
Provides implementations of
CogxelConverter s. |
gov.sandia.cognition.framework.lite |
Provides a lightweight implementation of the Cognitive Framework.
|
gov.sandia.cognition.hash |
Provides hash function implementations.
|
gov.sandia.cognition.io.serialization |
Provides general classes for object serialization.
|
gov.sandia.cognition.learning.algorithm |
Provides general interfaces for learning algorithms.
|
gov.sandia.cognition.learning.algorithm.annealing |
Provides the Simulated Annealing algorithm.
|
gov.sandia.cognition.learning.algorithm.baseline |
Provides baseline (dummy) learning algorithms.
|
gov.sandia.cognition.learning.algorithm.bayes |
Provides algorithms for computing Bayesian categorizers.
|
gov.sandia.cognition.learning.algorithm.clustering |
Provides clustering algorithms.
|
gov.sandia.cognition.learning.algorithm.clustering.cluster |
Provides implementations of different types of clusters.
|
gov.sandia.cognition.learning.algorithm.clustering.divergence |
Provides divergence functions for use in clustering.
|
gov.sandia.cognition.learning.algorithm.clustering.hierarchy |
Provides a hierarchy for clusters.
|
gov.sandia.cognition.learning.algorithm.clustering.initializer |
Provides implementations of methods for selecting initial clusters.
|
gov.sandia.cognition.learning.algorithm.confidence |
Provides confidence-weighted categorization algorithms.
|
gov.sandia.cognition.learning.algorithm.delta |
Provides an abstract class for helping to implement variants of the Burrows'
Delta algorithm.
|
gov.sandia.cognition.learning.algorithm.ensemble |
Provides ensemble methods.
|
gov.sandia.cognition.learning.algorithm.factor.machine |
Provides factorization machine algorithms.
|
gov.sandia.cognition.learning.algorithm.genetic |
Provides a genetic algorithm implementation.
|
gov.sandia.cognition.learning.algorithm.genetic.reproducer |
Provides reproduction functions for use with a Genetic Algorithm.
|
gov.sandia.cognition.learning.algorithm.gradient |
Provides gradient based learning algorithms.
|
gov.sandia.cognition.learning.algorithm.hmm |
Provides hidden Markov model (HMM) algorithms.
|
gov.sandia.cognition.learning.algorithm.minimization |
Provides minimization algorithms.
|
gov.sandia.cognition.learning.algorithm.minimization.line |
Provides line (scalar) minimization algorithms.
|
gov.sandia.cognition.learning.algorithm.minimization.line.interpolator |
Provides line (scalar) interpolation/extrapolation algorithms that fit an
algebraic function to a (small) collection of data points.
|
gov.sandia.cognition.learning.algorithm.nearest |
Provides algorithms for Nearest-Neighbor memory-based functions.
|
gov.sandia.cognition.learning.algorithm.pca |
Provides implementations of Principle Components Analysis (PCA).
|
gov.sandia.cognition.learning.algorithm.perceptron |
Provides the Perceptron algorithm and some of its variations.
|
gov.sandia.cognition.learning.algorithm.perceptron.kernel | |
gov.sandia.cognition.learning.algorithm.regression |
Provides regression algorithms, such as Linear Regression.
|
gov.sandia.cognition.learning.algorithm.root |
Provides algorithms for finding the roots, or zero crossings, of scalar functions.
|
gov.sandia.cognition.learning.algorithm.svm |
Provides implementations of Support Vector Machine (SVM) learning algorithms.
|
gov.sandia.cognition.learning.algorithm.tree |
Provides decision tree learning algorithms.
|
gov.sandia.cognition.learning.data |
Provides data set utilities for learning.
|
gov.sandia.cognition.learning.data.feature |
Provides data feature extractors.
|
gov.sandia.cognition.learning.experiment |
Provides experiments for validating the performance of learning algorithms.
|
gov.sandia.cognition.learning.function |
Provides function objects for learning algorithms.
|
gov.sandia.cognition.learning.function.categorization |
Provides functions that output a discrete set of categories.
|
gov.sandia.cognition.learning.function.cost |
Provides cost functions.
|
gov.sandia.cognition.learning.function.distance |
Provides distance functions.
|
gov.sandia.cognition.learning.function.kernel |
Provides kernel functions.
|
gov.sandia.cognition.learning.function.regression |
Provides functions that output real numbers from some input data structure.
|
gov.sandia.cognition.learning.function.scalar |
Provides functions that output real numbers.
|
gov.sandia.cognition.learning.function.summarizer |
Provides classes for summarizing data.
|
gov.sandia.cognition.learning.function.vector |
Provides functions that output vectors.
|
gov.sandia.cognition.learning.parameter |
Provides utility classes for handling learning algorithm parameters.
|
gov.sandia.cognition.learning.performance |
Provides performance measures.
|
gov.sandia.cognition.learning.performance.categorization |
Provides performance measures for categorizers.
|
gov.sandia.cognition.math |
Provides classes for mathematical computation.
|
gov.sandia.cognition.math.geometry |
Provides classes and interfaces for computational geometry.
|
gov.sandia.cognition.math.matrix |
Provides interfaces and classes for linear algebra.
|
gov.sandia.cognition.math.matrix.custom |
Provides a custom linear algebra package implementation for both dense
and sparse classes.
|
gov.sandia.cognition.math.matrix.decomposition |
Provides matrix decompositions.
|
gov.sandia.cognition.math.matrix.mtj |
Provides a linear algebra package implementation wrapper using the Matrix
Toolkits for Java (MTJ) library.
|
gov.sandia.cognition.math.matrix.mtj.decomposition |
Provides matrix decomposition implementations using the Matrix Toolkits for
Java (MTJ) library.
|
gov.sandia.cognition.math.signals |
Provides mathematical signal processing methods.
|
gov.sandia.cognition.statistics |
Provides the inheritance hierarchy for general statistical methods and distributions.
|
gov.sandia.cognition.statistics.bayesian |
Provides algorithms for computing Bayesian estimates of parameters.
|
gov.sandia.cognition.statistics.bayesian.conjugate |
Provides Bayesian estimation routines based on conjugate prior distribution
of parameters of specific conditional distributions.
|
gov.sandia.cognition.statistics.distribution |
Provides statistical distributions.
|
gov.sandia.cognition.statistics.method |
Provides algorithms for evaluating statistical data and conducting statistical inference, particularly frequentist methods.
|
gov.sandia.cognition.statistics.montecarlo |
Provides Monte Carlo procedures for numerical integration and sampling.
|
gov.sandia.cognition.text |
Provides classes for processing text.
|
gov.sandia.cognition.text.convert |
Provides classes for converting objects to a textual representation.
|
gov.sandia.cognition.text.document |
Provides representations for textual documents.
|
gov.sandia.cognition.text.document.extractor |
Provides extractors for pulling textual documents out of files.
|
gov.sandia.cognition.text.evaluation |
Provides methods for evaluating text processing algorithms.
|
gov.sandia.cognition.text.relation |
Provides classes for relationships involving text.
|
gov.sandia.cognition.text.spelling |
Provides classes for spelling.
|
gov.sandia.cognition.text.term |
Provides term representing text content in documents.
|
gov.sandia.cognition.text.term.filter |
Provides classes for filtering and transforming terms.
|
gov.sandia.cognition.text.term.filter.stem |
Provides stemming algorithms for terms.
|
gov.sandia.cognition.text.term.relation |
Provides relationships between terms.
|
gov.sandia.cognition.text.term.vector |
Provides methods for handling documents represented as term vectors.
|
gov.sandia.cognition.text.term.vector.weighter |
Provides term weighting algorithms.
|
gov.sandia.cognition.text.term.vector.weighter.global |
Provides global term weighting algorithms.
|
gov.sandia.cognition.text.term.vector.weighter.local |
Provides local term weighting algorithms.
|
gov.sandia.cognition.text.term.vector.weighter.normalize |
Provides term weight normalization algorithms.
|
gov.sandia.cognition.text.token |
Provides text tokenization algorithms.
|
gov.sandia.cognition.text.topic |
Provides topic modeling algorithms.
|
gov.sandia.cognition.time |
Provides classes for dealing with temporal data.
|
gov.sandia.cognition.util |
Provides general utility classes.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractAnytimeAlgorithm<ResultType>
A partial implementation of the common functionality of an
AnytimeAlgorithm . |
class |
AbstractIterativeAlgorithm
The
AbstractIterativeAlgorithm class implements a simple part of
the IterativeAlgorithm interface that manages the listeners for the
algorithm. |
class |
AbstractParallelAlgorithm
Partial implementation of ParallelAlgorithm.
|
class |
AnytimeAlgorithmWrapper<ResultType,InternalAlgorithm extends AnytimeAlgorithm<?>>
Wraps an AnytimeAlgorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractIterativeAlgorithmListener
An abstract implementation of the
IterativeAlgorithmListener
interface that provides default implementations of the event methods that
do nothing. |
class |
IterationMeasurablePerformanceReporter
An iterative algorithm listeners for
MeasurablePerformanceAlgorithm
objects that reports the performance of the algorithm at the end of each
iteration. |
class |
IterationStartReporter
An iterative algorithm listener that reports the start of each iteration
to the given print stream.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractLogNumberMap<KeyType>
A partial implementation of a ScalarMap with a LogNumber value
|
class |
AbstractMutableDoubleMap<KeyType>
A partial implementation of a ScalarMap with a MutableDouble value
|
class |
AbstractScalarMap<KeyType,NumberType extends java.lang.Number>
Partial implementation of ScalarMap
|
class |
DefaultComparator<T extends java.lang.Comparable<? super T>>
A default comparator that just calls compare on the comparable generic
it uses.
|
class |
DefaultIndexer<ValueType>
A default implementation of the
Indexer interface that simply maps
objects to a range from 0 to n-1 in the order they are given. |
class |
NumberComparator
Compares two Numbers (base class of Double, Integer, etc.) for sorting.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractDataConverter<InputType,OutputType>
Abstract implementation of
DataConverter interface. |
class |
AbstractReverseCachedDataConverter<InputType,OutputType,ReverseConverterType extends DataConverter<? super OutputType,? extends InputType>>
Abstract implementation of
ReversibleDataConverter that caches the
reverse converter. |
class |
AbstractReversibleDataConverter<InputType,OutputType>
Abstract implementation of sthe
ReversibleDataConverter interface. |
class |
IdentityDataConverter<DataType>
A pass-through converter that just returns the given value.
|
class |
ObjectToStringConverter
Converts an
Object to a String using the toString
method. |
Modifier and Type | Class and Description |
---|---|
class |
DefaultBooleanToNumberConverter
Converts a
Boolean to a Number by using predefined values
for true, false, and (optionally) null. |
class |
DefaultBooleanToNumberConverter.Reverse
The reverse converter for the
DefaultBooleanToNumberConverter . |
class |
StringToDoubleConverter
Converts a
String to a Double using the
Double.valueOf method. |
class |
StringToIntegerConverter
Converts a
String to a Integer using the
Integer.valueOf method. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractToVectorEncoder<InputType>
An abstract implementation of the
DataToVectorEncoder interface. |
class |
NumberConverterToVectorAdapter<InputType>
Adapts a
DataConverter that outputs a number to be a
VectorEncoder . |
class |
NumberToVectorEncoder
An encoder that encodes a number as an element of a
Vector . |
class |
UniqueBooleanVectorEncoder<InputType>
An encoder for arbitrary objects that encodes an equality comparison between
a given input and a set of unique values.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractStatefulEvaluator<InputType,OutputType,StateType extends CloneableSerializable>
The
AbstractStatefulEvalutor class is an abstract implementation of
the StatefulEvalutor interface. |
class |
CompositeEvaluatorList<InputType,OutputType>
Implements the composition of a list of evaluators.
|
class |
CompositeEvaluatorPair<InputType,IntermediateType,OutputType>
Implements a composition of two evaluators.
|
class |
CompositeEvaluatorTriple<InputType,FirstIntermediateType,SecondIntermediateType,OutputType>
Implements a composition of three evaluators.
|
class |
ForwardReverseEvaluatorPair<InputType,OutputType,ForwardType extends Evaluator<? super InputType,? extends OutputType>,ReverseType extends Evaluator<? super OutputType,? extends InputType>>
Represents a both a (normal) forward evaluator and its reverse as a pair.
|
class |
IdentityEvaluator<DataType>
An identity function that returns its input as its output.
|
class |
ValueClamper<DataType extends java.lang.Comparable<DataType>>
An evaluator that clamps a number between minimum and maximum values.
|
class |
ValueMapper<InputType,OutputType>
An evaluator that uses a map to map input values to their appropriate output
values.
|
Modifier and Type | Class and Description |
---|---|
class |
DefaultFactory<CreatedType>
The
DefaultFactory class is a default implementation of the
Factory interface that takes a class as its parameter and uses the
default constructor of the class, called through newInstance(), to create
new objects of that class. |
class |
PrototypeFactory<CreatedType extends CloneableSerializable>
The
PrototypeFactory class implements a Factory that uses a
prototype object to create new objects from by cloning it. |
Modifier and Type | Class and Description |
---|---|
class |
DefaultCogxel
The
DefaultCogxel provides a default implementation of the
Cogxel interface that just stores the necessary peices of
information: the SemanticIdentifier and its activation. |
class |
DefaultSemanticIdentifierMap
The DefaultSemanticIdentifierMap is an implementation of
SemanticIdentifierMap that is backed by a HashMap (a hashtable).
|
Modifier and Type | Class and Description |
---|---|
class |
EvaluatorBasedCognitiveModuleFactory<InputType,OutputType>
The EvaluatorBasedCognitiveModuleFactory class implements a factory for the
EvaluatorBasedCognitiveModule.
|
class |
EvaluatorBasedCognitiveModuleFactoryLearner<InputType,OutputType,LearningDataType>
The EvaluatorBasedCognitiveModuleFactoryLearner class implements a
CognitiveModuleFactoryLearner for the EvaluatorBasedCognitiveModuleFactory.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractCogxelConverter<DataType>
Partial implementation of CogxelConverter
|
class |
AbstractCogxelPairConverter<FirstType,SecondType,PairType extends Pair<FirstType,SecondType>>
Partial implementation of CogxelConverters based on a Pair
|
class |
CogxelBooleanConverter
Implements a
CogxelConverter that encodes booleans as positive and
negative values (+1/-1). |
class |
CogxelInputOutputPairConverter<InputType,OutputType>
The InputOutputPairCogxelConverter class implements a converter to and from
Cogxels to InputOutputPair objects.
|
class |
CogxelTargetEstimatePairConverter<TargetType,EstimateType>
CogxelConverter based on a TargetEstimatePair.
|
class |
CogxelVectorConverter
The CogxelVectorConverter implements a converter to convert Cogxels to and
from Vector objects.
|
Modifier and Type | Class and Description |
---|---|
class |
BooleanActivatableCogxel
BooleanActivatableCogxel extends the DefaultCogxel class to add an "activated" flag.
|
class |
CognitiveModelLiteState
The CognitiveModelLiteState class implements a CognitiveModelState
object for the CognitiveModelLite.
|
class |
CognitiveModuleStateWrapper
The CognitiveModuleStateWrapper wraps some other object as a
CognitiveModuleState object.
|
class |
CogxelStateLite
The CogxelStateLite class implements a CogxelState to be used with the
CognitiveModelLite.
|
class |
SharedSemanticMemoryLiteFactory
The SharedSemanticMemoryLiteFactory implements a CognitiveModuleFactory
for SharedSemanticMemoryLite modules.
|
class |
SharedSemanticMemoryLiteSettings
The SharedSemanticMemoryLiteSettings class implements the settings for
the SharedSemanticMemoryLite module.
|
class |
SimplePatternRecognizer
The SimplePatternRecognizer class implements a simple version of the
PatternRecognizerLite interface.
|
class |
SimplePatternRecognizerState
The
SimplePatternRecognizerState class implements a
CognitiveModuleState for the
SimplePatternRecognizer . |
class |
VectorBasedCognitiveModelInput
Vector-based cognitive model input used by VectorBasedPerceptionModule.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractHashFunction
Partial implementation of HashFunction
|
class |
Eva32Hash
This implements the 32-bit "evahash" due to Robert Jenkins.
|
class |
Eva64Hash
This implements the 64-bit "evahash" due to Robert Jenkins.
|
class |
FNV1a32Hash
Implementation of the 32-bit (4-byte) Fowler-Noll-Vo (FNV-1a) hash function.
|
class |
FNV1a64Hash
Implementation of the 32-bit (4-byte) Fowler-Noll-Vo (FNV-1a) hash function.
|
class |
MD5Hash
Implementation of the MD5 128-bit (16-byte) cryptographic hash function.
|
class |
Murmur32Hash
Implementation of the MurmurHash2 32-bit (4-byte) non-cryptographic hash
function.
|
class |
Prime32Hash
Implementation of the prime-hash function using 32-bit (4-byte) precision.
