int maxIterations
int iteration
protected java.lang.Object readResolve()
AnytimeAlgorithm<ResultType> algorithm
java.io.PrintStream out
java.lang.String format
java.io.PrintStream out
java.lang.String format
java.util.Map<K,V> map
java.util.ArrayList<E> valueList
java.util.LinkedHashMap<K,V> valueToIndexMap
java.util.List<E> collections
double[] elements
java.lang.Object[] array
int numValues
java.lang.Object[] data
int head
int size
int[] elements
int minValue
int maxValue
java.util.Iterator<E> currentIterator
java.util.LinkedList<E> remainingIterators
java.lang.Number trueValue
java.lang.Number falseValue
java.lang.Number nullValue
VectorFactory<VectorType extends Vector> vectorFactory
DataConverter<InputType,OutputType> converter
Vector
s.java.util.List<E> values
DataToVectorEncoder<InputType> booleanConverter
CloneableSerializable state
java.util.ArrayList<E> evaluators
Evaluator<InputType,OutputType> forward
Evaluator<InputType,OutputType> reverse
java.lang.Comparable<T> minimum
java.lang.Comparable<T> maximum
java.util.Map<K,V> valueMap
java.lang.Class<T> createdClass
CloneableSerializable prototype
java.util.ArrayList<E> moduleFactories
CognitiveModel model
CognitiveModelState state
SemanticIdentifier semanticIdentifier
double activation
SemanticLabel label
int identifier
int identifierCounter
java.util.LinkedHashMap<K,V> mapping
java.lang.String label
java.util.TreeMap<K,V> labelNodeMap
SemanticIdentifierMap map
SemanticIdentifierMapEventType eventType
SemanticIdentifier identifier
ConcurrentCognitiveModule[] modules
java.util.concurrent.ExecutorService fixedThreadPool
int numThreadsInPool
java.lang.String name
EvaluatorBasedCognitiveModuleSettings<InputType,OutputType> settings
java.lang.Object input
java.lang.Object output
EvaluatorBasedCognitiveModuleSettings<InputType,OutputType> settings
java.lang.String name
BatchLearner<DataType,ResultType> learner
CogxelConverter<DataType> inputConverter
CogxelConverter<DataType> outputConverter
CogxelConverter<DataType> learningDataConverter
java.lang.String name
Evaluator<InputType,OutputType> evaluator
CogxelConverter<DataType> inputConverter
CogxelConverter<DataType> outputConverter
CognitiveModuleStateWrapper stateWrapper
SemanticIdentifierMap semanticIdentifierMap
CogxelConverter<DataType> firstConverter
CogxelConverter<DataType> secondConverter
SemanticLabel label
SemanticIdentifier identifier
CogxelFactory cogxelFactory
SemanticLabel label
SemanticIdentifier identifier
SemanticIdentifierMap semanticIdentifierMap
CogxelFactory cogxelFactory
java.util.ArrayList<E> columnConverters
SemanticIdentifierMap semanticIdentifierMap
java.util.Collection<E> cogxelVectorConverters
java.util.ArrayList<E> labels
SemanticIdentifierMap semanticIdentifierMap
java.util.ArrayList<E> identifiers
java.util.HashMap<K,V> identifierToIndexMap
CogxelFactory cogxelFactory
CogxelInputOutputPairConverter<InputType,OutputType> pairConverter
CogxelConverter<DataType> weightConverter
int numModules
DefaultSemanticIdentifierMap semanticIdentifierMap
CognitiveModelLiteState state
SemanticIdentifierMap semanticIdentifierMap
PatternRecognizerLite recognizer
java.util.ArrayList<E> outputIdentifiers
SemanticIdentifier[] identifiers
double[] values
SemanticIdentifierMap semanticIdentifierMap
CogxelFactory cogxelFactory
ArrayBasedCognitiveModelInput input
CogxelFactory cogxelFactory
boolean activated
CognitiveModule[] modules
boolean initialized
CognitiveModelInput input
CogxelStateLite cogxels
CognitiveModuleState[] moduleStatesArray
CloneableSerializable internalState
DynamicArrayMap<ValueType> cogxels
MutablePatternRecognizerLite mutableRecognizer
java.util.HashMap<K,V> identifierToInputIndexMap
java.util.HashSet<E> nodeSet
MutablePatternRecognizerLite recognizer
SharedSemanticMemoryLiteSettings sharedSettings
int minIdentifier
int maxIdentifier
int[] identifierToInputIndexMap
SharedSemanticMemoryLiteSettings settings
PatternRecognizerLite recognizer
java.util.ArrayList<E> nodes
java.util.HashMap<K,V> nodeToIDMap
Matrix matrix
boolean nodesChangedSinceLastUpdate
java.util.ArrayList<E> labels
Vector stateVector
SemanticIdentifier[] identifiers
Vector values
CogxelFactory cogxelFactory
CogxelFactory cogxelFactory
DefaultIndexer<ValueType> nodes
IntArrayList edges
boolean isOptimized
DoubleArrayList weights
int[] buf
long bits
byte[] in
public java.lang.Object readObject(java.io.InputStream stream) throws java.io.IOException, java.lang.ClassNotFoundException
java.io.IOException
- If there is an i/o error.java.lang.ClassNotFoundException
- If a class cannot be found.public void writeObject(java.io.OutputStream stream, SerializedType object) throws java.io.IOException
java.io.IOException
- If there is an i/o error.public java.lang.Object readObject(java.io.InputStream stream) throws java.io.IOException, java.lang.ClassNotFoundException
java.io.IOException
- If there is an i/o error.java.lang.ClassNotFoundException
- If a class cannot be found.public void writeObject(java.io.OutputStream stream, SerializedType object) throws java.io.IOException
