@PublicationReference(author="Wikipedia", title="Conjugate prior", year=2010, type=WebPage, url="http://en.wikipedia.org/wiki/Conjugate_prior") public class UniformDistributionBayesianEstimator extends AbstractConjugatePriorBayesianEstimator<java.lang.Double,java.lang.Double,UniformDistribution,ParetoDistribution>
Modifier and Type | Class and Description |
---|---|
static class |
UniformDistributionBayesianEstimator.Parameter
Parameter of this conjugate prior relationship.
|
parameter
Constructor and Description |
---|
UniformDistributionBayesianEstimator()
Creates a new instance of UniformDistributionBayesianEstimator
|
UniformDistributionBayesianEstimator(BayesianParameter<java.lang.Double,UniformDistribution,ParetoDistribution> parameter)
Creates a new instance
|
UniformDistributionBayesianEstimator(ParetoDistribution belief)
Creates a new instance of UniformDistributionBayesianEstimator
|
UniformDistributionBayesianEstimator(UniformDistribution conditional,
ParetoDistribution prior)
Creates a new instance of PoissonBayesianEstimator
|
Modifier and Type | Method and Description |
---|---|
double |
computeEquivalentSampleSize(ParetoDistribution belief)
Computes the equivalent sample size of using the given prior.
|
UniformDistributionBayesianEstimator.Parameter |
createParameter(UniformDistribution conditional,
ParetoDistribution prior)
Creates a parameter linking the conditional and prior distributions
|
void |
update(ParetoDistribution target,
java.lang.Double data)
The
update method updates an object of ResultType using
the given new data of type DataType , using some form of
"learning" algorithm. |
clone, createConditionalDistribution, createInitialLearnedObject, getInitialBelief, getParameter, setParameter
learn, learn, update
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
learn
update
public UniformDistributionBayesianEstimator()
public UniformDistributionBayesianEstimator(ParetoDistribution belief)
belief
- Conjugate prior to use.public UniformDistributionBayesianEstimator(UniformDistribution conditional, ParetoDistribution prior)
prior
- Default conjugate prior.conditional
- Conditional distribution of the conjugate prior.public UniformDistributionBayesianEstimator(BayesianParameter<java.lang.Double,UniformDistribution,ParetoDistribution> parameter)
parameter
- Bayesian hyperparameter relationship between the conditional
distribution and the conjugate prior distribution.public UniformDistributionBayesianEstimator.Parameter createParameter(UniformDistribution conditional, ParetoDistribution prior)
ConjugatePriorBayesianEstimator
conditional
- Distribution from which observations are generatedprior
- Distribution that generates parameters for the conditionalpublic void update(ParetoDistribution target, java.lang.Double data)
IncrementalLearner
update
method updates an object of ResultType
using
the given new data of type DataType
, using some form of
"learning" algorithm.target
- The object to update.data
- The new data for the learning algorithm to use to update
the object.public double computeEquivalentSampleSize(ParetoDistribution belief)
ConjugatePriorBayesianEstimator
belief
- Prior belief to measure.