|
class |
Prime64Hash
Implementation of the prime-hash function using 64-bit (8-byte) precision.
|
class |
SHA1Hash
A Java implementation of the Secure Hash Algorithm, SHA-1, as defined
in FIPS PUB 180-1.
|
class |
SHA256Hash
The SHA-2, 256-bit (32 byte) hash function.
|
class |
SHA512Hash
The SHA-2 512-bit (64-byte) hash function.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractFileSerializationHandler<SerializedType>
An abstract implementation of
FileSerializationHandler . |
class |
AbstractStreamSerializationHandler<SerializedType>
An abstract implementation of
StreamSerializationHandler . |
class |
AbstractTextSerializationHandler<SerializedType>
An abstract implementation of the
TextSerializationHandler interface. |
class |
GZIPSerializationHandler<SerializedType>
Implements a serialization handler that uses the GZip compression algorithm
on the output.
|
class |
JavaDefaultBinarySerializationHandler
A serialization handler based on basic Java binary serialization.
|
class |
XStreamSerializationHandler
A serialization
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractAnytimeBatchLearner<DataType,ResultType>
The
AbstractAnytimeBatchLearner abstract class
implements a standard method for conforming to the BatchLearner and
AnytimeLearner (IterativeAlgorithm and
StoppableAlgorithm ) interfaces. |
class |
AbstractAnytimeSupervisedBatchLearner<InputType,OutputType,ResultType extends Evaluator<? super InputType,? extends OutputType>>
The
AbstractAnytimeSupervisedBatchLearner abstract class extends
the AbstractAnytimeBatchLearner to implement the
SupervisedBatchLearner interface. |
class |
AbstractBatchAndIncrementalLearner<DataType,ResultType>
An abstract class that has both batch learning ability as well as online
learning ability by taking a Collection of input data.
|
class |
AbstractBatchLearnerContainer<LearnerType extends BatchLearner<?,?>>
An abstract class for objects that contain a batch learning algorithm.
|
class |
AbstractSupervisedBatchAndIncrementalLearner<InputType,OutputType,ResultType extends Evaluator<? super InputType,? extends OutputType>>
An abstract implementation of the batch and incremental learning for
an incremental supervised learner.
|
class |
CompositeBatchLearnerPair<InputType,IntermediateType,OutputType>
Composes together a pair of batch (typically unsupervised) learners.
|
class |
InputOutputTransformedBatchLearner<InputType,TransformedInputType,TransformedOutputType,OutputType>
An adapter class for performing supervised learning from data where both
the input and output have to be transformed before they are passed to the
learning algorithm.
|
class |
SequencePredictionLearner<DataType,LearnedType>
A wrapper learner that converts an unlabeled sequence of data into a sequence
of prediction data using a fixed prediction horizon.
|
class |
TimeSeriesPredictionLearner<InputType,OutputType,EvaluatorType extends Evaluator<? super InputType,? extends OutputType>>
A learner used to predict the future of a sequence of data by wrapping
another learner and created a future-aligned data set.
|
Modifier and Type | Class and Description |
---|---|
class |
SimulatedAnnealer<CostParametersType,AnnealedType>
The SimulatedAnnealer class implements the simulated annealing algorithm
using the provided cost function and perturbation function.
|
class |
VectorizablePerturber
The VectorizablePerturber implements a Perturber for Vectorizable objects.
|
Modifier and Type | Class and Description |
---|---|
class |
ConstantLearner<ValueType>
A learner that always returns the same value as the result.
|
class |
IdentityLearner<ValueType>
A batch learner implementation that just returns its inputs, creating an
identity function.
|
class |
MeanLearner
The
MeanLearner class implements a baseline learner that computes
the mean of a given set of values. |
class |
MostFrequentLearner<OutputType>
The
MostFrequentLearner class implements a baseline learner that
computes the most frequent output value. |
class |
WeightedMeanLearner
The
WeightedMeanLearner class implements a baseline learner that
computes the weighted mean output value. |
class |
WeightedMostFrequentLearner<OutputType>
The
WeightedMostFrequentLearner class implements a baseline learning
algorithm that finds the most frequent output of a given dataset based on
the weights of the examples. |
Modifier and Type | Class and Description |
---|---|
class |
DiscreteNaiveBayesCategorizer<InputType,CategoryType>
Implementation of a Naive Bayes Classifier for Discrete Data.
|
static class |
DiscreteNaiveBayesCategorizer.Learner<InputType,CategoryType>
Learner for a DiscreteNaiveBayesCategorizer.
|
class |
VectorNaiveBayesCategorizer<CategoryType,DistributionType extends UnivariateProbabilityDensityFunction>
A naive Bayesian categorizer that takes an input vector and applies an
independent scalar probability density function to each one.
|
static class |
VectorNaiveBayesCategorizer.BatchGaussianLearner<CategoryType>
A supervised batch distributionLearner for a vector Naive Bayes categorizer that fits
a Gaussian.
|
static class |
VectorNaiveBayesCategorizer.Learner<CategoryType,DistributionType extends UnivariateProbabilityDensityFunction>
A supervised batch distributionLearner for a vector Naive Bayes categorizer.
|
static class |
VectorNaiveBayesCategorizer.OnlineLearner<CategoryType,DistributionType extends UnivariateProbabilityDensityFunction>
An online (incremental) distributionLearner for the Naive Bayes
categorizer that uses an incremental distribution learner for the
distribution representing each dimension for each category.
|
Modifier and Type | Class and Description |
---|---|
class |
AffinityPropagation<DataType>
The
AffinityPropagation algorithm requires three parameters:
a divergence function, a value to use for self-divergence, and a damping
factor (called lambda in the paper; 0.5 is the default). |
class |
AgglomerativeClusterer<DataType,ClusterType extends Cluster<DataType>>
The
AgglomerativeClusterer implements an agglomerative clustering
algorithm, which is a type of hierarchical clustering algorithm. |
static class |
AgglomerativeClusterer.HierarchyNode<DataType,ClusterType extends Cluster<DataType>>
Holds the hierarchy information for the agglomerative clusterer.
|
class |
DBSCANClusterer<DataType extends Vectorizable,ClusterType extends Cluster<DataType>>
The
DBSCAN algorithm requires three parameters: a distance
metric, a value for neighborhood radius, and a value for the minimum number
of surrounding neighbors for a point to be considered non-noise. |
class |
DirichletProcessClustering
Clustering algorithm that wraps Dirichlet Process Mixture Model.
|
class |
KMeansClusterer<DataType,ClusterType extends Cluster<DataType>>
The
KMeansClusterer class implements the standard k-means
(k-centroids) clustering algorithm. |
class |
KMeansClustererWithRemoval<DataType,ClusterType extends Cluster<DataType>>
Creates a k-means clustering algorithm that removes clusters that do
not have sufficient membership to pass a simple statistical significance
test.
|
class |
KMeansFactory
Creates a parallelized version of the k-means clustering algorithm for the
typical use: clustering vector data with a Euclidean distance metric.
|
class |
MiniBatchKMeansClusterer<DataType extends Vector>
Approximates k-means clustering by working on random subsets of the
data.
|
class |
OptimizedKMeansClusterer<DataType>
This class implements an optimized version of the k-means algorithm that
makes use of the triangle inequality to compute the same answer as k-means
while using less distance calculations.
|
class |
ParallelizedKMeansClusterer<DataType,ClusterType extends Cluster<DataType>>
This is a parallel implementation of the k-means clustering algorithm.
|
class |
PartitionalClusterer<DataType,ClusterType extends Cluster<DataType>>
The
PartitionalClusterer implements a partitional clustering
algorithm, which is a type of hierarchical clustering algorithm. |
Modifier and Type | Class and Description |
---|---|
class |
CentroidCluster<ClusterType>
The CentroidCluster class extends the default cluster to contain a central
element.
|
class |
DefaultCluster<ClusterType>
The DefaultCluster class implements a default cluster which contains a
list of members in an ArrayList along with an index that identifies the
cluster.
|
class |
DefaultClusterCreator<DataType>
The
DefaultClusterCreator class implements a default
ClusterCreator that just creates a DefaultCluster from the
given list of members. |
class |
DefaultIncrementalClusterCreator<DataType>
A default implementation of the
IncrementalClusterCreator interface
that just creates a cluster as having a collection of members. |
class |
GaussianCluster
The
GaussianCluster class implements a cluster of Vector
objects that has a MultivariateGaussian object representing the
cluster. |
class |
GaussianClusterCreator
The
GaussianClusterCreator class implements a ClusterCreator
for creating GaussianClusters by fitting a MultivariateGaussian to the
given set of example vectors. |
class |
MedoidClusterCreator<DataType>
The
MedoidClusterCreator class creates a
CentroidCluster at the sample that minimizes the sum
of the divergence to the objects assigned to the cluster. |
class |
MiniBatchCentroidCluster |
class |
NormalizedCentroidCluster<ClusterType>
Add the ability to store the centroid of the normalized vectors belonging to
a centroid cluster.
|
class |
NormalizedCentroidClusterCreator
A cluster creator for
NormalizedCentroidCluster s which are clusters
that have a normalized centroid in addition to the usual centroid. |
class |
VectorMeanCentroidClusterCreator
The
VectorMeanCentroidClusterCreator class implements
a cluster creator for centroid clusters where the centroid is the
mean of the vectors that are members of the cluster. |
class |
VectorMeanMiniBatchCentroidClusterCreator
Implementation of
VectorMeanCentroidClusterCreator for mini-batch
clustering. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractClusterToClusterDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The AbstractClusterToClusterDivergenceFunction class is an abstract class
that helps out implementations of ClusterToClusterDivergenceFunction
implementations by holding a DivergenceFunction between elements of a
cluster.
|
class |
CentroidClusterDivergenceFunction<DataType>
The CentroidClusterDivergenceFunction class implements a divergence function
between a cluster and an object by computing the divergence between the
center of the cluster and the object.
|
class |
ClusterCentroidDivergenceFunction<DataType>
The ClusterCentroidDivergenceFunction class implements the distance
between two clusters by computing the distance between the cluster's
centroid.
|
class |
ClusterCompleteLinkDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The ClusterCompleteLinkDivergenceFunction class implements the complete
linkage distance metric between two clusters.
|
class |
ClusterMeanLinkDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The ClusterMeanLinkDivergenceFunction class implements the mean linkage
distance metric between two clusters.
|
class |
ClusterSingleLinkDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The ClusterSingleLinkDivergenceFunction class implements the complete
linkage distance metric between two clusters.
|
class |
GaussianClusterDivergenceFunction
The GaussianClusterDivergenceFunction class implements a divergence
function between a Gaussian cluster and a vector, which is calculated
by finding the likelihood that the vector was generated from that Gaussian
and then returning the negative of the likelihood since it is a divergence
measure, not a similarity measure.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractClusterHierarchyNode<DataType,ClusterType extends Cluster<DataType>>
An abstract implementation of the
ClusterHierarchyNode class. |
class |
BinaryClusterHierarchyNode<DataType,ClusterType extends Cluster<DataType>>
Implements a binary cluster hierarchy node.
|
class |
DefaultClusterHierarchyNode<DataType,ClusterType extends Cluster<DataType>>
A default implementation of the cluster hierarchy node.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractMinDistanceFixedClusterInitializer<ClusterType extends Cluster<DataType>,DataType>
Implements an abstract FixedClusterInitializer that works by using the
minimum distance from a point to the cluster.
|
class |
DistanceSamplingClusterInitializer<ClusterType extends Cluster<DataType>,DataType>
Implements
FixedClusterInitializer that initializes clusters by
first selecting a random point for the first cluster and then randomly
sampling each successive cluster based on the squared minimum distance from
the point to the existing selected clusters. |
class |
GreedyClusterInitializer<ClusterType extends Cluster<DataType>,DataType>
Implements a FixedClusterInitializer that greedily attempts to create the
initial clusters.
|
class |
NeighborhoodGaussianClusterInitializer
Creates GaussianClusters near existing, but not on top of, data points.
|
class |
RandomClusterInitializer<ClusterType extends Cluster<DataType>,DataType>
Creates initial clusters by selecting random data points as singleton
clusters.
|
Modifier and Type | Class and Description |
---|---|
class |
AdaptiveRegularizationOfWeights
An implementation of the Adaptive Regularization of Weights (AROW) algorithm
for online learning of a linear binary categorizer.
|
class |
ConfidenceWeightedDiagonalDeviation
An implementation of the Standard Deviation (Stdev) algorithm for learning
a confidence-weighted categorizer.
|
class |
ConfidenceWeightedDiagonalDeviationProject
An implementation of the Standard Deviation (Stdev) algorithm for learning
a confidence-weighted categorizer.
|
class |
ConfidenceWeightedDiagonalVariance
An implementation of the Variance algorithm for learning a confidence-weighted
linear categorizer.
|
class |
ConfidenceWeightedDiagonalVarianceProject
An implementation of the Variance algorithm for learning a confidence-weighted
linear categorizer.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractDeltaCategorizer<CategoryType>
The Burrows Delta algorithm is primarily used for authorship attribution, but
can be used for other applications.
|
static class |
AbstractDeltaCategorizer.AbstractLearner<CategoryType>
Abstract learner for delta algorithms.
|
class |
BurrowsDeltaCategorizer<CategoryType>
The regular Burrows' Delta algorithm implementation.
|
static class |
BurrowsDeltaCategorizer.Learner<CategoryType>
Learner for a BurrowsDeltaCategorizer.
|
class |
CosineDeltaCategorizer<CategoryType>
The Cosine Delta algorithm implementation.
|
static class |
CosineDeltaCategorizer.Learner<CategoryType>
Learner for a CosineDeltaCategorizer.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractBaggingLearner<InputType,OutputType,MemberType,EnsembleType extends Evaluator<? super InputType,? extends OutputType>>
Learns an ensemble by randomly sampling with replacement
(duplicates allowed) some percentage of the size of the data (defaults to
100%) on each iteration to train a new ensemble member.
|
class |
AbstractCategorizerOutOfBagStoppingCriteria<InputType,CategoryType>
Abstract class for implementing a out-of-bag stopping criteria for a
bagging-based ensemble.
|
class |
AbstractUnweightedEnsemble<MemberType>
An abstract implementation of the
Ensemble interface for
unweighted ensembles. |
class |
AbstractWeightedEnsemble<MemberType>
An abstract implementation of the
Ensemble interface for ensembles
that have a weight associated with each member. |
class |
AdaBoost<InputType>
The
AdaBoost class implements the Adaptive Boosting (AdaBoost)
algorithm formulated by Yoav Freund and Robert Shapire. |
class |
AdditiveEnsemble<InputType,MemberType extends Evaluator<? super InputType,? extends java.lang.Number>>
An ensemble of regression functions that determine the result by adding
their outputs together.
|
class |
AveragingEnsemble<InputType,MemberType extends Evaluator<? super InputType,? extends java.lang.Number>>
An ensemble for regression functions that averages together the output value
of each ensemble member to get the final output.
|
class |
BaggingCategorizerLearner<InputType,CategoryType>
Learns an categorization ensemble by randomly sampling with replacement
(duplicates allowed) some percentage of the size of the data (defaults to
100%) on each iteration to train a new ensemble member.
|
static class |
BaggingCategorizerLearner.OutOfBagErrorStoppingCriteria<InputType,CategoryType>
Implements a stopping criteria for bagging that uses the out-of-bag
error to determine when to stop learning the ensemble.
|
class |
BaggingRegressionLearner<InputType>
Learns an ensemble for regression by randomly sampling with replacement
(duplicates allowed) some percentage of the size of the data (defaults to
100%) on each iteration to train a new ensemble member.
|
class |
BinaryBaggingLearner<InputType>
The
BinaryBaggingLearner implements the Bagging learning algorithm. |
class |
BinaryCategorizerSelector<InputType>
The
BinaryCategorizerSelector class implements a "weak learner"
meant for use in boosting algorithms that selects the best
BinaryCategorizer from a pre-set list by picking the one with the
best weighted error. |
class |
CategoryBalancedBaggingLearner<InputType,CategoryType>
An extension of the basic bagging learner that attempts to sample bags that
have equal numbers of examples from every category.
|
class |
CategoryBalancedIVotingLearner<InputType,CategoryType>
An extension of IVoting for dealing with skew problems that makes sure that
there are an equal number of examples from each category in each sample that
an ensemble member is trained on.
|
class |
IVotingCategorizerLearner<InputType,CategoryType>
Learns an ensemble in a method similar to bagging except that on each
iteration the bag is built from two parts, each sampled from elements from
disjoint sets.
|
static class |
IVotingCategorizerLearner.OutOfBagErrorStoppingCriteria<InputType,CategoryType>
Implements a stopping criteria for IVoting that uses the out-of-bag
error to determine when to stop learning the ensemble.
|
class |
MultiCategoryAdaBoost<InputType,CategoryType>
An implementation of a multi-class version of the Adaptive Boosting
(AdaBoost) algorithm, known as AdaBoost.M1.