java.io.IOException
- If there is an i/o error.StreamSerializationHandler<SerializedType> baseHandler
public java.lang.Object readObject(java.io.InputStream stream) throws java.io.IOException, java.lang.ClassNotFoundException
java.io.IOException
- If there is an i/o error.java.lang.ClassNotFoundException
- If a class cannot be found.public void writeObject(java.io.OutputStream stream, java.io.Serializable object) throws java.io.IOException
java.io.IOException
- If there is an i/o error.public java.lang.Object readObject(java.io.Reader reader) throws java.io.IOException
java.io.IOException
- If there is an i/o error.public void writeObject(java.io.Writer writer, java.io.Serializable object) throws java.io.IOException
java.io.IOException
- If there is an i/o error.boolean keepGoing
java.lang.Object data
BatchLearner<DataType,ResultType> learner
BatchLearner<DataType,ResultType> firstLearner
BatchLearner<DataType,ResultType> secondLearner
BatchLearner<DataType,ResultType> inputLearner
BatchLearner<DataType,ResultType> outputLearner
int predictionHorizon
int predictionHorizon
SupervisedBatchLearner<InputType,OutputType,ResultType extends Evaluator<? super InputType,? extends OutputType>> supervisedLearner
CostFunction<EvaluatedType,CostParametersType> cost
Perturber<PerturbedType> perturber
double temperature
int maxIterationsWithoutImprovement
int iterationsWithoutImprovement
double coolingFactor
java.util.Random random
java.lang.Object bestSoFar
double bestSoFarScore
java.lang.Object current
double currentScore
Matrix covarianceSqrt
java.lang.Object value
java.util.Map<K,V> conditionalProbabilities
DefaultDataDistribution<KeyType> priorProbabilities
int inputDimensionality
DataDistribution<DataType> priors
java.util.Map<K,V> conditionals
DistributionEstimator<ObservationType,DistributionType extends Distribution<? extends ObservationType>> distributionEstimator
IncrementalLearner<DataType,ResultType> distributionLearner
DivergenceFunction<FirstType,SecondType> divergence
double selfDivergence
double dampingFactor
double oneMinusDampingFactor
java.util.ArrayList<E> examples
double[][] similarities
double[][] responsibilities
double[][] availabilities
int[] assignments
int changedCount
java.util.HashMap<K,V> clusters
ClusterToClusterDivergenceFunction<ClusterType extends Cluster<DataType>,DataType> divergenceFunction
ClusterCreator<ClusterType extends Cluster<DataType>,DataType> creator
int minNumClusters
double maxDistance
java.util.ArrayList<E> clusters
java.util.ArrayList<E> clustersHierarchy
double childrenDivergence
double eps
int minSamples
Semimetric<InputType> metric
KDTree<VectorType extends Vectorizable,DataType,PairType extends Pair<? extends VectorType,DataType>> spatialIndex
int clusterCount
java.util.HashSet<E> clustered
java.util.HashSet<E> visited
java.util.ArrayList<E> points
ClusterCreator<ClusterType extends Cluster<DataType>,DataType> creator
java.util.ArrayList<E> clusters
java.util.ArrayList<E> currentCluster
java.util.ArrayList<E> noiseCluster
int pointIndex
int numRequestedClusters
FixedClusterInitializer<ClusterType extends Cluster<DataType>,DataType> initializer
ClusterDivergenceFunction<ClusterType extends Cluster<DataType>,DataType> divergenceFunction
ClusterCreator<ClusterType extends Cluster<DataType>,DataType> creator
java.util.ArrayList<E> clusters
int[] assignments
int[] clusterCounts
int numChanged
double removalThreshold
int numClusters
java.util.Random random
int minibatchSize
java.util.List<E> dataIndices
double stoppingCriterion
Metric<EvaluatedType> metric
double[][] lowerBounds
double[] upperBounds
double[][] clusterDistances
java.util.ArrayList<E> assignmentTasks
java.util.ArrayList<E> clusterCreatorTask
java.util.Collection<E> assignmentList
int[] newAssignments
WithinClusterDivergence<ClusterType extends Cluster<DataType>,DataType> clusterDivergenceFunction
DivergenceFunction<FirstType,SecondType> divergenceFunction
WithinClusterDivergence
function via a
WithinClusterDivergenceWrapper
.double tolerance
IncrementalClusterCreator<ClusterType extends Cluster<DataType>,DataType> creator
int minClusterSize
double maxCriterionDecrease
int clusterIndex
java.util.Random random
int numRequestedClusters
boolean useCachedClusters
java.lang.Object centroid
int index
java.util.ArrayList<E> members
MultivariateGaussian.PDF gaussian
double defaultCovariance
int numUpdates
java.lang.Object normalizedCentroid
DivergenceFunction<FirstType,SecondType> divergenceFunction
Cluster<ClusterType> cluster
ClusterHierarchyNode<DataType,ClusterType extends Cluster<DataType>> firstChild
ClusterHierarchyNode<DataType,ClusterType extends Cluster<DataType>> secondChild
java.util.List<E> children
ClusterCreator<ClusterType extends Cluster<DataType>,DataType> creator
java.util.Random random
double defaultCovariance
double randomRange
ClusterCreator<ClusterType extends Cluster<DataType>,DataType> creator
double r
double confidence
double defaultVariance
double phi
double psi
double epsilon
double confidence
double defaultVariance
