@PublicationReference(author="Wikipedia", title="Conjugate prior", year=2010, type=WebPage, url="http://en.wikipedia.org/wiki/Conjugate_prior") public class UniformDistributionBayesianEstimator extends AbstractConjugatePriorBayesianEstimator<java.lang.Double,java.lang.Double,UniformDistribution,ParetoDistribution>
| Modifier and Type | Class and Description |
|---|---|
static class |
UniformDistributionBayesianEstimator.Parameter
Parameter of this conjugate prior relationship.
|
parameter| Constructor and Description |
|---|
UniformDistributionBayesianEstimator()
Creates a new instance of UniformDistributionBayesianEstimator
|
UniformDistributionBayesianEstimator(BayesianParameter<java.lang.Double,UniformDistribution,ParetoDistribution> parameter)
Creates a new instance
|
UniformDistributionBayesianEstimator(ParetoDistribution belief)
Creates a new instance of UniformDistributionBayesianEstimator
|
UniformDistributionBayesianEstimator(UniformDistribution conditional,
ParetoDistribution prior)
Creates a new instance of PoissonBayesianEstimator
|
| Modifier and Type | Method and Description |
|---|---|
double |
computeEquivalentSampleSize(ParetoDistribution belief)
Computes the equivalent sample size of using the given prior.
|
UniformDistributionBayesianEstimator.Parameter |
createParameter(UniformDistribution conditional,
ParetoDistribution prior)
Creates a parameter linking the conditional and prior distributions
|
void |
update(ParetoDistribution target,
java.lang.Double data)
The
update method updates an object of ResultType using
the given new data of type DataType, using some form of
"learning" algorithm. |
clone, createConditionalDistribution, createInitialLearnedObject, getInitialBelief, getParameter, setParameterlearn, learn, updateequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitlearnupdatepublic UniformDistributionBayesianEstimator()
public UniformDistributionBayesianEstimator(ParetoDistribution belief)
belief - Conjugate prior to use.public UniformDistributionBayesianEstimator(UniformDistribution conditional, ParetoDistribution prior)
prior - Default conjugate prior.conditional - Conditional distribution of the conjugate prior.public UniformDistributionBayesianEstimator(BayesianParameter<java.lang.Double,UniformDistribution,ParetoDistribution> parameter)
parameter - Bayesian hyperparameter relationship between the conditional
distribution and the conjugate prior distribution.public UniformDistributionBayesianEstimator.Parameter createParameter(UniformDistribution conditional, ParetoDistribution prior)
ConjugatePriorBayesianEstimatorconditional - Distribution from which observations are generatedprior - Distribution that generates parameters for the conditionalpublic void update(ParetoDistribution target, java.lang.Double data)
IncrementalLearnerupdate method updates an object of ResultType using
the given new data of type DataType, using some form of
"learning" algorithm.target - The object to update.data - The new data for the learning algorithm to use to update
the object.public double computeEquivalentSampleSize(ParetoDistribution belief)
ConjugatePriorBayesianEstimatorbelief - Prior belief to measure.