|
class |
OnlineBaggingCategorizerLearner<InputType,CategoryType,MemberType extends Evaluator<? super InputType,? extends CategoryType>>
An implementation of an online version of the Bagging algorithm for learning
an ensemble of categorizers.
|
class |
VotingCategorizerEnsemble<InputType,CategoryType,MemberType extends Evaluator<? super InputType,? extends CategoryType>>
An ensemble of categorizers that determine the result based on an
equal-weight vote.
|
class |
WeightedAdditiveEnsemble<InputType,MemberType extends Evaluator<? super InputType,? extends java.lang.Number>>
An implementation of an ensemble that takes a weighted sum of the values
returned by its members.
|
class |
WeightedAveragingEnsemble<InputType,MemberType extends Evaluator<? super InputType,? extends java.lang.Number>>
An implementation of an ensemble that takes the weighted average of its
members.
|
class |
WeightedBinaryEnsemble<InputType,MemberType extends Evaluator<? super InputType,? extends java.lang.Boolean>>
The
WeightedBinaryEnsemble class implements an Ensemble of
BinaryCategorizer objects where each categorizer is assigned a
weight and the category is selected by choosing the one with the largest
sum of weights. |
class |
WeightedVotingCategorizerEnsemble<InputType,CategoryType,MemberType extends Evaluator<? super InputType,? extends CategoryType>>
An ensemble of categorizers where each ensemble member is evaluated with the
given input to find the category to which its weighted votes are assigned.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractFactorizationMachineLearner
An abstract class for learning
FactorizationMachine s. |
class |
FactorizationMachine
Implements a Factorization Machine.
|
class |
FactorizationMachineAlternatingLeastSquares
Implements an Alternating Least Squares (ALS) algorithm for learning a
Factorization Machine.
|
class |
FactorizationMachineStochasticGradient
Implements a Stochastic Gradient Descent (SGD) algorithm for learning a
Factorization Machine.
|
Modifier and Type | Class and Description |
---|---|
class |
GeneticAlgorithm<CostParametersType,GenomeType>
The GeneticAlgorithm class implements a generic genetic algorithm
that uses a given cost function to minimize and a given reproduction
function for generating the population.
|
class |
ParallelizedGeneticAlgorithm<CostParametersType,GenomeType>
This is a parallel implementation of the genetic algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
VectorizableCrossoverFunction
The VectorizableCrossoverFunction class is a
CrossoverFunction that
takes two Vectorizable . |
Modifier and Type | Class and Description |
---|---|
class |
GradientDescendableApproximator
Creates a
radientDescendable from a
VectorizableVectorFunction by estimating the parameter gradient
using a forward-difference approximation of the parameter Jacobian. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractBaumWelchAlgorithm<ObservationType,DataType>
Partial implementation of the Baum-Welch algorithm.
|
class |
BaumWelchAlgorithm<ObservationType>
Implements the Baum-Welch algorithm, also known as the "forward-backward
algorithm", the expectation-maximization algorithm, etc for
Hidden Markov Models (HMMs).
|
class |
HiddenMarkovModel<ObservationType>
A discrete-state Hidden Markov Model (HMM) with either continuous
or discrete observations.
|
class |
MarkovChain
A Markov chain is a random process that has a finite number of states with
random transition probabilities between states at discrete time steps.
|
class |
ParallelBaumWelchAlgorithm<ObservationType>
A Parallelized implementation of some of the methods of the
Baum-Welch Algorithm.
|
protected static class |
ParallelBaumWelchAlgorithm.DistributionEstimatorTask<ObservationType>
Re-estimates the PDF from the gammas.
|
class |
ParallelHiddenMarkovModel<ObservationType>
A Hidden Markov Model with parallelized processing.
|
protected static class |
ParallelHiddenMarkovModel.ComputeTransitionsTask
Calls the computeTransitions method.
|
protected class |
ParallelHiddenMarkovModel.LogLikelihoodTask
Computes the log-likelihood of a particular data sequence
|
protected static class |
ParallelHiddenMarkovModel.NormalizeTransitionTask
Calls the normalizeTransitionMatrix method.
|
protected static class |
ParallelHiddenMarkovModel.ObservationLikelihoodTask<ObservationType>
Calls the computeObservationLikelihoods() method.
|
protected static class |
ParallelHiddenMarkovModel.StateObservationLikelihoodTask
Calls the computeStateObservationLikelihood() method.
|
protected class |
ParallelHiddenMarkovModel.ViterbiTask
Computes the most-likely "from state" for the given "destination state"
and the given deltas.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractAnytimeFunctionMinimizer<InputType,OutputType,EvaluatorType extends Evaluator<? super InputType,? extends OutputType>>
A partial implementation of a minimization algorithm that is iterative,
stoppable, and approximate.
|
class |
FunctionMinimizerBFGS
Implementation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) Quasi-Newton
nonlinear minimization algorithm.
|
class |
FunctionMinimizerConjugateGradient
Conjugate gradient method is a class of algorithms for finding the
unconstrained local minimum of a nonlinear function.
|
class |
FunctionMinimizerDFP
Implementation of the Davidon-Fletcher-Powell (DFP) formula for a
Quasi-Newton minimization update.
|
class |
FunctionMinimizerDirectionSetPowell
Implementation of the derivative-free unconstrained nonlinear direction-set
minimization algorithm called "Powell's Method" by Numerical Recipes.
|
class |
FunctionMinimizerFletcherReeves
This is an implementation of the Fletcher-Reeves conjugate gradient
minimization procedure.
|
class |
FunctionMinimizerGradientDescent
This is an implementation of the classic Gradient Descent algorithm, also
known as Steepest Descent, Backpropagation (for neural nets), or Hill
Climbing.
|
class |
FunctionMinimizerLiuStorey
This is an implementation of the Liu-Storey conjugate gradient
minimization procedure.
|
class |
FunctionMinimizerNelderMead
Implementation of the Downhill Simplex minimization algorithm, also known as
the Nelder-Mead method.
|
class |
FunctionMinimizerPolakRibiere
This is an implementation of the Polack-Ribiere conjugate gradient
minimization procedure.
|
class |
FunctionMinimizerQuasiNewton
This is an abstract implementation of the Quasi-Newton minimization method,
sometimes called "Variable-Metric methods."
This family of minimization algorithms uses first-order gradient information
to find a locally minimum to a scalar function.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractAnytimeLineMinimizer<EvaluatorType extends Evaluator<java.lang.Double,java.lang.Double>>
Partial AnytimeAlgorithm implementation of a LineMinimizer.
|
class |
DirectionalVectorToDifferentiableScalarFunction
Creates a truly differentiable scalar function from a differentiable Vector
function, instead of using a forward-differences approximation to the
derivative like DirectionalVectorToScalarFunction does.
|
class |
DirectionalVectorToScalarFunction
Maps a vector function onto a scalar one by using a
directional vector and vector offset, and the parameter to the
function is a scalar value along the direction from the start-point
offset.
|
class |
InputOutputSlopeTriplet
Stores an InputOutputPair with corresponding slope (gradient) information
|
class |
LineBracket
Class that defines a bracket for a scalar function.
|
class |
LineMinimizerBacktracking
Implementation of the backtracking line-minimization algorithm.
|
class |
LineMinimizerDerivativeBased
This is an implementation of a line-minimization algorithm proposed by
Fletcher that makes extensive use of first-order derivative information.
|
class |
LineMinimizerDerivativeBased.InternalFunction
Internal function used to map/remap/unmap the search direction.
|
class |
LineMinimizerDerivativeFree
This is an implementation of a LineMinimizer that does not require
derivative information.
|
class |
WolfeConditions
The Wolfe conditions define a set of sufficient conditions for
"sufficient decrease" in inexact line search.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractLineBracketInterpolator<EvaluatorType extends Evaluator<java.lang.Double,java.lang.Double>>
Partial implementation of LinearBracketInterpolator
|
class |
AbstractLineBracketInterpolatorPolynomial<EvaluatorType extends Evaluator<java.lang.Double,java.lang.Double>>
Partial implementation of a LineBracketInterpolator based on a closed-form
polynomial function.
|
class |
LineBracketInterpolatorBrent
Implements Brent's method of function interpolation to find a minimum.
|
class |
LineBracketInterpolatorGoldenSection
Interpolates between the two bound points of a LineBracket using the
golden-section step rule, if that step fails, then the interpolator uses
a linear (secant) interpolation.
|
class |
LineBracketInterpolatorHermiteCubic
Interpolates using a cubic with two points, both of which must have
slope information.
|
class |
LineBracketInterpolatorHermiteParabola
Interpolates using a parabola with two points, at least one of which must
have slope information.
|
class |
LineBracketInterpolatorLinear
Interpolates using a linear (stright-line) curve between two
points, neither of which need slope information.
|
class |
LineBracketInterpolatorParabola
Interpolates using a parabola based on three points without
slope information.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractKNearestNeighbor<InputType,OutputType>
Partial implementation of KNearestNeighbor.
|
class |
AbstractNearestNeighbor<InputType,OutputType>
Partial implementation of KNearestNeighbor.
|
class |
KNearestNeighborExhaustive<InputType,OutputType>
A generic k-nearest-neighbor classifier.
|
static class |
KNearestNeighborExhaustive.Learner<InputType,OutputType>
This is a BatchLearner interface for creating a new KNearestNeighborExhaustive
from a given dataset, simply a pass-through to the constructor of
KNearestNeighborExhaustive
|
protected class |
KNearestNeighborExhaustive.Neighbor
Holds neighbor information used during the evaluate method and is put
into a priority queue.
|
class |
KNearestNeighborKDTree<InputType extends Vectorizable,OutputType>
A KDTree-based implementation of the k-nearest neighbor algorithm.
|
static class |
KNearestNeighborKDTree.Learner<InputType extends Vectorizable,OutputType>
This is a BatchLearner interface for creating a new KNearestNeighbor
from a given dataset, simply a pass-through to the constructor of
KNearestNeighbor
|
class |
NearestNeighborExhaustive<InputType,OutputType>
The
NearestNeighborExhaustive class implements a simple evaluator
that looks up a given input object in a collection of input-output pair
examples and returns the output associated with the most similar input. |
static class |
NearestNeighborExhaustive.Learner<InputType,OutputType>
The
NearestNeighborExhaustive.Learner class implements a batch learner for
the NearestNeighborExhaustive class. |
class |
NearestNeighborKDTree<InputType extends Vectorizable,OutputType>
A KDTree-based implementation of the nearest neighbor algorithm.
|
static class |
NearestNeighborKDTree.Learner<InputType extends Vectorizable,OutputType>
This is a BatchLearner interface for creating a new NearestNeighbor
from a given dataset, simply a pass-through to the constructor of
NearestNeighbor
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractPrincipalComponentsAnalysis
Abstract implementation of PCA.
|
class |
GeneralizedHebbianAlgorithm
Implementation of the Generalized Hebbian Algorithm, also known as
Sanger's Rule, which is a generalization of Oja's Rule.
|
class |
KernelPrincipalComponentsAnalysis<DataType>
An implementation of the Kernel Principal Components Analysis (KPCA)
algorithm.
|
static class |
KernelPrincipalComponentsAnalysis.Function<DataType>
The resulting transformation function learned by Kernel Principal
Components Analysis.
|
class |
PrincipalComponentsAnalysisFunction
This VectorFunction maps a high-dimension input space onto a (hopefully)
simple low-dimensional output space by subtracting the mean of the input
data, and passing the zero-mean input through a dimension-reducing matrix
multiplication function.
|
class |
ThinSingularValueDecomposition
Computes the "thin" singular value decomposition of a dataset.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractKernelizableBinaryCategorizerOnlineLearner
An abstract implementation of the
KernelizableBinaryCategorizerOnlineLearner
interface. |
class |
AbstractLinearCombinationOnlineLearner
An abstract class for online learning of linear binary categorizers that
take the form of a weighted sum of inputs.
|
class |
AbstractOnlineLinearBinaryCategorizerLearner
An abstract class for online (incremental) learning algorithms that produce
an
LinearBinaryCategorizer . |
class |
AggressiveRelaxedOnlineMaximumMarginAlgorithm
An implementation of the Aggressive Relaxed Online Maximum Margin Algorithm
(AROMMA).
|
class |
Ballseptron
An implementation of the Ballseptron algorithm.
|
class |
BatchMultiPerceptron<CategoryType>
Implements a multi-class version of the standard batch Perceptron learning
algorithm.
|
class |
OnlineBinaryMarginInfusedRelaxedAlgorithm
An implementation of the binary MIRA algorithm.
|
class |
OnlineMultiPerceptron<CategoryType>
An online, multiple category version of the Perceptron algorithm.
|
static class |
OnlineMultiPerceptron.ProportionalUpdate<CategoryType>
Variant of a multi-category Perceptron that performs a proportional
weight update on all categories that are scored higher than the true
category such that the weights sum to 1.0 and are proportional how much
larger the score was for each incorrect category than the true category.
|
static class |
OnlineMultiPerceptron.UniformUpdate<CategoryType>
Variant of a multi-category Perceptron that performs a uniform weight
update on all categories that are scored higher than the true category
such that the weights are equal and sum to -1.
|
class |
OnlinePassiveAggressivePerceptron
An implementation of the Passive-Aggressive algorithm for learning a linear
binary categorizer.
|
static class |
OnlinePassiveAggressivePerceptron.AbstractSoftMargin
An abstract class for soft-margin versions of the Passive-Aggressive
algorithm.
|
static class |
OnlinePassiveAggressivePerceptron.LinearSoftMargin
An implementation of the linear soft-margin variant of the Passive-
Aggressive algorithm (PA-I).
|
static class |
OnlinePassiveAggressivePerceptron.QuadraticSoftMargin
An implementation of the quadratic soft-margin variant of the Passive-
Aggressive algorithm (PA-II).
|
class |
OnlinePerceptron
An online version of the classic Perceptron algorithm.
|
class |
OnlineRampPassiveAggressivePerceptron
An implementation of the Ramp Loss Passive Aggressive Perceptron (PA^R) from
the referenced paper.
|
class |
OnlineShiftingPerceptron
An implementation of the Shifting Perceptron algorithm.
|
static class |
OnlineShiftingPerceptron.LinearResult
This is the result learned by the shifting perceptron.
|
class |
OnlineVotedPerceptron
An online version of the Voted-Perceptron algorithm.
|
class |
Perceptron
The
Perceptron class implements the standard Perceptron learning
algorithm that learns a binary classifier based on vector input. |
class |
RelaxedOnlineMaximumMarginAlgorithm
An implementation of the Relaxed Online Maximum Margin Algorithm
(ROMMA).
|
class |
Winnow
An implementation of the Winnow incremental learning algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractOnlineBudgetedKernelBinaryCategorizerLearner<InputType>
An abstract implementation of the
BudgetedKernelBinaryCategorizerLearner
for online learners. |
class |
AbstractOnlineKernelBinaryCategorizerLearner<InputType>
An abstract class for an online kernel binary categorizer learner.
|
class |
Forgetron<InputType>
An implementation of the "self-tuned" Forgetron algorithm, which is an online
budgeted kernel binary categorizer learner.
|
static class |
Forgetron.Basic<InputType>
An implementation of the "basic" Forgetron algorithm, which is an online
budgeted kernel binary categorizer learner.
|
static class |
Forgetron.Greedy<InputType>
An implementation of the "greedy" Forgetron algorithm, which is an online
budgeted kernel binary categorizer learner.
|
static class |
Forgetron.Result<InputType>
The result object learned by the
Forgetron , which extends
the DefaultKernelBinaryCategorizer with some additional state
information needed in the update step. |
class |
KernelAdatron<InputType>
The
KernelAdatron class implements an online version of the Support
Vector Machine learning algorithm. |
class |
KernelBinaryCategorizerOnlineLearnerAdapter<InputType>
A wrapper class for a
KernelizableBinaryCategorizerOnlineLearner
that allows it to be used as a batch or incremental learner over the
input type directly, rather than using utility methods. |
class |
KernelPerceptron<InputType>
The
KernelPerceptron class implements the kernel version of
the Perceptron algorithm. |
class |
OnlineKernelPerceptron<InputType>
An implementation of the online version of the Perceptron algorithm.
|
class |
OnlineKernelRandomizedBudgetPerceptron<InputType>
An implementation of a fixed-memory kernel Perceptron algorithm.
|
class |
Projectron<InputType>
An implementation of the Projectron algorithm, which is an online kernel
binary categorizer learner that has a budget parameter tuned by the eta
parameter.
|
static class |
Projectron.LinearSoftMargin<InputType>
An implementation of the Projectron++ algorithm, which is an online
kernel binary categorizer learner that has a budget parameter tuned by
the eta parameter.
|
class |
RemoveOldestKernelPerceptron<InputType>
A budget kernel Perceptron that always removes the oldest item.