double phi
AbstractDeltaCategorizer.AbstractLearner<CategoryType> learner
java.util.ArrayList<E> featureStddev
java.util.Collection<E> trainingSet
java.util.ArrayList<E> featureMeans
BatchLearner<DataType,ResultType> learner
double percentToSample
java.util.Random random
int smoothingWindowSize
java.util.List<E> members
java.util.List<E> members
BatchLearner<DataType,ResultType> weakLearner
double bias
java.util.Collection<E> categorizers
java.util.ArrayList<E> categoryList
java.util.HashMap<K,V> dataPerCategory
BatchLearner<DataType,ResultType> learner
double percentToSample
double proportionIncorrectInSample
boolean voteOutOfBagOnly
Factory<CreatedType> counterFactory
java.util.Random random
BatchLearner<DataType,ResultType> weakLearner
IncrementalLearner<DataType,ResultType> learner
int ensembleSize
double percentToSample
java.util.Random random
java.util.List<E> members
double bias
java.util.List<E> members
java.util.List<E> members
boolean biasEnabled
boolean weightsEnabled
int factorCount
double biasRegularization
double weightRegularization
double factorRegularization
double seedScale
java.util.Random random
double minChange
double totalChange
double totalError
double learningRate
java.lang.Object genome
double cost
CostFunction<EvaluatedType,CostParametersType> costFunction
Reproducer<GenomeType> reproducer
EvaluatedGenome<GenomeType> bestSoFar
int maxIterationsWithoutImprovement
int iterationsWithoutImprovement
java.util.Collection<E> population
java.util.Collection<E> initialPopulation
java.util.ArrayList<E> evaluateTasks
Selector<GenomeType> selector
CrossoverFunction<GenomeType> crossoverFunction
java.util.Collection<E> reproducers
Perturber<PerturbedType> perturber
Selector<GenomeType> selector
double probabilityCrossover
double percent
int tournamentSize
java.util.Random random
double deltaSize
VectorizableVectorFunction function
BatchLearner<DataType,ResultType> distributionLearner
HiddenMarkovModel<ObservationType> result
HiddenMarkovModel<ObservationType> initialGuess
double lastLogLikelihood
boolean reestimateInitialProbabilities
java.util.Collection<E> emissionFunctions
Vector initialProbability
Matrix transitionProbability
java.util.ArrayList<E> weightedValues
BatchLearner<DataType,ResultType> distributionLearner
java.util.ArrayList<E> gammas
int index
java.util.Collection<E> data
Matrix A
int j
java.util.Collection<E> observations
ProbabilityFunction<DataType> distributionFunction
int destinationState
Vector delta
double tolerance
InputOutputPair<InputType,OutputType> result
java.lang.Object initialGuess
LineMinimizer<EvaluatorType extends Evaluator<java.lang.Double,java.lang.Double>> lineMinimizer
DirectionalVectorToDifferentiableScalarFunction lineFunction
Vector gradient
LineMinimizer<EvaluatorType extends Evaluator<java.lang.Double,java.lang.Double>> lineMinimizer
java.util.List<E> directionSet
DirectionalVectorToScalarFunction lineFunction
double learningRate
double momentum
Vector previousDelta
java.util.ArrayList<E> simplex
Vector simplexInputSum
DirectionalVectorToScalarFunction lineFunction
LineMinimizer<EvaluatorType extends Evaluator<java.lang.Double,java.lang.Double>> lineMinimizer
DirectionalVectorToDifferentiableScalarFunction lineFunction
Matrix hessianInverse
Vector gradient
int dimensionality
LineBracket bracket
boolean validBracket
LineBracketInterpolator<EvaluatorType extends Evaluator<java.lang.Double,java.lang.Double>> interpolator
java.lang.Double initialGuessFunctionValue
java.lang.Double initialGuessSlope
InputOutputPair<InputType,OutputType> lastGradient
Vector vectorOffset
Vector direction
Evaluator<InputType,OutputType> vectorScalarFunction
DefaultInputOutputPair<InputType,OutputType> lastEvaluation
java.lang.Double slope
InputOutputSlopeTriplet lowerBound
InputOutputSlopeTriplet upperBound
InputOutputSlopeTriplet otherPoint
double sufficientDecrease
double geometricDecrease
boolean numericalDerivative
double stepValue
double minFunctionValue
double direction
LineMinimizerDerivativeBased.InternalFunction internalFunction
WolfeConditions wolfe
double maxX
InputOutputSlopeTriplet originalPoint
double slopeCondition
double curvatureCondition
double tolerance
LineBracketInterpolatorParabola parabolicInterpolator
LineBracketInterpolatorGoldenSection goldenInterpolator
LineBracketInterpolatorLinear linearInterpolator
MatrixVectorMultiplier A
Vector residual
Vector d
Vector x
double delta
MatrixVectorMultiplierWithPreconditioner A
Vector residual
Vector d
Vector x
double delta
double tolerance
Vector x0
Vector rhs
int maxIterations
java.util.Set<E> listeners
int iterationCounter
boolean shouldStop
InputOutputPair<InputType,OutputType> result
OverconstrainedMatrixVectorMultiplier A
Vector residual
Vector d
Vector x
double delta
Vector AtransB
MatrixVectorMultiplier A
Vector residual
Vector x
double delta
int k
Summarizer<DataType,SummaryType> averager
java.util.Collection<E> data
java.lang.Object value
double divergence
KDTree<VectorType extends Vectorizable,DataType,PairType extends Pair<? extends VectorType,DataType>> data