|
class |
Stoptron<InputType>
An online, budgeted, kernel version of the Perceptron algorithm that stops
learning once it has reached its budget.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractLogisticRegression<InputType,OutputType,FunctionType extends Evaluator<? super InputType,OutputType>>
Abstract partial implementation for logistic regression classes.
|
class |
AbstractMinimizerBasedParameterCostMinimizer<ResultType extends VectorizableVectorFunction,EvaluatorType extends Evaluator<? super Vector,? extends java.lang.Double>>
Partial implementation of ParameterCostMinimizer, based on the algorithms
from the minimization package.
|
class |
AbstractParameterCostMinimizer<ResultType extends VectorizableVectorFunction,CostFunctionType extends SupervisedCostFunction<Vector,Vector>>
Partial implementation of ParameterCostMinimizer.
|
class |
FletcherXuHybridEstimation
The Fletcher-Xu hybrid estimation for solving the nonlinear least-squares
parameters.
|
class |
GaussNewtonAlgorithm
Implementation of the Gauss-Newton parameter-estimation procedure.
|
class |
KernelBasedIterativeRegression<InputType>
The
KernelBasedIterativeRegression class implements an online version of
the Support Vector Regression algorithm. |
class |
KernelWeightedRobustRegression<InputType,OutputType>
KernelWeightedRobustRegression takes a supervised learning algorithm that
operates on a weighted collection of InputOutputPairs and modifies the
weight of a sample based on the dataset output and its corresponding
estimate from the Evaluator from the supervised learning algorithm at each
iteration.
|
class |
LeastSquaresEstimator
Abstract implementation of iterative least-squares estimators.
|
class |
LevenbergMarquardtEstimation
Implementation of the nonlinear regression algorithm, known as
Levenberg-Marquardt Estimation (or LMA).
|
class |
LinearBasisRegression<InputType>
Computes the least-squares regression for a LinearCombinationFunction
given a dataset.
|
class |
LinearRegression
Computes the least-squares regression for a LinearCombinationFunction
given a dataset.
|
static class |
LinearRegression.Statistic
Computes regression statistics using a chi-square measure of the
statistical significance of the learned approximator
|
static class |
LocallyWeightedFunction.Learner<InputType,OutputType>
Learning algorithm for creating LocallyWeightedFunctions.
|
class |
LogisticRegression
Performs Logistic Regression by means of the iterative reweighted least
squares (IRLS) algorithm, where the logistic function has an explicit bias
term, and a diagonal L2 regularization term.
|
static class |
LogisticRegression.Function
Class that is a linear discriminant, followed by a sigmoid function.
|
class |
MultivariateLinearRegression
Performs multivariate regression with an explicit bias term, with optional
L2 regularization.
|
class |
ParameterDerivativeFreeCostMinimizer
Implementation of a class of objects that uses a derivative-free
minimization algorithm.
|
static class |
ParameterDerivativeFreeCostMinimizer.ParameterCostEvaluatorDerivativeFree
Function that maps the parameters of an object to its inputs, so that
minimization algorithms can tune the parameters of an object against
a cost function.
|
class |
ParameterDifferentiableCostMinimizer
This class adapts the unconstrained nonlinear minimization algorithms in
the "minimization" package to the task of estimating locally optimal
(minimum-cost) parameter sets.
|
static class |
ParameterDifferentiableCostMinimizer.ParameterCostEvaluatorDerivativeBased
Function that maps the parameters of an object to its inputs, so that
minimization algorithms can tune the parameters of an object against
a cost function.
|
class |
UnivariateLinearRegression
An implementation of simple univariate linear regression.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractBracketedRootFinder
Partial implementation of RootFinder that maintains a bracket on the root.
|
class |
AbstractRootFinder
Partial implementation of RootFinder.
|
class |
MinimizerBasedRootFinder
A root finder that uses minimization techniques to find the roots
(zero-crossings).
|
class |
RootBracketExpander
The root-bracketing expansion algorithm.
|
class |
RootFinderBisectionMethod
Bisection algorithm for root finding.
|
class |
RootFinderFalsePositionMethod
The false-position algorithm for root finding.
|
class |
RootFinderNewtonsMethod
Newton's method, sometimes called Newton-Raphson method, uses first-order
derivative information to iteratively locate a root.
|
class |
RootFinderRiddersMethod
The root-finding algorithm due to Ridders.
|
class |
RootFinderSecantMethod
The secant algorithm for root finding.
|
class |
SolverFunction
Evaluator that allows RootFinders to solve for nonzero values by setting
a "target" parameter.
|
Modifier and Type | Class and Description |
---|---|
class |
PrimalEstimatedSubGradient
An implementation of the Primal Estimated Sub-Gradient Solver (PEGASOS)
algorithm for learning a linear support vector machine (SVM).
|
class |
SequentialMinimalOptimization<InputType>
An implementation of the Sequential Minimal Optimization (SMO) algorithm for
training a Support Vector Machine (SVM), which is a kernel-based binary
categorizer.
|
class |
SuccessiveOverrelaxation<InputType>
The
SuccessiveOverrelaxation class implements the Successive
Overrelaxation (SOR) algorithm for learning a Support Vector Machine (SVM). |
protected class |
SuccessiveOverrelaxation.Entry
The
Entry class represents the data that the algorithm keeps
about each training example. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractDecisionTreeLearner<InputType,OutputType>
The
AbstractDecisionTreeLearner implements common functionality for
learning algorithms that learn a decision tree. |
class |
AbstractDecisionTreeNode<InputType,OutputType,InteriorType>
The
AbstractDecisionTreeNode class implements common functionality
for a decision tree node. |
class |
AbstractVectorThresholdMaximumGainLearner<OutputType>
An abstract class for decider learners that produce a threshold function
on a vector element based on maximizing some gain value.
|
class |
CategorizationTree<InputType,OutputType>
The
CategorizationTree class extends the DecisionTree class
to implement a decision tree that does categorization. |
class |
CategorizationTreeLearner<InputType,OutputType>
The
CategorizationTreeLearner class implements a supervised learning
algorithm for learning a categorization tree. |
class |
CategorizationTreeNode<InputType,OutputType,InteriorType>
The
CategorizationTreeNode implements a DecisionTreeNode for
a tree that does categorization. |
class |
DecisionTree<InputType,OutputType>
The
DecisionTree class implements a standard decision tree that is
made up of DecisionTreeNode objects. |
class |
RandomForestFactory
A factory class for creating Random Forest learners.
|
class |
RandomSubVectorThresholdLearner<OutputType>
Learns a decision function by taking a randomly sampling a subspace from
a given set of input vectors and then learning a threshold function by
passing the subspace vectors to a sublearner.
|
class |
RegressionTree<InputType>
The
RegressionTree class extends the DecisionTree class
to implement a decision tree that does regression. |
class |
RegressionTreeLearner<InputType>
The
RegressionTreeLearner class implements a learning algorithm for
a regression tree that makes use of a decider learner and a regression
learner. |
class |
RegressionTreeNode<InputType,InteriorType>
The
RegressionTreeNode implements a DecisionTreeNode for
a tree that does regression. |
class |
VectorThresholdGiniImpurityLearner<OutputType>
Learns vector thresholds based on the Gini impurity measure.
|
class |
VectorThresholdHellingerDistanceLearner<OutputType>
A categorization tree decision function learner on vector data that learns a
vector value threshold function using the Hellinger distance.
|
class |
VectorThresholdInformationGainLearner<OutputType>
The
VectorThresholdInformationGainLearner computes the best
threshold over a dataset of vectors using information gain to determine the
optimal index and threshold. |
class |
VectorThresholdVarianceLearner
The
VectorThresholdVarianceLearner computes the best threshold over
a dataset of vectors using the reduction in variance to determine the
optimal index and threshold. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractInputOutputPair<InputType,OutputType>
An abstract implementation of the
InputOutputPair interface. |
class |
AbstractTargetEstimatePair<TargetType,EstimateType>
An abstract implementation of the
TargetEstimatePair . |
class |
AbstractValueDiscriminantPair<ValueType,DiscriminantType extends java.lang.Comparable<? super DiscriminantType>>
An abstract implementation of the
ValueDiscriminantPair interface. |
class |
DefaultInputOutputPair<InputType,OutputType>
A default implementation of the
InputOutputPair interface. |
class |
DefaultTargetEstimatePair<TargetType,EstimateType>
A default implementation of the
TargetEstimatePair . |
class |
DefaultValueDiscriminantPair<ValueType,DiscriminantType extends java.lang.Comparable<? super DiscriminantType>>
A default implementation of the
ValueDiscriminantPair interface. |
class |
DefaultWeightedInputOutputPair<InputType,OutputType>
A default implementation of the
WeightedInputOutputPair interface. |
class |
DefaultWeightedTargetEstimatePair<TargetType,EstimateType>
Extends
TargetEstimatePair with an additional weight field. |
class |
DefaultWeightedValueDiscriminant<ValueType>
An implementation of
ValueDiscriminantPair that stores a double
as the discriminant. |
class |
RandomDataPartitioner<DataType>
The
RandomDataPartitioner class implements a randomized data
partitioner that takes a collection of data and randomly splits it into
training and testing sets based on a fixed percentage of training data. |
Modifier and Type | Class and Description |
---|---|
class |
DelayFunction<DataType>
Delays the input and returns the input from the parameterized number of
samples previous.
|
class |
FeatureHashing
Implements a function that applies vector feature hashing.
|
class |
LinearRegressionCoefficientExtractor
Takes a sampled sequence of equal-dimension vectors as input and computes
the linear regression coefficients for each dimension in the vectors.
|
class |
MultivariateDecorrelator
Decorrelates a data using a mean and full or diagonal covariance matrix.
|
static class |
MultivariateDecorrelator.DiagonalCovarianceLearner
The
DiagonalCovarianceLearner class implements a BatchLearner
object for a MultivariateDecorrelator . |
static class |
MultivariateDecorrelator.FullCovarianceLearner
The
FullCovarianceLearner class implements a BatchLearner
object for a MultivariateDecorrelator . |
class |
RandomSubspace
Selects a random subspace from the given vector, which is a random set of
indices.
|
class |
StandardDistributionNormalizer
The
StandardDistributionNormalizer class implements a normalization
method where a real value is converted onto a standard distribution. |
static class |
StandardDistributionNormalizer.Learner
The
Learner class implements a BatchLearner object for
a StandardDistributionNormalizer . |
Modifier and Type | Class and Description |
---|---|
class |
AbstractLearningExperiment
The
AbstractLearningExperiment class implements the general
functionality of the LearningExperiment interface, which is mainly
the handling of listeners and firing of events. |
class |
AbstractValidationFoldExperiment<InputDataType,FoldDataType>
The
AbstractValidationFoldExperiment class implements a common way
of structuring an experiment around a ValidationFoldCreator object
where the fold creator is used to create each of the individual trials of
the experiment. |
class |
CrossFoldCreator<DataType>
The
CrossFoldCreator implements a validation fold creator that
creates folds for a typical k-fold cross-validation experiment. |
class |
LearnerComparisonExperiment<InputDataType,FoldDataType,LearnedType,StatisticType,SummaryType>
The
LearnerComparisonExperiment compares the performance of two
machine learning algorithms to determine (using a statistical test) if the
two algorithms have significantly different performance. |
class |
LearnerRepeatExperiment<InputDataType,LearnedType,StatisticType,SummaryType>
Runs an experiment where the same learner is evaluated multiple times on
the same data.
|
class |
LearnerValidationExperiment<InputDataType,FoldDataType,LearnedType,StatisticType,SummaryType>
The
LearnerValidationExperiment class implements an experiment where
a supervised machine learning algorithm is evaluated by applying it to a set
of folds created from a given set of data. |
class |
OnlineLearnerValidationExperiment<DataType,LearnedType,StatisticType,SummaryType>
Implements an experiment where an incremental supervised machine learning
algorithm is evaluated by applying it to a set of data by successively
testing on each item and then training on it.
|
class |
ParallelLearnerValidationExperiment<InputDataType,FoldDataType,LearnedType,StatisticType,SummaryType>
Parallel version of the LearnerValidationExperiment class that executes
the validations experiments across available cores and hyperthreads.
|
class |
RandomByTwoFoldCreator<DataType>
A validation fold creator that takes a given collection of data and randomly
splits it in half a given number of times, returning two folds for each
split, using one half as training and the other half as testing.
|
class |
SupervisedLearnerComparisonExperiment<InputType,OutputType,StatisticType,SummaryType>
A comparison experiment for supervised learners.
|
class |
SupervisedLearnerValidationExperiment<InputType,OutputType,StatisticType,SummaryType>
The
SupervisedLearnerValidationExperiment class extends the
LearnerValidationExperiment class to provide a easy way to create
a learner validation experiment for supervised learning. |
Modifier and Type | Class and Description |
---|---|
class |
ConstantEvaluator<OutputType>
The
ConstantEvaluator class implements an Evaluator that
always returns the same output value. |
class |
LinearCombinationFunction<InputType,OutputType>
A function whose output is a weighted linear combination of (potentially)
nonlinear basis function.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractBinaryCategorizer<InputType>
The
AbstractBinaryCategorizer implements the commonality of
the BinaryCategorizer , holding the collection of possible
values. |
class |
AbstractCategorizer<InputType,CategoryType>
An abstract implementation of the
Categorizer interface. |
class |
AbstractConfidenceWeightedBinaryCategorizer
Unit tests for class AbstractConfidenceWeightedBinaryCategorizer.
|
class |
AbstractDiscriminantBinaryCategorizer<InputType>
An abstract implementation of the
DiscriminantBinaryCategorizer
interface. |
class |
AbstractDiscriminantCategorizer<InputType,CategoryType,DiscriminantType extends java.lang.Comparable<? super DiscriminantType>>
An abstract implementation of the
DiscriminantCategorizer interface. |
class |
AbstractThresholdBinaryCategorizer<InputType>
Categorizer that first maps the input space onto a real value, then
uses a threshold to map the result onto lowValue (for strictly less than the
threshold) or highValue (for greater than or equal to the threshold).
|
class |
BinaryVersusCategorizer<InputType,CategoryType>
An adapter that allows binary categorizers to be adapted for multi-category
problems by applying a binary categorizer to each pair of categories.
|
static class |
BinaryVersusCategorizer.Learner<InputType,CategoryType>
A learner for the
BinaryVersusCategorizer . |
class |
CompositeCategorizer<InputType,IntermediateType,CategoryType>
Composes a preprocessor function with a categorizer.
|
class |
DefaultConfidenceWeightedBinaryCategorizer
A default implementation of the
ConfidenceWeightedBinaryCategorizer
that stores a full mean and covariance matrix. |
class |
DefaultKernelBinaryCategorizer<InputType>
A default implementation of the
KernelBinaryCategorizer that uses
the standard way of representing the examples (supports) using a
DefaultWeightedValue . |
class |
DiagonalConfidenceWeightedBinaryCategorizer
A confidence-weighted linear predictor with a diagonal covariance,
which is stored as a vector.
|
class |
EvaluatorToCategorizerAdapter<InputType,CategoryType>
The
EvaluatorToCategorizerAdapter class implements an adapter from a
general Evaluator to be a Categorizer . |
static class |
EvaluatorToCategorizerAdapter.Learner<InputType,CategoryType>
The
EvaluatorToCategorizerAdapter.Learner class implements a
simple supervised learner for a EvaluatorToCategorizerAdapter . |
class |
FisherLinearDiscriminantBinaryCategorizer
A Fisher Linear Discriminant classifier, which creates an optimal linear
separating plane between two Gaussian classes of different covariances.
|
static class |
FisherLinearDiscriminantBinaryCategorizer.ClosedFormSolver
This class implements a closed form solver for the Fisher linear
discriminant binary categorizer.
|
class |
KernelBinaryCategorizer<InputType,EntryType extends WeightedValue<? extends InputType>>
The
KernelBinaryCategorizer class implements a binary
categorizer that uses a kernel to do its categorization. |
class |
LinearBinaryCategorizer
The
LinearBinaryCategorizer class implements a binary
categorizer that is implemented by a linear function. |
class |
LinearMultiCategorizer<CategoryType>
A multi-category version of the LinearBinaryCategorizer that keeps a separate
LinearBinaryCategorizer for each category.
|
class |
MaximumAPosterioriCategorizer<ObservationType,CategoryType>
Categorizer that returns the category with the highest posterior likelihood
for a given observation.
|
static class |
MaximumAPosterioriCategorizer.Learner<ObservationType,CategoryType>
Learner for the MAP categorizer
|
class |
ScalarFunctionToBinaryCategorizerAdapter<InputType>
Adapts a scalar function to be a categorizer using a threshold.
|
class |
ScalarThresholdBinaryCategorizer
The
ScalarThresholdBinaryCategorizer class implements a binary
categorizer that uses a threshold to categorize a given double. |
class |
VectorElementThresholdCategorizer
The
VectorElementThresholdCategorizer class implements a
BinaryCategorizer that categorizes an input vector by applying a
threshold to an element in a the vector. |
class |
WinnerTakeAllCategorizer<InputType,CategoryType>
Adapts an evaluator that outputs a vector to be used as a categorizer.
|
static class |
WinnerTakeAllCategorizer.Learner<InputType,CategoryType>
A learner for the adapter.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractCostFunction<EvaluatedType,CostParametersType>
Partial implementation of CostFunction.
|
class |
AbstractParallelizableCostFunction
Partial implementation of the ParallelizableCostFunction
|
class |
AbstractSupervisedCostFunction<InputType,TargetType>
Partial implementation of SupervisedCostFunction
|
class |
ClusterDistortionMeasure<DataType,ClusterType extends Cluster<DataType>>
Computes the objective measure for a clustering algorithm, based on the
internal "distortion" of each cluster.
|
class |
EuclideanDistanceCostFunction
The EuclideanDistanceCostFunction class implements a CostFunction that
calculates the Euclidean distance the given Vectorizable and the goal
vector.
|
class |
KolmogorovSmirnovDivergence<DataType extends java.lang.Number>
CostFunction that induces a CDF that most-closely resembles the
target distribution according to the Kolmogorov-Smirnov (K-S) test.
|
class |
MeanL1CostFunction
Cost function that evaluates the mean 1-norm error (absolute value of
difference) weighted by a sample "weight" that is embedded in each sample.
|
class |
MeanSquaredErrorCostFunction
The MeanSquaredErrorCostFunction implements a cost function for functions
that take as input a vector and return a vector.
|
class |
NegativeLogLikelihood<DataType>
CostFunction for computing the maximum likelihood
(because we are minimizing the negative of the log likelihood)
|
class |
ParallelClusterDistortionMeasure<DataType,ClusterType extends Cluster<DataType>>
A parallel implementation of ClusterDistortionMeasure.
|
class |
ParallelizedCostFunctionContainer
A cost function that automatically splits a ParallelizableCostFunction
across multiple cores/processors to speed up computation.
|
class |
ParallelNegativeLogLikelihood<DataType>
Parallel implementation of the NegativeLogLikleihood cost function
|
class |
SumSquaredErrorCostFunction
This is the sum-squared error cost function
|
static class |
SumSquaredErrorCostFunction.Cache
Caches often-used values for the Cost Function
|
static class |
SumSquaredErrorCostFunction.GradientPartialSSE
Partial result from the SSE gradient computation
|
Modifier and Type | Class and Description |
---|---|
class |
ChebyshevDistanceMetric
An implementation of the Chebyshev distance, which is the absolute value of
the largest difference between two vectors in a single dimension.
|
class |
CosineDistanceMetric
The
CosineDistanceMetric class implements a semimetric between
two vectors based on the cosine between the vectors. |
class |
DefaultDivergenceFunctionContainer<FirstType,SecondType>
The
DefaultDivergenceFunctionContainer class implements an object
that holds a divergence function. |
class |
DivergencesEvaluator<InputType,ValueType>
Evaluates the divergence (distance) between an input and a list of values,
storing the resulting divergence values in a vector.
|
static class |
DivergencesEvaluator.Learner<DataType,InputType,ValueType>
A learner adapter for the
DivergencesEvaluator . |
class |
EuclideanDistanceMetric
The
EuclideanDistanceMetric implements a distance metric that
computes the Euclidean distance between two points. |
class |
EuclideanDistanceSquaredMetric
The
EuclideanDistanceSquaredMetric implements a distance metric
that computes the squared Euclidean distance between two points. |
class |
IdentityDistanceMetric
A distance metric that is 0 if two objects are equal and 1 if they are not.
|
class |
ManhattanDistanceMetric
The
ManhattanDistanceMetric class implements a distance metric
between two vectors that is implemented as the sum of the absolute value of
the difference between the elements in the vectors. |
class |
MinkowskiDistanceMetric
An implementation of the Minkowski distance metric.
|
class |
WeightedEuclideanDistanceMetric
A distance metric that weights each dimension of a vector differently before
computing Euclidean distance.
|
Modifier and Type | Class and Description |
---|---|
class |
DefaultKernelContainer<InputType>
The
DefaultKernelContainer class implements an object that
contains a kernel inside. |
class |
DefaultKernelsContainer<InputType>
The
DefaultKernelsContainer class implements a container of kernels. |
class |
ExponentialKernel<InputType>
The
ExponentialKernel class implements a kernel that applies the
exponential function to the result of another kernel. |
class |
KernelDistanceMetric<InputType>
The
KernelDistanceMetric class implements a distance metric that
utilizes an underlying Kernel for computing the distance. |
class |
LinearKernel
The
LinearKernel class implements the most basic kernel: it just
does the actual inner product between two vectors. |
class |
NormalizedKernel<InputType>
The
NormalizedKernel class implements an Kernel
that returns a normalized value between 0.0 and 1.0 by normalizing the
results of a given kernel. |
class |
PolynomialKernel
The
PolynomialKernel class implements a kernel for two given
vectors that is the polynomial function:
(x dot y + c)^d d is the degree of the polynomial, which must be a positive integer. |
class |
ProductKernel<InputType>
The
ProductKernel class implements a kernel that takes the product
of applying multiple kernels to the same pair of inputs. |
class |
RadialBasisKernel
The
RadialBasisKernel implements the standard radial basis
kernel, which is:
exp( -||x - y||^2 / (2 * sigma^2) ) where sigma is the parameter that controls the bandwidth of the kernel. |
class |
ScalarFunctionKernel<InputType>
The
ScalarFunctionKernel class implements a kernel that applies a
scalar function two the two inputs to the kernel and then returns their
product. |
class |
SigmoidKernel
The
SigmoidKernel class implements a sigmoid kernel based on the
hyperbolic tangent. |
class |
SumKernel<InputType>
The
SumKernel class implements a kernel that adds together
the result of applying multiple kernels to the same pair of inputs. |
class |
VectorFunctionKernel
The
VectorFunctionKernel implements a kernel that makes use of a
vector function plus a kernel that operates on vectors. |
class |
WeightedKernel<InputType>
The
WeightedKernel class implements a kernel that takes another
kernel, evaluates it, and then the result is rescaled by a given weight. |
class |
ZeroKernel
The
ZeroKernel always returns zero. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractRegressor<InputType>
An abstract implementation of the
Regressor interface. |
Modifier and Type | Class and Description |
---|---|
class |
AtanFunction
Returns the element-wise arctangent of the input vector, compressed between
-maxMagnitude and maxMagnitude (instead of just -PI/2 and PI/2)
|
class |
CosineFunction
A closed-form cosine function.
|
class |
HardSigmoidFunction
A hard sigmoid function, which is an approximation of a logistic sigmoid
whose output is between 0 and 1.
|
class |
HardTanHFunction
A hard sigmoid function, which is an approximation of a tanh sigmoid
whose output is between -1 and 1.
|
class |
IdentityScalarFunction
A univariate scalar identity function: f(x) = x.
|
class |
KernelScalarFunction<InputType>
The
KernelScalarFunction class implements a scalar function that
uses a kernel to compute its output value. |
class |
KolmogorovSmirnovEvaluator
You can specify a particular CDF.
|
class |
LeakyRectifiedLinearFunction
A leaky rectified linear unit.
|
class |
LinearCombinationScalarFunction<InputType>
A weighted linear combination of scalar functions.
|
class |
LinearDiscriminant
LinearDiscriminant takes the dot product between the weight Vector and
the input Vector.
|
class |
LinearDiscriminantWithBias
A LinearDiscriminant with an additional bias term that gets added to the
output of the dot product.
|
class |
LinearFunction
This function acts as a simple linear function of the form f(x) = m*x + b.
|
class |
LinearVectorScalarFunction
The
LinearVectorScalarFunction class implements a scalar
function that is implemented by a linear function. |
class |
LocallyWeightedKernelScalarFunction<InputType>
The
LocallyWeightedKernelScalarFunction class implements a scalar
function that uses kernels and does local weighting on them to get the
result value. |
class |
PolynomialFunction
A single polynomial term specified by a real-valued exponent.
|
static class |
PolynomialFunction.Cubic
Algebraic treatment for a polynomial of the form
y(x) = q0 + q1*x + q2*x^2 + q3*x^3
|
static class |
PolynomialFunction.Linear
Utilities for algebraic treatment of a linear polynomial of the form
y(x) = q0 + q1*x
|
static class |
PolynomialFunction.Quadratic
Utilities for algebraic treatment of a quadratic polynomial of the form
y(x) = q0 + q1*x + q2*x^2.
|
static class |
PolynomialFunction.Regression
Performs Linear Regression using an arbitrary set of
PolynomialFunction basis functions
|
class |
RectifiedLinearFunction
A rectified linear unit, which is the maximum of its input or 0.
|
class |
SigmoidFunction
An implementation of a sigmoid squashing function.
|
class |
SoftPlusFunction
A smoothed approximation for rectified linear unit.
|
class |
TanHFunction
The hyperbolic tangent (tanh) function.
|
class |
ThresholdFunction
Maps the input space onto the set {LOW_VALUE,HIGH_VALUE}.
|
class |
VectorEntryFunction
An evaluator that returns the value of an input vector at a specified index.
|
class |
VectorFunctionLinearDiscriminant<InputType>
This class takes a function that maps a generic InputType to a Vector.
|
class |
VectorFunctionToScalarFunction<InputType>
The
VectorFunctionToScalarFunction class implements an adapter for
using a vector function that outputs a single-dimensional vector as a
scalar function. |
static class |
VectorFunctionToScalarFunction.Learner<InputType>
The
VectorFunctionToScalarFunction.Learner class implements a
simple learner for a VectorFunctionToScalarFunction that allows
a learning algorithm that outputs a vector function to be adapted to
learn on data whose output are doubles. |
Modifier and Type | Class and Description |
---|---|
class |
MostFrequentSummarizer<DataType>
Summarizes a set of values by returning the most frequent value.
|
Modifier and Type | Class and Description |
---|---|
class |
DifferentiableFeedforwardNeuralNetwork
A feedforward neural network that can have an arbitrary number of layers,
and an arbitrary differentiable squashing (activation) function assigned to
each layer.
|
class |
DifferentiableGeneralizedLinearModel
A GradientDescenable version of a GeneralizedLinearModel, in
other words, a GeneralizedLinearModel where the squashing
function is differentiable
|
class |
ElementWiseDifferentiableVectorFunction
An ElementWiseVectorFunction that is also a DifferentiableVectorFunction
|
class |
ElementWiseVectorFunction
A VectorFunction that operates on each element of the Vector indepenently
of all others.
|
class |
EntropyEvaluator
Takes a vector of inputs and computes the log base 2 entropy of the input.
|
class |
FeedforwardNeuralNetwork
A feedforward neural network that can have an arbitrary number of layers,
and an arbitrary squashing (activation) function assigned to each layer.
|
class |
GaussianContextRecognizer
Uses a MixtureOfGaussians to compute the probability of the different
constituent MultivariateGaussians (that is, the contexts)
|
static class |
GaussianContextRecognizer.Learner
Creates a GaussianContextRecognizer from a Dataset[Vector] using
a BatchClusterer
|
class |
GeneralizedLinearModel
A VectorizableVectorFunction that is a matrix multiply followed by a
VectorFunction...
|
class |
LinearCombinationVectorFunction
A weighted linear combination of scalar functions.
|
class |
LinearVectorFunction
The
LinearFunction class is a simple
VectorFunction that just scales the given input vector by a
scalar value. |
class |
MultivariateDiscriminant
Allows learning algorithms (vectorizing, differentiating) on a matrix*vector
multiply.
|
class |
MultivariateDiscriminantWithBias
A multivariate discriminant (matrix multiply) plus a constant vector
that gets added to the output of the discriminant.
|
class |
ScalarBasisSet<InputType>
Collection of scalar basis functions, where the ith function operates
on the ith element of the output Vector
|
class |
SubVectorEvaluator
Extracts the given set of indices from an input vector to create a new
vector containing the input vector's elements at those indices.
|
class |
ThreeLayerFeedforwardNeuralNetwork
This is a "standard" feedforward neural network with a single hidden
layer.
|
class |
VectorizableVectorConverter
The
VectorizableVectorConverter class implements a conversion
between a Vectorizable and an Vector by calling the proper
conversion method on the Vectorizable . |
class |
VectorizableVectorConverterWithBias
The
VectorizableVectorConverterWithBias class extends the
VectorizableVectorConverter class to append a constant bias value of
1.0 to the vector returned by the converter. |
Modifier and Type | Class and Description |
---|---|
class |
ParameterAdaptableBatchLearnerWrapper<DataType,ResultType,LearnerType extends BatchLearner<? super DataType,? extends ResultType>>
A wrapper for adding parameter adapters to a batch learner.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractSupervisedPerformanceEvaluator<InputType,TargetType,EstimateType,ResultType>
The
AbstractSupervisedPerformanceEvaluator class contains an
abstract implementation of the SupervisedPerformanceEvaluator class. |
class |
AnytimeBatchLearnerValidationPerformanceReporter<DataType,ObjectType>
A performance reporter for a validation set.
|
class |
MeanAbsoluteErrorEvaluator<InputType>
The
MeanAbsoluteError class implements a method for computing the
performance of a supervised learner for a scalar function by the mean
absolute value between the target and estimated outputs. |
class |
MeanSquaredErrorEvaluator<InputType>
The
MeanSquaredError class implements the method for computing the
performance of a supervised learner for a scalar function by the mean squared
between the target and estimated outputs. |
class |
MeanZeroOneErrorEvaluator<InputType,DataType>
The
MeanZeroOneErrorEvaluator class implements a method for
computing the performance of a supervised learner by the mean number of
incorrect values between the target and estimated outputs. |
class |
RootMeanSquaredErrorEvaluator<InputType>
The
RootMeanSquaredErrorEvaluator class implements a method for
computing the performance of a supervised learner for a scalar function by
the root mean squared error (RMSE or RSE) between the target and estimated
outputs. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractBinaryConfusionMatrix
An abstract implementation of the
BinaryConfusionMatrix interface. |
class |
AbstractConfusionMatrix<CategoryType>
An abstract implementation of the
ConfusionMatrix interface. |
class |
ConfusionMatrixPerformanceEvaluator<InputType,CategoryType>
A performance evaluator that builds a confusion matrix.
|
class |
DefaultBinaryConfusionMatrix
A default implementation of the
BinaryConfusionMatrix . |
static class |
DefaultBinaryConfusionMatrix.ActualPredictedPairSummarizer
A confusion matrix summarizer that summarizes actual-predicted pairs.
|
static class |
DefaultBinaryConfusionMatrix.CombineSummarizer
A confusion matrix summarizer that adds together confusion matrices.
|
static class |
DefaultBinaryConfusionMatrix.PerformanceEvaluator<InputType>
An implementation of the
SupervisedPerformanceEvaluator interface
for creating a DefaultBinaryConfusionMatrix . |
static class |
DefaultBinaryConfusionMatrixConfidenceInterval.Summary
An implementation of the
Summarizer interface for creating a
ConfusionMatrixInterval |
class |
DefaultConfusionMatrix<CategoryType>
A default implementation of the
ConfusionMatrix interface. |
static class |
DefaultConfusionMatrix.ActualPredictedPairSummarizer<CategoryType>
A confusion matrix summarizer that summarizes actual-predicted pairs.
|
static class |
DefaultConfusionMatrix.CombineSummarizer<CategoryType>
A confusion matrix summarizer that adds together confusion matrices.
|
static class |
DefaultConfusionMatrix.Factory<CategoryType>
A factory for default confusion matrices.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractDifferentiableUnivariateScalarFunction
Partial implementation of DifferentiableUnivariateScalarFunction that
implements the differentiate(Double) method with a callback to the
differentiate(double) method, so that a concrete class only to implement
the differentiate(double) method
|
class |
AbstractEuclideanRing<RingType extends EuclideanRing<RingType>>
An abstract implementation of the
EuclideanRing interface. |
class |
AbstractRing<RingType extends Ring<RingType>>
Implements the non-inline versions of the various Ring functions.
|
class |
AbstractScalarFunction<InputType>
An abstract implementation of the
ScalarFunction interface. |
class |
AbstractUnivariateScalarFunction
Abstract implementation of ScalarFunction where the evaluate(Double) method
calls back into the evaluate(double) method.
|
protected static class |
Combinations.AbstractCombinationsIterator<IteratorType extends Combinations.AbstractCombinationsIterator<IteratorType,ClassType>,ClassType>
Partial implementation of a CombinationsIterator.
|
class |
Combinations.IndexIterator
Iterator that returns the index into a set: 0, 1, 2, ...
|
static class |
Combinations.SubsetIterator<ClassType>
Creates a new instance of SubsetIterator, one that returns the elements
from a given set
|
class |
ComplexNumber
Represents a complex number in a rectangular manner, explicitly storing
the real and imaginary portions: real + j*imaginary
|
class |
LentzMethod
This class implements Lentz's method for evaluating continued fractions.