java.util.LinkedList<E> data
KDTree<VectorType extends Vectorizable,DataType,PairType extends Pair<? extends VectorType,DataType>> data
int numComponents
PrincipalComponentsAnalysisFunction result
double learningRate
int numComponents
PrincipalComponentsAnalysisFunction result
java.util.ArrayList<E> components
Vector mean
double minChange
int componentCount
boolean centerData
java.util.List<E> data
Matrix components
boolean centerData
Matrix kernelMatrix
Vector mean
MultivariateDiscriminant dimensionReducer
boolean updateBias
VectorFactory<VectorType extends Vector> vectorFactory
double radius
double minMargin
VectorFactory<VectorType extends Vector> vectorFactory
double minMargin
double minMargin
VectorFactory<VectorType extends Vector> vectorFactory
double aggressiveness
double lambda
long errorCount
VectorFactory<VectorType extends Vector> vectorFactory
double marginPositive
double marginNegative
VectorFactory<VectorType extends Vector> vectorFactory
LinearBinaryCategorizer result
int errorCount
double weightUpdate
boolean demoteToZero
double weightUpdateInverse
int budget
long errorCount
double q
Kernel<InputType> kernel
KernelBinaryCategorizer<InputType,EntryType extends WeightedValue<? extends InputType>> result
int errorCount
java.util.LinkedHashMap<K,V> supportsMap
KernelizableBinaryCategorizerOnlineLearner learner
Kernel<InputType> kernel
double marginPositive
double marginNegative
DefaultKernelBinaryCategorizer<InputType> result
int errorCount
java.util.LinkedHashMap<K,V> supportsMap
java.util.Random random
double eta
Evaluator<InputType,OutputType> objectToOptimize
Evaluator<InputType,OutputType> result
double tolerance
double regularization
VectorizableVectorFunction objectToOptimize
VectorizableVectorFunction result
SupervisedCostFunction<InputType,TargetType> costFunction
VectorizableVectorFunction objectToOptimize
VectorizableVectorFunction result
double tolerance
SupervisedCostFunction<InputType,TargetType> costFunction
java.lang.Double resultCost
LineMinimizer<EvaluatorType extends Evaluator<java.lang.Double,java.lang.Double>> lineMinimizer
double reductionTest
double dampingFactorDivisor
SumSquaredErrorCostFunction.Cache lastCost
DirectionalVectorToDifferentiableScalarFunction lineFunction
Matrix hessianInverse
double dampingFactor
LineMinimizer<EvaluatorType extends Evaluator<java.lang.Double,java.lang.Double>> lineMinimizer
DirectionalVectorToDifferentiableScalarFunction lineFunction
Kernel<InputType> kernel
double minSensitivity
KernelScalarFunction<InputType> result
int errorCount
Evaluator<InputType,OutputType> result
SupervisedBatchLearner<InputType,OutputType,ResultType extends Evaluator<? super InputType,? extends OutputType>> iterationLearner
Kernel<InputType> kernelWeightingFunction
double tolerance
java.util.ArrayList<E> weightedData
int iterationsWithoutImprovement
int maxIterationsWithoutImprovement
double dampingFactor
double dampingFactorDivisor
Vector bestParameters
SumSquaredErrorCostFunction.Cache bestParametersCost
Evaluator<InputType,OutputType> inputToVectorMap
boolean usePseudoInverse
boolean usePseudoInverse
double regularization
double chiSquare
double rootMeanSquaredError
double meanL1Error
double targetEstimateCorrelation
double unpredictedErrorFraction
int numSamples
int numParameters
double degreesOfFreedom
Kernel<InputType> kernel
SupervisedBatchLearner<InputType,OutputType,ResultType extends Evaluator<? super InputType,? extends OutputType>> learner
LogisticRegression.Function objectToOptimize
LogisticRegression.Function result
double tolerance
double regularization
boolean usePseudoInverse
double regularization
VectorizableVectorFunction internalFunction
SupervisedCostFunction<InputType,TargetType> costFunction
GradientDescendable internalFunction
DifferentiableCostFunction costFunction
RootBracketer bracketer
LineBracket rootBracket
double tolerance
double initialGuess
gov.sandia.cognition.learning.algorithm.root.MinimizerBasedRootFinder.MinimizationFunction internalFunction
LineBracket bracket
double initialGuess
DefaultInputOutputPair<InputType,OutputType> result
DifferentiableEvaluator<InputType,OutputType,DerivativeType> dfdx
double stepMultiplier
InputOutputSlopeTriplet previousPoint
double target
Evaluator<InputType,OutputType> internalFunction
private void readObject(java.io.ObjectInputStream ois) throws java.io.IOException, java.lang.ClassNotFoundException
java.io.IOException
- If there's a problemjava.lang.ClassNotFoundException
- If there's a problemprivate void writeObject(java.io.ObjectOutputStream oos) throws java.io.IOException
java.io.IOException
- If there's a problemint[] eachPartsStart
int power
SparseMatrix multipartiteAdjacency
DiagonalMatrix additional
Vector rhs
boolean isInitialized
int numThreads
int sampleSize
double regularizationWeight
java.util.Random random
double maxPenalty
double errorTolerance
double effectiveZero
int kernelCacheSize
java.util.Random random
Kernel<InputType> kernel
Kernel<InputType> kernel
double maxWeight
double overrelaxation