|
class |
NumberAverager
Returns an average (arithmetic mean) of a collection of Numbers
|
class |
RingAverager<RingType extends Ring<RingType>>
A type of Averager for Rings (Matrices, Vectors, ComplexNumbers).
|
class |
UnivariateSummaryStatistics
A Bayesian-style synopsis of a Collection of scalar data.
|
class |
WeightedNumberAverager
Averages together given set of weighted values by adding up the weight times
the value and then dividing by the total weight.
|
class |
WeightedRingAverager<RingType extends Ring<RingType>>
A type of Summarizer for Rings (Matrices, Vectors, ComplexNumbers).
|
Modifier and Type | Class and Description |
---|---|
protected class |
KDTree.Neighborhood.Neighbor<VectorType extends Vectorizable,DataType,PairType extends Pair<? extends VectorType,DataType>>
Holds neighbor information used during the evaluate method and is put
into a priority queue.
|
protected static class |
KDTree.PairFirstVectorizableIndexComparator
Comparator for Pairs that have a Vectorizable as its first parameter.
|
class |
Quadtree<DataType extends Vectorizable>
Implements the quadtree region-partitioning algorithm and data structure.
|
class |
Quadtree.Node
Represents a node in the quadtree.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractMatrix
Abstract implementation of some low-hanging functions in the Matrix
interface.
|
class |
AbstractVector
Abstract implementation of some of the Vector interface, in a storage-free
manner
|
class |
AbstractVectorSpace<VectorType extends VectorSpace<VectorType,? extends EntryType>,EntryType extends VectorSpace.Entry>
Partial implementation of VectorSpace
|
class |
DefaultInfiniteVector<KeyType>
An implementation of an
InfiniteVector backed by a
LinkedHashMap . |
class |
DefaultVectorFactoryContainer
A default implementation of the
VectorFactoryContainer interface. |
class |
NumericalDifferentiator<InputType,OutputType,DerivativeType>
Automatically differentiates a function by the method of forward differences.
|
static class |
NumericalDifferentiator.DoubleJacobian
Numerical differentiator based on a Vector Jacobian.
|
static class |
NumericalDifferentiator.MatrixJacobian
Numerical differentiator based on a Matrix Jacobian.
|
static class |
NumericalDifferentiator.VectorJacobian
Numerical differentiator based on a Vector Jacobian.
|
class |
VectorizableIndexComparator
Compares the given index of two Vectorizables.
|
Modifier and Type | Class and Description |
---|---|
class |
DenseMatrix
A dense matrix implementation.
|
class |
DenseVector
Our dense vector implementation.
|
class |
DiagonalMatrix
Diagonal matrices are a special case, but a rather common one with very quick
and simple solutions to multiplications, inverses, etc.
|
class |
ParallelSparseMatrix
A sparse matrix implementation.
|
class |
SparseMatrix
A sparse matrix implementation.
|
class |
SparseVector
Our sparse vector implementation.
|
Modifier and Type | Class and Description |
---|---|
class |
EigenvectorPowerIteration
Implementation of the Eigenvector Power Iteration algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractMTJMatrix
Relies on internal MTJ matrix to do some of the heavy lifting, without
assuming that the underlying matrix is Dense or Sparse
|
class |
AbstractMTJVector
Implementation of the Vector interface that relies on MTJ Vectors, but does
not specify sparse or dense storage.
|
class |
AbstractSparseMatrix
Implements some generic operations that any sparse-matrix representation
must do.
|
class |
DiagonalMatrixMTJ
A diagonal matrix that wraps MTJ's BandMatrix class.
|
class |
SparseColumnMatrix
A sparse matrix, represented as a collection of sparse column vectors.
|
class |
SparseRowMatrix
A sparse matrix, represented as a collection of sparse row vectors.
|
class |
Vector1
Implements a one-dimensional MTJ
DenseVector . |
class |
Vector2
Implements a two-dimensional MTJ
DenseVector . |
class |
Vector3
Implements a three-dimensional
DenseVector . |
Modifier and Type | Class and Description |
---|---|
class |
CholeskyDecompositionMTJ
Computes the Cholesky decomposition of the symmetric positive definite
matrix.
|
Modifier and Type | Class and Description |
---|---|
class |
AutoRegressiveMovingAverageFilter
A type of filter using a moving-average calculation.
|
class |
FourierTransform
Computes the Fast Fourier Transform, or brute-force discrete Fourier
transform, of a discrete input sequence.
|
static class |
FourierTransform.Inverse
Evaluator that inverts a Fourier transform.
|
class |
LinearDynamicalSystem
A generic Linear Dynamical System of the form
x_n = A*x_(n-1) + B*u_n y_n = C*x_n, where x_(n-1) is the previous state, x_n is the current state, u_n is the current input, y_n is the current output, A is the system matrix, B is the input-gain matrix, and C is the output-selector matrix |
class |
MovingAverageFilter
A type of filter using a moving-average calculation.
|
class |
PIDController
This class defines a Proportional-plus-Integral-plus-Derivative set-point
controller.
|
static class |
PIDController.State
State of a PIDController
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractClosedFormIntegerDistribution
An abstract class for closed-form integer distributions.
|
class |
AbstractClosedFormSmoothUnivariateDistribution
Partial implementation of SmoothUnivariateDistribution
|
class |
AbstractClosedFormUnivariateDistribution<NumberType extends java.lang.Number>
Partial implementation of a ClosedFormUnivariateDistribution.
|
class |
AbstractDataDistribution<KeyType>
An abstract implementation of the
DataDistribution interface. |
class |
AbstractDistribution<DataType>
Partial implementation of Distribution.
|
class |
AbstractIncrementalEstimator<DataType,DistributionType extends Distribution<? extends DataType>,SufficientStatisticsType extends SufficientStatistic<DataType,DistributionType>>
Partial implementation of
IncrementalEstimator . |
class |
AbstractRandomVariable<DataType>
Partial implementation of RandomVariable.
|
class |
AbstractSufficientStatistic<DataType,DistributionType>
Partial implementation of SufficientStatistic
|
class |
DefaultDistributionParameter<ParameterType,ConditionalType extends ClosedFormDistribution<?>>
Default implementation of DistributionParameter using introspection.
|
class |
UnivariateRandomVariable
This is an implementation of a RandomVariable for scalar distributions.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractBayesianParameter<ParameterType,ConditionalType extends ClosedFormDistribution<?>,PriorType extends Distribution<ParameterType>>
Partial implementation of BayesianParameter
|
class |
AbstractKalmanFilter
Contains fields useful to both Kalman filters and extended Kalman filters.
|
class |
AbstractMarkovChainMonteCarlo<ObservationType,ParameterType>
Partial abstract implementation of MarkovChainMonteCarlo.
|
class |
AbstractParticleFilter<ObservationType,ParameterType>
Partial abstract implementation of ParticleFilter.
|
class |
AdaptiveRejectionSampling
Samples form a univariate distribution using the method of adaptive
rejection sampling, which is a very efficient method that iteratively
improves the rejection and acceptance envelopes in response to additional
points.
|
class |
AdaptiveRejectionSampling.AbstractEnvelope
Describes an enveloping function comprised of a sorted sequence of lines
|
static class |
AdaptiveRejectionSampling.LineSegment
A line that has a minimum and maximum support (x-axis) value.
|
static class |
AdaptiveRejectionSampling.LogEvaluator<EvaluatorType extends Evaluator<java.lang.Double,java.lang.Double>>
Wraps an Evaluator and takes the natural logarithm of the evaluate method
|
class |
AdaptiveRejectionSampling.LowerEnvelope
Define the lower envelope for Adaptive Rejection Sampling
|
static class |
AdaptiveRejectionSampling.PDFLogEvaluator
Wraps a PDF so that it returns the logEvaluate method.
|
static class |
AdaptiveRejectionSampling.Point
An InputOutputPair that has a natural ordering according to their
input (x-axis) values.
|
class |
AdaptiveRejectionSampling.UpperEnvelope
Constructs the upper envelope for sampling.
|
class |
BayesianCredibleInterval
A Bayesian credible interval defines a bound that a scalar parameter is
within the given interval.
|
class |
BayesianLinearRegression
Computes a Bayesian linear estimator for a given feature function
and a set of observed data.
|
static class |
BayesianLinearRegression.IncrementalEstimator
Incremental estimator for BayesianLinearRegression
|
class |
BayesianLinearRegression.IncrementalEstimator.SufficientStatistic
SufficientStatistic for incremental Bayesian linear regression
|
class |
BayesianLinearRegression.PredictiveDistribution
Creates the predictive distribution for the likelihood of a given point.
|
class |
BayesianRobustLinearRegression
Computes a Bayesian linear estimator for a given feature function given
a set of InputOutputPair observed values.
|
static class |
BayesianRobustLinearRegression.IncrementalEstimator
Incremental estimator for BayesianRobustLinearRegression
|
class |
BayesianRobustLinearRegression.IncrementalEstimator.SufficientStatistic
SufficientStatistic for incremental Bayesian linear regression
|
class |
BayesianRobustLinearRegression.PredictiveDistribution
Predictive distribution of future data given the posterior of
the weights given the data.
|
class |
DefaultBayesianParameter<ParameterType,ConditionalType extends ClosedFormDistribution<?>,PriorType extends Distribution<ParameterType>>
Default implementation of BayesianParameter using reflection.
|
class |
DirichletProcessMixtureModel<ObservationType>
An implementation of Dirichlet Process clustering, which estimates the
number of clusters and the centroids of the clusters from a set of
data.
|
static class |
DirichletProcessMixtureModel.DPMMCluster<ObservationType>
Cluster for a step in the DPMM
|
protected static class |
DirichletProcessMixtureModel.DPMMLogConditional
Container for the log conditional likelihood
|
static class |
DirichletProcessMixtureModel.MultivariateMeanCovarianceUpdater
Updater that creates specified clusters with distinct means and covariances
|
static class |
DirichletProcessMixtureModel.MultivariateMeanUpdater
Updater that creates specified clusters with identical covariances
|
static class |
DirichletProcessMixtureModel.Sample<ObservationType>
A sample from the Dirichlet Process Mixture Model.
|
class |
ExtendedKalmanFilter
Implements the Extended Kalman Filter (EKF), which is an extension of the
Kalman filter that allows nonlinear motion and observation models.
|
class |
GaussianProcessRegression<InputType>
Gaussian Process Regression, is also known as Kriging, is a nonparametric
method to interpolate and extrapolate using Bayesian regression, where
the expressiveness of the estimator can grow with the data.
|
class |
GaussianProcessRegression.PredictiveDistribution
Predictive distribution for Gaussian Process Regression.
|
class |
ImportanceSampling<ObservationType,ParameterType>
Importance sampling is a Monte Carlo inference technique where we sample
from an easy distribution over the hidden variables (parameters) and then
weight the result by the ratio of the likelihood of the parameters given
the evidence and the likelihood of generating the parameters.
|
static class |
ImportanceSampling.DefaultUpdater<ObservationType,ParameterType>
Default ImportanceSampling Updater that uses a BayesianParameter
to compute the quantities of interest.
|
class |
KalmanFilter
A Kalman filter estimates the state of a dynamical system corrupted with
white Gaussian noise with observations that are corrupted with white
Gaussian noise.
|
class |
MetropolisHastingsAlgorithm<ObservationType,ParameterType>
An implementation of the Metropolis-Hastings MCMC algorithm, which is the
most general formulation of MCMC but can be slow.
|
class |
ParallelDirichletProcessMixtureModel<ObservationType>
A Parallelized version of vanilla Dirichlet Process Mixture Model learning.
|
protected class |
ParallelDirichletProcessMixtureModel.ClusterUpdaterTask
Tasks that update the values of the clusters for Gibbs sampling
|
protected class |
ParallelDirichletProcessMixtureModel.ObservationAssignmentTask
Task that assign observations to cluster indices
|
class |
RejectionSampling<ObservationType,ParameterType>
Rejection sampling is a method of inferring hidden parameters by using
an easy-to-sample-from distribution (times a scale factor) that envelopes
another distribution that is difficult to sample from.
|
static class |
RejectionSampling.DefaultUpdater<ObservationType,ParameterType>
Default ImportanceSampling Updater that uses a BayesianParameter
to compute the quantities of interest.
|
class |
SamplingImportanceResamplingParticleFilter<ObservationType,ParameterType>
An implementation of the standard Sampling Importance Resampling
particle filter.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractConjugatePriorBayesianEstimator<ObservationType,ParameterType,ConditionalType extends ClosedFormDistribution<ObservationType>,BeliefType extends ClosedFormDistribution<ParameterType>>
Partial implementation of ConjugatePriorBayesianEstimator that contains a initial belief
(prior) distribution function.
|
class |
BernoulliBayesianEstimator
A Bayesian estimator for the parameter of a BernoulliDistribution using
the conjugate prior BetaDistribution.
|
static class |
BernoulliBayesianEstimator.Parameter
Parameter of this conjugate prior relationship.
|
class |
BinomialBayesianEstimator
A Bayesian estimator for the parameter of a Bernoulli parameter, p,
of a BinomialDistribution using the conjugate prior BetaDistribution.
|
static class |
BinomialBayesianEstimator.Parameter
Parameter of this relationship
|
class |
ExponentialBayesianEstimator
Conjugate prior Bayesian estimator of the "rate" parameter of an
Exponential distribution using the conjugate prior Gamma distribution.
|
static class |
ExponentialBayesianEstimator.Parameter
Bayesian parameter describing this conjugate relationship.
|
class |
GammaInverseScaleBayesianEstimator
A Bayesian estimator for the scale parameter of a Gamma distribution
using the conjugate prior Gamma distribution for the inverse-scale (rate)
of the Gamma.
|
static class |
GammaInverseScaleBayesianEstimator.Parameter
Bayesian parameter describing this conjugate relationship.
|
class |
MultinomialBayesianEstimator
A Bayesian estimator for the parameters of a MultinomialDistribution using
its conjugate prior distribution, the DirichletDistribution.
|
static class |
MultinomialBayesianEstimator.Parameter
Parameter of this conjugate prior relationship.
|
class |
MultivariateGaussianMeanBayesianEstimator
Bayesian estimator for the mean of a MultivariateGaussian using its conjugate
prior, which is also a MultivariateGaussian.
|
static class |
MultivariateGaussianMeanBayesianEstimator.Parameter
Parameter of this conjugate prior relationship.
|
class |
MultivariateGaussianMeanCovarianceBayesianEstimator
Performs robust estimation of both the mean and covariance of a
MultivariateGaussian conditional distribution using the conjugate prior
Normal-Inverse-Wishart distribution.
|
static class |
MultivariateGaussianMeanCovarianceBayesianEstimator.Parameter
Parameter for this conjugate prior estimator.
|
class |
PoissonBayesianEstimator
A Bayesian estimator for the parameter of a PoissonDistribution using
the conjugate prior GammaDistribution.
|
static class |
PoissonBayesianEstimator.Parameter
Parameter of this conjugate prior relationship.
|
class |
UniformDistributionBayesianEstimator
A Bayesian estimator for a conditional Uniform(0,theta) distribution using
its conjugate prior Pareto distribution.
|
static class |
UniformDistributionBayesianEstimator.Parameter
Parameter of this conjugate prior relationship.
|
class |
UnivariateGaussianMeanBayesianEstimator
Bayesian estimator for the mean of a UnivariateGaussian using its conjugate
prior, which is also a UnivariateGaussian.
|
static class |
UnivariateGaussianMeanBayesianEstimator.Parameter
Parameter of this conjugate prior relationship.
|
class |
UnivariateGaussianMeanVarianceBayesianEstimator
Computes the mean and variance of a univariate Gaussian using the
conjugate prior NormalInverseGammaDistribution
|
static class |
UnivariateGaussianMeanVarianceBayesianEstimator.Parameter
Parameter for this conjugate prior estimator.
|
Modifier and Type | Class and Description |
---|---|
class |
BernoulliDistribution
A Bernoulli distribution, which takes a value of "1" with probability "p"
and value of "0" with probability "1-p".
|
static class |
BernoulliDistribution.CDF
CDF of a Bernoulli distribution.
|
static class |
BernoulliDistribution.PMF
PMF of the Bernoulli distribution.
|
class |
BetaBinomialDistribution
A Binomial distribution where the binomial parameter, p, is set according
to a Beta distribution instead of a single value.
|
static class |
BetaBinomialDistribution.CDF
CDF of BetaBinomialDistribution
|
static class |
BetaBinomialDistribution.MomentMatchingEstimator
Estimates the parameters of a Beta-binomial distribution using the matching
of moments, not maximum likelihood.
|
static class |
BetaBinomialDistribution.PMF
PMF of the BetaBinomialDistribution
|
class |
BetaDistribution
Computes the Beta-family of probability distributions.
|
static class |
BetaDistribution.CDF
CDF of the Beta-family distribution
|
static class |
BetaDistribution.MomentMatchingEstimator
Estimates the parameters of a Beta distribution using the matching
of moments, not maximum likelihood.
|
static class |
BetaDistribution.PDF
Beta distribution probability density function
|
static class |
BetaDistribution.WeightedMomentMatchingEstimator
Estimates the parameters of a Beta distribution using the matching
of moments, not maximum likelihood.
|
class |
BinomialDistribution
Binomial distribution, which is a collection of Bernoulli trials
|
static class |
BinomialDistribution.CDF
CDF of the Binomial distribution, which is the probability of getting
up to "x" successes in "N" trials with a Bernoulli probability of "p"
|
static class |
BinomialDistribution.MaximumLikelihoodEstimator
Maximum likelihood estimator of the distribution
|
static class |
BinomialDistribution.PMF
The Probability Mass Function of a binomial distribution.
|
class |
CategoricalDistribution
The Categorical Distribution is the multivariate generalization of the
Bernoulli distribution, where the outcome of an experiment is a one-of-N
output, where the output is a selector Vector.
|
static class |
CategoricalDistribution.PMF
PMF of the Categorical Distribution
|
class |
CauchyDistribution
A Cauchy Distribution is the ratio of two Gaussian Distributions, sometimes
known as the Lorentz distribution.
|
static class |
CauchyDistribution.CDF
CDF of the CauchyDistribution.
|
static class |
CauchyDistribution.PDF
PDF of the CauchyDistribution.
|
class |
ChineseRestaurantProcess
A Chinese Restaurant Process is a discrete stochastic processes that
partitions data points to clusters.
|
static class |
ChineseRestaurantProcess.PMF
PMF of the Chinese Restaurant Process
|
class |
ChiSquareDistribution
Describes a Chi-Square Distribution.
|
static class |
ChiSquareDistribution.CDF
Cumulative Distribution Function (CDF) of a Chi-Square Distribution
|
static class |
ChiSquareDistribution.PDF
PDF of the Chi-Square distribution
|
class |
DataCountTreeSetBinnedMapHistogram<ValueType extends java.lang.Comparable<? super ValueType>>
The
DataCountTreeSetBinnedMapHistogram class extends a
DefaultDataDistribution by mapping values to user defined bins
using a TreeSetBinner . |
class |
DefaultDataDistribution<KeyType>
A default implementation of
ScalarDataDistribution that uses a
backing map. |
static class |
DefaultDataDistribution.DefaultFactory<DataType>
A factory for
DefaultDataDistribution objects using some given
initial capacity for them. |
static class |
DefaultDataDistribution.Estimator<KeyType>
Estimator for a DefaultDataDistribution
|
static class |
DefaultDataDistribution.PMF<KeyType>
PMF of the DefaultDataDistribution
|
static class |
DefaultDataDistribution.WeightedEstimator<KeyType>
A weighted estimator for a DefaultDataDistribution
|
class |
DeterministicDistribution
A deterministic distribution that returns samples at a single point.
|
static class |
DeterministicDistribution.CDF
CDF of the deterministic distribution.
|
static class |
DeterministicDistribution.PMF
PMF of the deterministic distribution.
|
class |
DirichletDistribution
The Dirichlet distribution is the multivariate generalization of the beta
distribution.
|
static class |
DirichletDistribution.PDF
PDF of the Dirichlet distribution.
|
class |
ExponentialDistribution
An Exponential distribution describes the time between events in a poisson
process, resulting in a memoryless distribution.
|
static class |
ExponentialDistribution.CDF
CDF of the ExponentialDistribution.
|
static class |
ExponentialDistribution.MaximumLikelihoodEstimator
Creates a ExponentialDistribution from data
|
static class |
ExponentialDistribution.PDF
PDF of the ExponentialDistribution.
|
static class |
ExponentialDistribution.WeightedMaximumLikelihoodEstimator
Creates a ExponentialDistribution from weighted data
|
class |
GammaDistribution
Class representing the Gamma distribution.
|
static class |
GammaDistribution.CDF
CDF of the Gamma distribution
|
static class |
GammaDistribution.MomentMatchingEstimator
Computes the parameters of a Gamma distribution by the
Method of Moments
|
static class |
GammaDistribution.PDF
Closed-form PDF of the Gamma distribution
|
static class |
GammaDistribution.WeightedMomentMatchingEstimator
Estimates the parameters of a Gamma distribution using the matching
of moments, not maximum likelihood.
|
class |
GeometricDistribution
The geometric distribution models the number of successes before the first
failure occurs under an independent succession of Bernoulli tests.
|
static class |
GeometricDistribution.CDF
CDF of the Geometric distribution
|
static class |
GeometricDistribution.MaximumLikelihoodEstimator
Maximum likelihood estimator of the distribution
|
static class |
GeometricDistribution.PMF
PMF of the Geometric distribution
|
class |
InverseGammaDistribution
Defines an inverse-gamma distribution.
|
static class |
InverseGammaDistribution.CDF
CDF of the inverseRootFinder-gamma distribution.
|
static class |
InverseGammaDistribution.PDF
PDF of the inverseRootFinder-Gamma distribution.
|
class |
InverseWishartDistribution
The Inverse-Wishart distribution is the multivariate generalization of the
inverse-gamma distribution.
|
static class |
InverseWishartDistribution.PDF
PDF of the Inverse-Wishart distribution, though I have absolutely no
idea why anybody would evaluate the PDF of an Inverse-Wishart...
|
class |
KolmogorovDistribution
Contains the Cumulative Distribution Function description for the "D"
statistic used within the Kolmogorov-Smirnov test.
|
static class |
KolmogorovDistribution.CDF
Contains the Cumulative Distribution Function description for the "D"
statistic used within the Kolmogorov-Smirnov test.
|
class |
LaplaceDistribution
A Laplace distribution, sometimes called a double exponential distribution.
|
static class |
LaplaceDistribution.CDF
CDF of the Laplace distribution.
|
static class |
LaplaceDistribution.MaximumLikelihoodEstimator
Estimates the ML parameters of a Laplace distribution from a
Collection of Numbers.
|
static class |
LaplaceDistribution.PDF
The PDF of a Laplace Distribution.
|
static class |
LaplaceDistribution.WeightedMaximumLikelihoodEstimator
Creates a UnivariateGaussian from weighted data
|
class |
LinearMixtureModel<DataType,DistributionType extends Distribution<DataType>>
A linear mixture of RandomVariables, with a prior probability distribution.
|
class |
LogisticDistribution
A implementation of the scalar logistic distribution, which measures the
log-odds of a binary event.
|
static class |
LogisticDistribution.CDF
CDF of the LogisticDistribution
|
static class |
LogisticDistribution.PDF
PDF of the LogisticDistribution
|
class |
LogNormalDistribution
Log-Normal distribution PDF and CDF implementations.
|
static class |
LogNormalDistribution.CDF
CDF of the Log-Normal Distribution
|
static class |
LogNormalDistribution.MaximumLikelihoodEstimator
Maximum Likelihood Estimator of a log-normal distribution.
|
static class |
LogNormalDistribution.PDF
PDF of a Log-normal distribution
|
static class |
LogNormalDistribution.WeightedMaximumLikelihoodEstimator
Maximum Likelihood Estimator from weighted data
|
static class |
MixtureOfGaussians.EMLearner
An Expectation-Maximization based "soft" assignment learner.
|
static class |
MixtureOfGaussians.Learner
A hard-assignment learner for a MixtureOfGaussians
|
static class |
MixtureOfGaussians.PDF
PDF of the MixtureOfGaussians
|
class |
MultinomialDistribution
A multinomial distribution is the multivariate/multiclass generalization
of the Binomial distribution.
|
protected static class |
MultinomialDistribution.Domain.MultinomialIterator
An Iterator over a Domain
|
static class |
MultinomialDistribution.PMF
Probability Mass Function of the Multinomial Distribution.
|
class |
MultivariateGaussian
The MultivariateGaussian class implements a multidimensional Gaussian
distribution that contains a mean vector and a covariance matrix.
|
static class |
MultivariateGaussian.IncrementalEstimator
The estimator that creates a MultivariateGaussian from a stream of
values.
|
static class |
MultivariateGaussian.IncrementalEstimatorCovarianceInverse
The estimator that creates a MultivariateGaussian from a stream of values
by estimating the mean and covariance inverse (as opposed to the
covariance directly), without ever performing a matrix inversion.
|
static class |
MultivariateGaussian.MaximumLikelihoodEstimator
Computes the Maximum Likelihood Estimate of the MultivariateGaussian
given a set of Vectors
|
static class |
MultivariateGaussian.PDF
PDF of a multivariate Gaussian
|
static class |
MultivariateGaussian.SufficientStatistic
Implements the sufficient statistics of the MultivariateGaussian.
|
static class |
MultivariateGaussian.SufficientStatisticCovarianceInverse
Implements the sufficient statistics of the MultivariateGaussian while
estimating the inverse of the covariance matrix.
|
static class |
MultivariateGaussian.WeightedMaximumLikelihoodEstimator
Computes the Weighted Maximum Likelihood Estimate of the
MultivariateGaussian given a weighted set of Vectors
|
class |
MultivariateGaussianInverseGammaDistribution
A distribution where the mean is selected by a multivariate Gaussian and
a variance parameter (either for a univariate Gaussian or isotropic Gaussian)
is determined by an Inverse-Gamma distribution.
|
class |
MultivariateMixtureDensityModel<DistributionType extends ClosedFormComputableDistribution<Vector>>
A LinearMixtureModel of multivariate distributions with associated PDFs.
|
static class |
MultivariateMixtureDensityModel.PDF<DistributionType extends ClosedFormComputableDistribution<Vector>>
PDF of the MultivariateMixtureDensityModel
|
class |
MultivariatePolyaDistribution
A multivariate Polya Distribution, also known as a Dirichlet-Multinomial
model, is a compound distribution where the parameters of a multinomial
are drawn from a Dirichlet distribution with fixed parameters and a constant
number of trials and then the observations are generated by this
multinomial.
|
static class |
MultivariatePolyaDistribution.PMF
PMF of the MultivariatePolyaDistribution
|
class |
MultivariateStudentTDistribution
Multivariate generalization of the noncentral Student's t-distribution.
|
static class |
MultivariateStudentTDistribution.PDF
PDF of the MultivariateStudentTDistribution
|
class |
NegativeBinomialDistribution
Negative binomial distribution, also known as the Polya distribution,
gives the number of successes of a series of Bernoulli trials before
recording a given number of failures.
|
static class |
NegativeBinomialDistribution.CDF
CDF of the NegativeBinomialDistribution
|
static class |
NegativeBinomialDistribution.MaximumLikelihoodEstimator
Maximum likelihood estimator of the distribution
|
static class |
NegativeBinomialDistribution.PMF
PMF of the NegativeBinomialDistribution.
|
static class |
NegativeBinomialDistribution.WeightedMaximumLikelihoodEstimator
Weighted maximum likelihood estimator of the distribution
|
class |
NormalInverseGammaDistribution
The normal inverse-gamma distribution is the product of a univariate
Gaussian distribution with an inverse-gamma distribution.
|
static class |
NormalInverseGammaDistribution.PDF
PDF of the NormalInverseGammaDistribution
|
class |
NormalInverseWishartDistribution
The normal inverse Wishart distribution
|
static class |
NormalInverseWishartDistribution.PDF
PDF of the normal inverse-Wishart distribution.
|
class |
ParetoDistribution
This class describes the Pareto distribution, sometimes called the Bradford
Distribution.
|
static class |
ParetoDistribution.CDF
CDF of the Pareto Distribution.
|
static class |
ParetoDistribution.PDF
PDF of the ParetoDistribution
|
class |
PoissonDistribution
A Poisson distribution is the limits of what happens when a Bernoulli trial
with "rare" events are sampled on a continuous basis and then binned into
discrete time intervals.
|
static class |
PoissonDistribution.CDF
CDF of the PoissonDistribution
|
static class |
PoissonDistribution.MaximumLikelihoodEstimator
Creates a PoissonDistribution from data
|
static class |
PoissonDistribution.PMF
PMF of the PoissonDistribution.
|
static class |
PoissonDistribution.WeightedMaximumLikelihoodEstimator
Creates a PoissonDistribution from weighted data.
|
class |
ScalarDataDistribution
A Data Distribution that uses Doubles as its keys, making it a univariate
distribution
|
static class |
ScalarDataDistribution.CDF
CDF of the ScalarDataDistribution, maintains the keys/domain in
sorted order (TreeMap), so it's slower than it's peers.
|
static class |
ScalarDataDistribution.Estimator
Estimator for a ScalarDataDistribution
|
static class |
ScalarDataDistribution.PMF
PMF of the ScalarDataDistribution
|
class |
ScalarMixtureDensityModel
ScalarMixtureDensityModel (SMDM) implements just that: a scalar mixture density
model.
|
static class |
ScalarMixtureDensityModel.CDF
CDFof the SMDM
|
static class |
ScalarMixtureDensityModel.EMLearner
An EM learner that estimates a mixture model from data
|
static class |
ScalarMixtureDensityModel.PDF
PDF of the SMDM
|
class |
SnedecorFDistribution
CDF of the Snedecor F-distribution (also known as Fisher F-distribution,
Fisher-Snedecor F-distribution, or just plain old F-distribution).
|
static class |
SnedecorFDistribution.CDF
CDF of the F-distribution.
|
class |
StudentizedRangeDistribution
Implementation of the Studentized Range distribution, which defines the
population correction factor when performing multiple comparisons.
|
static class |
StudentizedRangeDistribution.CDF
CDF of the StudentizedRangeDistribution
|
class |
StudentTDistribution
Defines a noncentral Student-t Distribution.
|
static class |
StudentTDistribution.CDF
Evaluator that computes the Cumulative Distribution Function (CDF) of
a Student-t distribution with a fixed number of degrees of freedom
|
static class |
StudentTDistribution.MaximumLikelihoodEstimator
Estimates the parameters of the Student-t distribution from the given
data, where the degrees of freedom are estimated from the Kurtosis
of the sample data.
|
static class |
StudentTDistribution.PDF
Evaluator that computes the Probability Density Function (CDF) of
a Student-t distribution with a fixed number of degrees of freedom
|
static class |
StudentTDistribution.WeightedMaximumLikelihoodEstimator
Creates a UnivariateGaussian from weighted data
|
class |
UniformDistribution
Contains the (very simple) definition of a continuous Uniform distribution,
parameterized between the minimum and maximum bounds.
|
static class |
UniformDistribution.CDF
Cumulative Distribution Function of a uniform
|
static class |
UniformDistribution.MaximumLikelihoodEstimator
Maximum Likelihood Estimator of a uniform distribution.
|
static class |
UniformDistribution.PDF
Probability density function of a Uniform Distribution
|
class |
UniformIntegerDistribution
Contains the (very simple) definition of a continuous Uniform distribution,
parameterized between the minimum and maximum bounds.
|
static class |
UniformIntegerDistribution.CDF
Implements the cumulative distribution function for the discrete
uniform distribution.
|
static class |
UniformIntegerDistribution.MaximumLikelihoodEstimator
Implements a maximum likelihood estimator for the discrete uniform
distribution.
|
static class |
UniformIntegerDistribution.PMF
Probability mass function of a discrete uniform distribution.
|
class |
UnivariateGaussian
This class contains internal classes that implement useful functions based
on the Gaussian distribution.
|
static class |
UnivariateGaussian.CDF
CDF of the underlying Gaussian.
|
static class |
UnivariateGaussian.CDF.Inverse
Inverts the CumulativeDistribution function.
|
static class |
UnivariateGaussian.ErrorFunction
Gaussian Error Function, useful for computing the cumulative distribution
function for a Gaussian.
|
static class |
UnivariateGaussian.ErrorFunction.Inverse
Inverse of the ErrorFunction
|
static class |
UnivariateGaussian.IncrementalEstimator
Implements an incremental estimator for the sufficient statistics for
a UnivariateGaussian.
|
static class |
UnivariateGaussian.MaximumLikelihoodEstimator
Creates a UnivariateGaussian from data
|
static class |
UnivariateGaussian.PDF
PDF of the underlying Gaussian.
|
static class |
UnivariateGaussian.SufficientStatistic
Captures the sufficient statistics of a UnivariateGaussian, which are
the values to estimate the mean and variance.
|
static class |
UnivariateGaussian.WeightedMaximumLikelihoodEstimator
Creates a UnivariateGaussian from weighted data
|
class |
WeibullDistribution
Describes a Weibull distribution, which is often used to describe the
mortality, lifespan, or size distribution of objects.
|
static class |
WeibullDistribution.CDF
CDF of the Weibull distribution
|
static class |
WeibullDistribution.PDF
PDF of the Weibull distribution
|
class |
YuleSimonDistribution
The Yule-Simon distribution is a model of preferential attachment, such as
a model of the number of groups follows a power-law distribution
(Zipf's Law).