double minChange
KernelBinaryCategorizer<InputType,EntryType extends WeightedValue<? extends InputType>> result
double totalChange
java.util.ArrayList<E> entries
java.util.LinkedHashMap<K,V> supportsMap
InputOutputPair<InputType,OutputType> example
boolean output
double outputDouble
boolean supportInserted
double selfKernel
double previousStepWeight
DeciderLearner<InputType,OutputType,CategoryType,DeciderType extends Categorizer<? super InputType,? extends CategoryType>> deciderLearner
DecisionTreeNode<InputType,OutputType> parent
java.util.Map<K,V> childMap
Categorizer<InputType,CategoryType> decider
java.lang.Object incomingValue
int minSplitSize
int[] dimensionsToConsider
java.util.Set<E> categories
int leafCountThreshold
int maxDepth
java.util.Map<K,V> priors
java.lang.Object outputCategory
DecisionTreeNode<InputType,OutputType> rootNode
DeciderLearner<InputType,OutputType,CategoryType,DeciderType extends Categorizer<? super InputType,? extends CategoryType>> subLearner
double percentToSample
int[] dimensionsToConsider
VectorFactory<VectorType extends Vector> vectorFactory
BatchLearner<DataType,ResultType> regressionLearner
int leafCountThreshold
int maxDepth
Evaluator<InputType,OutputType> scalarFunction
double value
java.util.ArrayList<E> categories
double[] categoryPriors
int[] categoryCounts
double[] categoryProbabilities
int minSplitSize
int[] dimensionsToConsider
java.lang.Object input
java.lang.Object output
java.lang.Object target
java.lang.Object estimate
java.lang.Object value
java.lang.Comparable<T> discriminant
double weight
double weight
double trainingPercent
int delaySamples
int outputDimensionality
HashFunction hashFunction
VectorFactory<VectorType extends Vector> vectorFactory
int maxBufferSize
MultivariateGaussian gaussian
Matrix covarianceInverseSquareRoot
double defaultCovariance
double defaultCovariance
int size
VectorFactory<VectorType extends Vector> vectorFactory
double mean
double variance
double standardDeviation
double outlierPercent
ValidationFoldCreator<InputDataType,FoldDataType> foldCreator
int numTrials
int numFolds
PerformanceEvaluator<ObjectType,DataType,ResultType> performanceEvaluator
Summarizer<DataType,SummaryType> summarizer
NullHypothesisEvaluator<DataType> statisticalTest
Pair<FirstType,SecondType> learners
DefaultPair<FirstType,SecondType> statistics
ConfidenceStatistic confidence
DefaultPair<FirstType,SecondType> summaries
int numTrials
PerformanceEvaluator<ObjectType,DataType,ResultType> performanceEvaluator
Summarizer<DataType,SummaryType> summarizer
BatchLearner<DataType,ResultType> learner
java.util.ArrayList<E> statistics
java.lang.Object summary
PerformanceEvaluator<ObjectType,DataType,ResultType> performanceEvaluator
Summarizer<DataType,SummaryType> summarizer
BatchLearner<DataType,ResultType> learner
java.util.ArrayList<E> statistics
java.lang.Object summary
PerformanceEvaluator<ObjectType,DataType,ResultType> performanceEvaluator
Summarizer<DataType,SummaryType> summarizer
int numTrials
java.util.ArrayList<E> statistics
java.lang.Object summary
int numSplits
int numFolds
RandomizedDataPartitioner<DataType> partitioner
java.lang.Object value
java.util.ArrayList<E> basisFunctions
Vector coefficients
java.util.Set<E> categories
double threshold
java.util.Map<K,V> categoryPairsToEvaluatorMap
Evaluator<InputType,OutputType> preprocessor
Categorizer<InputType,CategoryType> categorizer
Matrix covariance
Vector variance
Evaluator<InputType,OutputType> evaluator
double defaultCovariance
Vector weights
double bias
java.util.Map<K,V> prototypes
DataDistribution.PMF<KeyType> categoryPriors
java.util.Map<K,V> categoryConditionals
BatchLearner<DataType,ResultType> conditionalLearner
Evaluator<InputType,OutputType> evaluator
int index
Evaluator<InputType,OutputType> evaluator
VectorFactory<VectorType extends Vector> vectorFactory
java.lang.Object costParameters
java.util.Collection<E> costParameters
ClusterDivergenceFunction<ClusterType extends Cluster<DataType>,DataType> costParameters
Vector goal
ParallelizableCostFunction costFunction
DivergenceFunction<FirstType,SecondType> divergenceFunction
DivergenceFunction<FirstType,SecondType> divergenceFunction
java.util.Collection<E> values
DivergenceFunction<FirstType,SecondType> divergenceFunction
VectorFactory<VectorType extends Vector> vectorFactory
double power
Vector weights
java.util.Collection<E> kernels
int degree
double constant
double sigma
double negativeTwoSigmaSquared
Evaluator<InputType,OutputType> function
double kappa
double constant
VectorFunction function
double weight
double scaleFactor
double amplitude
double frequency
double phase
java.util.Collection<E> examples
double bias
CumulativeDistributionFunction<NumberType extends java.lang.Number> cdf
int capacity
double leakage
Vector weightVector
double bias
double slope
double offset
Vector weights
double bias
double constantWeight
double constantValue
double exponent
double q3
double q0
double q1
double q2
ScalarBasisSet<InputType> polynomials
double highValue
double lowValue
double threshold