|
static class |
YuleSimonDistribution.CDF
CDF of the Yule-Simon Distribution
|
static class |
YuleSimonDistribution.PMF
PMF of the Yule-Simon Distribution
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractConfidenceStatistic
Abstract implementation of ConfidenceStatistic.
|
class |
AbstractMultipleHypothesisComparison<TreatmentData,StatisticType extends MultipleHypothesisComparison.Statistic>
Partial implementation of MultipleHypothesisComparison
|
static class |
AbstractMultipleHypothesisComparison.Statistic
Partial implementation of MultipleHypothesisComparison.Statistic
|
class |
AbstractPairwiseMultipleHypothesisComparison<StatisticType extends AbstractPairwiseMultipleHypothesisComparison.Statistic>
A multiple-hypothesis comparison algorithm based on making multiple
pair-wise null-hypothesis comparisons.
|
static class |
AbstractPairwiseMultipleHypothesisComparison.Statistic
Result from a pairwise multiple-comparison statistic.
|
class |
AdjustedPValueStatistic
A multiple-comparison statistic derived from a single adjusted p-value.
|
class |
AnalysisOfVarianceOneWay
Analysis of Variance single-factor null-hypothesis testing procedure,
usually called "1-way ANOVA".
|
static class |
AnalysisOfVarianceOneWay.Statistic
Returns the confidence statistic for an ANOVA test
|
class |
BernoulliConfidence
Computes the Bernoulli confidence interval.
|
class |
BonferroniCorrection
The Bonferroni correction takes a pair-wise null-hypothesis test and
generalizes it to multiple comparisons by adjusting the requisite p-value
to find significance as alpha / NumComparisons.
|
class |
ChebyshevInequality
Computes the Chebyshev Inequality for the given level of confidence.
|
class |
ChiSquareConfidence
This is the chi-square goodness-of-fit test.
|
static class |
ChiSquareConfidence.Statistic
Confidence Statistic for a chi-square test
|
class |
ConfidenceInterval
Contains a specification for a confidence interval, that is, the solution of
Pr{ lowerBound <= x(centralValue) <= upperBound } >= confidence
|
class |
ConvexReceiverOperatingCharacteristic
Computes the convex hull of the Receiver Operating Characteristic (ROC),
which a mathematician might call a "concave down" function.
|
class |
DistributionParameterEstimator<DataType,DistributionType extends ClosedFormDistribution<? extends DataType>>
A method of estimating the parameters of a distribution using an arbitrary
CostFunction and FunctionMinimizer algorithm.
|
protected class |
DistributionParameterEstimator.DistributionWrapper
Maps the parameters of a Distribution and a CostFunction into a
Vector/Double Evaluator.
|
class |
FieldConfidenceInterval
This class has methods that automatically compute confidence intervals for
Double/double Fields in dataclasses.
|
class |
FisherSignConfidence
This is an implementation of the Fisher Sign Test, which is a robust
nonparameteric test to determine if two groups have a different mean.
|
static class |
FisherSignConfidence.Statistic
Contains the parameters from the Sign Test null-hypothesis evaluation
|
class |
FriedmanConfidence
The Friedman test determines if the rankings associated with various
treatments are equal.
|
static class |
FriedmanConfidence.Statistic
Confidence statistic associated with the Friedman test using the tighter
F-statistic.
|
class |
GaussianConfidence
This test is sometimes called the "Z test"
Defines a range of values that the statistic can take, as well as the
confidence that the statistic is between the lower and upper bounds.
|
static class |
GaussianConfidence.Statistic
Confidence statistics for a Gaussian distribution
|
class |
HolmCorrection
The Holm correction is a uniformly tighter bound than the Bonferroni/Sidak
correction by first sorting the pair-wide p-values and then adjusting the
p-values by the number of remaining hypotheses.
|
static class |
HolmCorrection.Statistic
Test statistic from the Shaffer static multiple-comparison test
|
class |
KolmogorovSmirnovConfidence
Performs a Kolmogorov-Smirnov Confidence Test.
|
static class |
KolmogorovSmirnovConfidence.Statistic
Computes the ConfidenceStatistic associated with a K-S test
|
class |
MannWhitneyUConfidence
Performs a Mann-Whitney U-test on the given data (usually simply called a
"U-test", sometimes called a Wilcoxon-Mann-Whitney U-test, or
Wilcoxon rank-sum test).
|
static class |
MannWhitneyUConfidence.Statistic
Statistics from the Mann-Whitney U-test
|
class |
MarkovInequality
Implementation of the Markov Inequality hypothesis test.
|
class |
MaximumLikelihoodDistributionEstimator<DataType>
Estimates the most-likely distribution, and corresponding parameters, of
that generated the given data from a pre-determined collection of
candidate parameteric distributions.
|
static class |
MaximumLikelihoodDistributionEstimator.DistributionEstimationTask<DataType>
Estimates the optimal parameters of a single distribution
|
class |
MultipleComparisonExperiment
A multiple comparisons experiment that does a block comparison and then a
post-hoc test.
|
static class |
MultipleComparisonExperiment.Statistic
Result of running the MultipleHypothesisComparison hypothesis test
|
class |
NemenyiConfidence
The Nemenyi test is the rank-based analogue of the Tukey multiple-comparison
test.
|
static class |
NemenyiConfidence.Statistic
Statistic from Nemenyi's multiple comparison test
|
class |
ReceiverOperatingCharacteristic
Class that describes a Receiver Operating Characteristic (usually called an
"ROC Curve").
|
static class |
ReceiverOperatingCharacteristic.DataPoint
Contains information about a datapoint on an ROC curve
|
static class |
ReceiverOperatingCharacteristic.DataPoint.Sorter
Sorts DataPoints in ascending order according to their
falsePositiveRate (x-axis)
|
static class |
ReceiverOperatingCharacteristic.Statistic
Contains useful statistics derived from a ROC curve
|
class |
ShafferStaticCorrection
The Shaffer Static Correction uses logical relationships to tighten up the
Bonferroni/Sidak corrections when performing pairwise multiple hypothesis
comparisons.
|
static class |
ShafferStaticCorrection.Statistic
Test statistic from the Shaffer static multiple-comparison test
|
class |
SidakCorrection
The Sidak correction takes a pair-wise null-hypothesis test and
generalizes it to multiple comparisons by adjusting the requisite p-value
to find significance as alpha / NumComparisons.
|
class |
StudentTConfidence
This class implements Student's t-tests for different uses.
|
static class |
StudentTConfidence.Statistic
Confidence statistics for a Student-t test
|
static class |
StudentTConfidence.Summary
An implementation of the
Summarizer interface for creating a
ConfidenceInterval |
class |
TreeSetBinner<ValueType extends java.lang.Comparable<? super ValueType>>
Implements a
Binner that employs a TreeSet to define the
boundaries of a contiguous set of bins. |
class |
TukeyKramerConfidence
Tukey-Kramer test is the multiple-comparison generalization of the unpaired
Student's t-test when conducting multiple comparisons.
|
static class |
TukeyKramerConfidence.Statistic
Statistic from Tukey-Kramer's multiple comparison test
|
class |
WilcoxonSignedRankConfidence
This is a Wilcoxon Signed-Rank Sum test, which performs a pair-wise test
to determine if two datasets are different.
|
static class |
WilcoxonSignedRankConfidence.Statistic
ConfidenceStatistics associated with a Wilcoxon test
|
Modifier and Type | Class and Description |
---|---|
class |
DirectSampler<DataType>
Sampler that generates samples directly from a target distribution.
|
class |
ImportanceSampler<DataType>
Importance sampling is a technique for estimating properties of
a target distribution, while only having samples generated from an
"importance" distribution rather than the target distribution.
|
class |
MultivariateMonteCarloIntegrator
A Monte Carlo integrator for multivariate (vector) outputs.
|
class |
UnivariateMonteCarloIntegrator
A Monte Carlo integrator for univariate (scalar) outputs.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractOccurrenceInText<DataType>
An abstract implementation of the
OccurrenceInText interface. |
class |
AbstractTextual
A default implementation of the
Textual interface. |
class |
DefaultTextual
A default implementation of the
Textual interface that just stores
a string value. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractMultiTextualConverter<InputType,OutputType extends Textual>
An abstract implementation of the
MultiTextualConverter interface. |
class |
AbstractSingleTextualConverter<InputType,OutputType extends Textual>
An abstract implementation of the
SingleTextualConverter interface. |
class |
AbstractTextualConverter<InputType,OutputType extends Textual>
An abstract implementation of the
TextualConverter interface. |
class |
DocumentFieldConcatenator
A document-text converter that concatenates multiple text fields from a
document together for further processing.
|
class |
DocumentSingleFieldConverter
Extracts a single field from a document.
|
class |
ObjectToStringTextualConverter
A text converter that can take in any type of object and then returns a
new
DefaultTextual that wraps that object's toString() . |
class |
SingleToMultiTextualConverterAdapter<InputType,OutputType extends Textual>
Adapts a
SingleTextualConverter to work within the interface of an
MultiTextualConverter . |
Modifier and Type | Class and Description |
---|---|
class |
AbstractDocument
An abstract implementation of the
Document interface. |
class |
AbstractField
An abstract implementation of the
Field interface. |
class |
DefaultDateField
A field for storing a date.
|
class |
DefaultDocument
A default implementation of the
Document interface. |
class |
DefaultTextField
A default implementation of the
Field interface. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractDocumentExtractor
An abstract implementation of the
DocumentExtractor interface. |
class |
AbstractSingleDocumentExtractor
An abstract implementation of the
SingleDocumentExtractor interface. |
class |
TextDocumentExtractor
Extracts text from plain text documents.
|
Modifier and Type | Class and Description |
---|---|
class |
DefaultPrecisionRecallPair
A default implementation of the
PrecisionRecallPair interface. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractRelation<SourceType,TargetType>
An abstract implementation of a relation between two objects.
|
Modifier and Type | Class and Description |
---|---|
class |
SimpleStatisticalSpellingCorrector
A simple statistical spelling corrector based on word counts that looks at
possible one and two-character edits.
|
static class |
SimpleStatisticalSpellingCorrector.Learner
A learner for the
SimpleStatisticalSpellingCorrector . |
Modifier and Type | Class and Description |
---|---|
class |
AbstractTerm
Creates a new
AbstractTerm . |
class |
AbstractTermIndex
An abstract implementation of the
TermIndex class that handles a lot
of the convenience method implementations. |
class |
DefaultIndexedTerm
Default implementation of the
IndexedTerm interface. |
class |
DefaultTerm
A default implementation of the
Term interface. |
class |
DefaultTermCounts
A default implementation of the
TermCounts interface. |
class |
DefaultTermIndex
A default implementation of the
TermIndex interface. |
class |
DefaultTermNGram
A default implementation of the
TermNGram interface. |
class |
DefaultTermOccurrence
A default implementation of the
TermOccurrence interface. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractSingleTermFilter
An abstract implementation of the
SingleTermFilter interface. |
class |
DefaultStopList
A default, case-insensitive stop-list.
|
class |
DictionaryFilter
A term filter that only allows terms in its dictionary.
|
class |
LowerCaseTermFilter
A term filter that converts all terms to lower case.
|
class |
NGramFilter
A term filter that creates an n-gram of terms.
|
class |
StopListFilter
A term filter that rejects any term that appears in a given stop list.
|
class |
StringEvaluatorSingleTermFilter
Adapts an evaluator from string to string to be a term filter on individual
terms.
|
class |
SynonymFilter
A term filter that uses a mapping of synonyms to replace a word with its
synonym.
|
class |
TermLengthFilter
Implements a filter based on the length of a term.
|
Modifier and Type | Class and Description |
---|---|
class |
PorterEnglishStemmingFilter
A term filter that uses the Porter Stemming algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
IndexedTermSimilarityRelation
A relationship between two indexed terms describing their term similarity.
|
class |
TermVectorSimilarityNetworkCreator
Creates term similarity networks by comparing vectors representing the
terms.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractVectorSpaceModel
An abstract implementation of the
VectorSpaceModel class. |
class |
BagOfWordsTransform
Transforms a list of term occurrences into a vector of counts.
|
class |
CosineSimilarityFunction
A vector cosine similarity function.
|
Modifier and Type | Class and Description |
---|---|
class |
CompositeLocalGlobalTermWeighter
Composes together local and global term weighters along with a normalizer.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractEntropyBasedGlobalTermWeighter
An abstract implementation of a global term weighting scheme that keeps track
of the sum of the entropy term (f_ij * log(f_ij)) over all documents.
|
class |
AbstractFrequencyBasedGlobalTermWeighter
An abstract
GlobalTermWeighter that keeps track of term frequencies
in documents. |
class |
AbstractGlobalTermWeighter
An abstract implementation of the
GlobalTermWeighter interface. |
class |
DominanceGlobalTermWeighter
Implements the dominance term gloal weighting scheme.
|
class |
EntropyGlobalTermWeighter
Implements the entropy global term weighting scheme.
|
class |
InverseDocumentFrequencyGlobalTermWeighter
Implements the inverse-document-frequency (IDF) term global weighting scheme.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractLocalTermWeighter
Abstract implementation of the
LocalTermWeighter interface. |
class |
BinaryLocalTermWeighter
Makes the given term weights binary, by creating a vector that contains a
1.0 for all non-zero entries in the given vector and a 0.0 for the all the
zeros.
|
class |
LogLocalTermWeighter
Implements the log-based local term weighting scheme.
|
class |
NormalizedLogLocalTermWeighter
Implements a normalized version of the log local weighter.
|
class |
TermFrequencyLocalTermWeighter
Local weighting for term frequency.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractTermWeightNormalizer
An abstract implementation of the
TermWeightNormalizer interface. |
class |
UnitTermWeightNormalizer
Normalizes term weights to be a unit vector.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractCharacterBasedTokenizer
An abstract implementation of a tokenizer that considers each character
individually.
|
class |
AbstractTokenizer
Abstract implementation of the
Tokenizer interface. |
class |
DefaultToken
A default implementation of the
Token interface. |
class |
LetterNumberTokenizer
A tokenizer that creates tokens from sequences of letters and numbers,
treating everything else as a delimiter.
|
Modifier and Type | Class and Description |
---|---|
class |
LatentDirichletAllocationVectorGibbsSampler
A Gibbs sampler for performing Latent Dirichlet Allocation (LDA).
|
static class |
LatentDirichletAllocationVectorGibbsSampler.Result
Represents the result of performing Latent Dirichlet Allocation.
|
class |
LatentSemanticAnalysis
Implements the Latent Semantic Analysis (LSA) algorithm using Singular Value
Decomposition (SVD).
|
static class |
LatentSemanticAnalysis.Transform
The result from doing latent semantic analysis (LSA).
|
class |
ParallelLatentDirichletAllocationVectorGibbsSampler
A parallel implementation of
LatentDirichletAllocationVectorGibbsSampler . |
protected class |
ParallelLatentDirichletAllocationVectorGibbsSampler.DocumentSampleTask
A document sampling task
|
class |
ProbabilisticLatentSemanticAnalysis
An implementation of the Probabilistic Latent Semantic Analysis (PLSA)
algorithm.
|
static class |
ProbabilisticLatentSemanticAnalysis.Result
The dimensionality transform created by probabilistic latent semantic
analysis.
|
static class |
ProbabilisticLatentSemanticAnalysis.StatusPrinter
Prints out the status of the probabilistic latent semantic analysis
algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
DefaultDuration
A default implementation of the
Duration interface. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractNamed
The
AbstractNamed class implements the Named interface
in a standard way by having a name field inside the object. |
class |
AbstractRandomized
The
AbstractRandomized abstract class implements the
Randomized interface by containing the random object in a protected
field. |
class |
AbstractTemporal
Partial implementation of Temporal
|
class |
AbstractWeighted
Container class for a Weighted object
|
class |
DefaultIdentifiedValue<IdentifierType,ValueType>
A default implementation of the
IdentifiedValue interface that
stores a value along with its identifier. |
class |
DefaultKeyValuePair<KeyType,ValueType>
A default implementation of the
KeyValuePair interface. |
class |
DefaultNamedValue<ValueType>
The
DefaultNamedValue class implements a container of a name-value
pair. |
class |
DefaultPair<FirstType,SecondType>
The
DefaultPair class implements a simple structure for a pair
of two objects, potentially of different types. |
class |
DefaultTemporalValue<ValueType>
The
DefaultTemporalValue class is a default implementation of the
TemporalValue interface. |
class |
DefaultTriple<FirstType,SecondType,ThirdType>
The
DefaultTriple class implements a simple structure for a triple
of three objects, potentially of different types. |
class |
DefaultWeightedPair<FirstType,SecondType>
The
DefaultWeightedPair class extends the DefaultPair class
to add a weight to the pair. |
class |
DefaultWeightedValue<ValueType>
The
WeightedValue class implements a simple generic container
that holds a value and a weight assigned to the value. |
static class |
DefaultWeightedValue.WeightComparator
A comparator for weighted values based on the weight.
|