int index
Evaluator<InputType,OutputType> vectorFunction
LinearDiscriminant discriminant
Evaluator<InputType,OutputType> vectorFunction
BatchLearner<DataType,ResultType> vectorLearner
UnivariateScalarFunction scalarFunction
java.util.ArrayList<E> layers
MixtureOfGaussians.PDF gaussianMixture
MultivariateDiscriminant discriminant
VectorFunction squashingFunction
double scaleFactor
Matrix discriminant
Vector bias
java.util.Collection<E> basisFunctions
int inputDimensionality
int[] subIndices
Matrix inputToHiddenWeights
Vector inputToHiddenBiasWeights
Matrix hiddenToOutputWeights
Vector hiddenToOutputBiasWeights
DifferentiableUnivariateScalarFunction squashingFunction
double initializationRange
VectorFactory<VectorType extends Vector> vectorFactory
java.util.LinkedList<E> parameterAdapters
PerformanceEvaluator<ObjectType,DataType,ResultType> performanceEvaluator
java.lang.Object validationData
java.io.PrintStream out
java.lang.String format
Factory<CreatedType> factory
double trueNegativesCount
double falsePositivesCount
double falseNegativesCount
double truePositivesCount
double confidence
java.util.Map<K,V> confusions
int N
int k
int N
int k
int size
int index
Combinations.AbstractCombinationsIterator<IteratorType extends Combinations.AbstractCombinationsIterator<IteratorType,ClassType>,ClassType> child
double value
java.util.ArrayList<E> set
boolean include
int baseIndex
double realPart
double imaginaryPart
double tolerance
double minDenominator
double currentC
double currentD
java.lang.Double result
double fractionValue
boolean keepGoing
boolean negative
double logValue
double value
int value
long value
double min
double max
double[] quintiles
double confidenceLower
double confidenceUpper
double median
int numSamples
double mean
double variance
double skewness
double kurtosis
double logValue
int num
Pair<FirstType,SecondType> value
KDTree<VectorType extends Vectorizable,DataType,PairType extends Pair<? extends VectorType,DataType>> parent
KDTree<VectorType extends Vectorizable,DataType,PairType extends Pair<? extends VectorType,DataType>> leftChild
KDTree<VectorType extends Vectorizable,DataType,PairType extends Pair<? extends VectorType,DataType>> rightChild
KDTree.PairFirstVectorizableIndexComparator comparator
Pair<FirstType,SecondType> pair
double distance
VectorizableIndexComparator comparator
int splitThreshold
java.util.LinkedList<E> items
java.awt.geom.Rectangle2D.Double initalBounds
Quadtree.Node root
Quadtree.Node parent
java.awt.geom.Rectangle2D.Double bounds
int depth
java.util.LinkedList<E> localItems
Quadtree.Node lowerRight
Quadtree.Node lowerLeft
Quadtree.Node upperLeft
Quadtree.Node upperRight
java.util.ArrayList<E> children
VectorFactory<VectorType extends Vector> vectorFactory
double delta
Evaluator<InputType,OutputType> internalFunction
int index
DenseVector[] rows
double[] values
double[] diagonal
int numThreads
private void readObject(java.io.ObjectInputStream ois) throws java.io.IOException, java.lang.ClassNotFoundException
java.io.IOException
- If there's a problemjava.lang.ClassNotFoundException
- If there's a problemprivate void writeObject(java.io.ObjectOutputStream oos) throws java.io.IOException
java.io.IOException
- If there's a problemint numRows
int numCols
SparseVector[] rows
double[] values
int[] firstIndicesForRows
int[] columnIndices
int dimensionality
java.util.TreeMap<K,V> elements
double[] values
int[] indices
private void readObject(java.io.ObjectInputStream in) throws java.io.IOException, java.lang.ClassNotFoundException
java.io.IOException
- On bad readjava.lang.ClassNotFoundException
- if next object isn't DenseMatrixprivate void writeObject(java.io.ObjectOutputStream out) throws java.io.IOException
java.io.IOException
- On bad writeprivate void readObject(java.io.ObjectInputStream in) throws java.io.IOException, java.lang.ClassNotFoundException
java.io.IOException
- On bad readjava.lang.ClassNotFoundException
- if next object isn't DenseVectorprivate void writeObject(java.io.ObjectOutputStream out) throws java.io.IOException
java.io.IOException
- On bad writeprivate void readObject(java.io.ObjectInputStream in) throws java.io.IOException, java.lang.ClassNotFoundException
java.io.IOException
- On bad readjava.lang.ClassNotFoundException
- if next object isn't DenseMatrixprivate void writeObject(java.io.ObjectOutputStream out) throws java.io.IOException
java.io.IOException
- On bad writeprivate void readObject(java.io.ObjectInputStream in) throws java.io.IOException, java.lang.ClassNotFoundException
java.io.IOException
- If there is an error with the stream.java.lang.ClassNotFoundException
- If a class used by this one
cannot be found.private void writeObject(java.io.ObjectOutputStream out) throws java.io.IOException
java.io.IOException
- If there is an error writing to the stream.private void readObject(java.io.ObjectInputStream in) throws java.io.IOException, java.lang.ClassNotFoundException
java.io.IOException
- If there is an error with the stream.java.lang.ClassNotFoundException
- If a class used by this one
cannot be found.private void writeObject(java.io.ObjectOutputStream out) throws java.io.IOException
java.io.IOException
- If there is an error writing to the stream.private void readObject(java.io.ObjectInputStream in) throws java.io.IOException, java.lang.ClassNotFoundException
java.io.IOException
- If there is an error reading the object.java.lang.ClassNotFoundException
- If a class cannot be found.private void writeObject(java.io.ObjectOutputStream out) throws java.io.IOException
java.io.IOException
- If there is an error with the stream.DenseMatrix R
Vector movingAverageCoefficients
Vector autoRegressiveCoefficients
Vector movingAverageCoefficients
double targetInput
double proportionalGain
double integralGain
double derivativeGain
double lastErr
double errSum
long count
ClosedFormDistribution<DataType> conditionalDistribution
int numSamples
java.util.Random random
UnivariateDistribution<NumberType extends java.lang.Number> distribution
ClosedFormDistribution<DataType> conditionalDistribution
Distribution<DataType> parameterPrior
java.util.Random random
int burnInIterations
int iterationsPerSample
java.lang.Object currentParameter
java.lang.Object previousParameter
ParticleFilter.Updater<ObservationType,ParameterType> updater
int numParticles
AdaptiveRejectionSampling.LogEvaluator<EvaluatorType extends Evaluator<java.lang.Double,java.lang.Double>> logFunction
java.util.ArrayList<E> points
int maxNumPoints
double minSupport
double maxSupport
AdaptiveRejectionSampling.UpperEnvelope upperEnvelope
AdaptiveRejectionSampling.LowerEnvelope lowerEnvelope
java.util.ArrayList<E> lines
double left
double right
Evaluator<InputType,OutputType> function
double[] segmentCDF
double outputVariance
MultivariateGaussian weightPrior
MultivariateGaussian posterior
MultivariateGaussian weightPrior
InverseGammaDistribution outputVariance
MultivariateGaussianInverseGammaDistribution posterior
Distribution<DataType> parameterPrior
DirichletProcessMixtureModel.Updater<ObservationType> updater
int numInitialClusters
boolean reestimateAlpha
double initialAlpha
ProbabilityFunction<DataType> probabilityFunction
double logConditional
MultivariateGaussianMeanCovarianceBayesianEstimator estimator
MultivariateGaussianMeanBayesianEstimator estimator
double alpha
java.util.ArrayList<E> clusters
java.lang.Double posteriorLogLikelihood
StatefulEvaluator<InputType,OutputType,StateType extends CloneableSerializable> motionModel
Evaluator<InputType,OutputType> observationModel
double outputVariance
java.util.ArrayList<E> inputs
MultivariateGaussian posterior
ImportanceSampling.Updater<ObservationType,ParameterType> updater
int numSamples
BayesianParameter<ParameterType,ConditionalType extends Distribution<?>,PriorType extends Distribution<ParameterType>> conjuctive
LinearDynamicalSystem model
double currentLogLikelihood
MetropolisHastingsAlgorithm.Updater<ObservationType,ParameterType> updater
java.util.Collection<E> observations
DirichletProcessMixtureModel.Updater<ObservationType> localUpdater
java.util.Collection<E> observations
double[] weights
java.util.ArrayList<E> assignments
DirichletProcessMixtureModel.DPMMLogConditional logConditional
int numSamples
RejectionSampling.Updater<ObservationType,ParameterType> updater
BayesianParameter<ParameterType,ConditionalType extends Distribution<?>,PriorType extends Distribution<ParameterType>> conjuctive
java.lang.Double scale
ProbabilityFunction<DataType> sampler
int proposals
double particlePctThreadhold
BayesianParameter<ParameterType,ConditionalType extends Distribution<?>,PriorType extends Distribution<ParameterType>> parameter
double p
int n
double shape
double scale
double alpha
double beta
int N
double p
Vector parameters
double location
double scale
double alpha
int numCustomers
double degreesOfFreedom
TreeSetBinner<ValueType extends java.lang.Comparable<? super ValueType>> binner
double total
int initialDomainCapacity
double point
Vector parameters
double rate
double shape
double scale
double p
double shape
double scale
Matrix inverseScale
int degreesOfFreedom
double mean
double scale
java.util.ArrayList<E> distributions
double[] priorWeights
double mean
double scale
double logNormalMean
double logNormalVariance
MultivariateGaussian.WeightedMaximumLikelihoodEstimator learner
java.util.Random random
double tolerance
int numTrials
Vector parameters
int value
int numClasses
int numTrials
MultinomialDistribution.Domain.MultinomialIterator child
Vector mean
Matrix covariance
java.lang.Double logCovarianceDeterminant
Matrix covarianceInverse
java.lang.Double logLeadingCoefficient
double defaultCovariance
double defaultCovarianceInverse
double defaultCovariance
double defaultCovariance
MultivariateGaussian gaussian
InverseGammaDistribution inverseGamma
Vector parameters
int numTrials
double degreesOfFreedom
Vector mean
Matrix precision
java.lang.Double logDeterminantPrecision
double r
double p
double location
double precision
double shape
double scale
double covarianceDivisor
MultivariateGaussian gaussian
InverseWishartDistribution inverseWishart
double shape
double scale
double shift
double rate
java.util.Collection<E> learners
java.util.Random random
double tolerance
double v1
double v2
int treatmentCount
double degreesOfFreedom
java.util.Random random
double precision
double mean
double degreesOfFreedom
double defaultVariance
double defaultVariance
double minSupport
double maxSupport
int minSupport
int maxSupport
double mean
double variance
double defaultVariance
double defaultVariance
double mean
double sumSquaredDifferences
double defaultVariance
double shape
double scale
double shape
double nullHypothesisProbability
int treatmentCount
double uncompensatedAlpha
Matrix testStatistics
Matrix nullHypothesisProbabilities
NullHypothesisEvaluator<DataType> pairwiseTest
java.util.ArrayList<E> pairwiseTestStatistics
double adjustedAlpha
double F
double DFbetween
double DFwithin
double chiSquare
double degreesOfFreedom
double lowerBound
double upperBound
double centralValue
double confidence
int numSamples
java.util.ArrayList<E> convexHull
DistributionParameterEstimator.DistributionWrapper distributionWrapper
ClosedFormDistribution<DataType> result
ClosedFormDistribution<DataType> distribution
CostFunction<EvaluatedType,CostParametersType> costFunction
java.lang.reflect.Field field
int numDifferent
int numPositiveSign
int treatmentCount
int subjectCount
double chiSquare
double degreesOfFreedom
double chiSquareNullHypothesisProbability
double F
java.util.ArrayList<E> treatmentRankMeans
double z
Matrix adjustedAlphas
double D
double Ne
double U
double z
int N1
int N2
java.util.Collection<E> distributions
ClosedFormComputableDistribution<DataType> distribution
java.util.Collection<E> data
BlockExperimentComparison<DataType> blockExperimentComparison
MultipleHypothesisComparison<TreatmentData> postHocTest
double alpha
ConfidenceStatistic blockExperimentResult
MultipleHypothesisComparison.Statistic multipleComparisonResult
int subjectCount
java.util.ArrayList<E> treatmentRankMeans
double standardError
java.util.ArrayList<E> sortedROCData
MannWhitneyUConfidence.Statistic Utest
ScalarThresholdBinaryCategorizer classifier
DefaultBinaryConfusionMatrix confusionMatrix
double dPrime
double areaUnderCurve
ReceiverOperatingCharacteristic.DataPoint optimalThreshold
Matrix adjustedAlphas
double t
double degreesOfFreedom
double confidence
java.util.TreeSet<E> binSet
java.lang.Comparable<T> minValue
java.lang.Comparable<T> maxValue
java.util.ArrayList<E> subjectCounts
java.util.ArrayList<E> treatmentMeans
double meanSquaredResiduals
Matrix standardErrors
double T
int numNonZero
double z
ProbabilityFunction<DataType> importanceDistribution
int start
int length
java.lang.String text
java.util.List<E> fieldNames
java.lang.String fieldSeparator
java.lang.String fieldName
SingleTextualConverter<InputType,OutputType extends Textual> converter
DocumentReference reference
java.util.HashMap<K,V> fieldMap
java.util.Date date
java.lang.String text
double precision
double recall
java.lang.Object source
java.lang.Object target
DefaultDataDistribution<KeyType> wordCounts
char[] alphabet
char[] alphabet
int index
Term term
java.lang.String text
int totalCount
java.util.HashMap<K,V> termToCountMap
java.util.Map<K,V> termMap
java.util.List<E> termList
Term[] terms
Term term
java.util.Set<E> words
java.util.Set<E> allowedTerms
int size
StopList stopList
Evaluator<InputType,OutputType> evaluator
java.util.Map<K,V> synonyms
java.lang.Integer minimumLength
java.lang.Integer maximumLength
double similarity
SimilarityFunction<FromType,ToType> similarityFunction
double effectiveZero
MatrixFactory<MatrixType extends Matrix> matrixFactory
TermIndex termIndex
LocalTermWeighter localWeighter
GlobalTermWeighter globalWeighter
TermWeightNormalizer normalizer
Vector termEntropiesSum
int documentCount
Vector termDocumentFrequencies
Vector termGlobalFrequencies
VectorFactory<VectorType extends Vector> vectorFactory
Vector dominance
Vector entropy
Vector inverseDocumentFrequency
java.lang.String text
int topicCount
double alpha
double beta
int burnInIterations
int iterationsPerSample
java.util.Random random
double[][] topicTermProbabilities
double[][] documentTopicProbabilities
int totalOccurrences
int requestedRank
Vector vector
int document
int occurrence
int requestedRank
double minimumChange
java.util.Random random
VectorFactory<VectorType extends Vector> vectorFactory
MatrixFactory<MatrixType extends Matrix> matrixFactory
int termCount
int latentCount
ProbabilisticLatentSemanticAnalysis.LatentData[] latents
int maxIterations
double minimumChange
java.io.PrintStream out
double milliseconds
java.lang.String name
java.util.Random random
java.util.Date time
double weight
java.lang.Object identifier
java.lang.Object value
java.lang.Object key
java.lang.Object value
java.lang.Object value
java.lang.Object first
java.lang.Object second
java.lang.Object value
java.lang.Object first
java.lang.Object second
java.lang.Object third
double weight
java.lang.Object value
double[] randArray
int randArrayIndex
boolean initialized