InputType
- Type of data upon which the NearestNeighbor operates,
something like Vector, Double, or StringOutputType
- Output of the evaluator, like Matrix, Double, Stringpublic static class NearestNeighborKDTree.Learner<InputType extends Vectorizable,OutputType> extends NearestNeighborKDTree<InputType,OutputType> implements SupervisedBatchLearner<InputType,OutputType,NearestNeighborKDTree<InputType,OutputType>>
NearestNeighborKDTree.Learner<InputType extends Vectorizable,OutputType>
divergenceFunction
Constructor and Description |
---|
Learner()
Default constructor.
|
Learner(Metric<? super Vectorizable> divergenceFunction)
Creates a new instance of Learner
|
Modifier and Type | Method and Description |
---|---|
NearestNeighborKDTree<InputType,OutputType> |
learn(java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data)
Creates a new NearestNeighbor from a Collection of InputType.
|
clone, evaluate, getData, getDivergenceFunction, setData, setDivergenceFunction, setDivergenceFunction
add
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
clone
public Learner()
public Learner(Metric<? super Vectorizable> divergenceFunction)
divergenceFunction
- Divergence function that determines how "far" two objects are apart,
where lower values indicate two objects are more similarpublic NearestNeighborKDTree<InputType,OutputType> learn(java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data)
learn
in interface BatchLearner<java.util.Collection<? extends InputOutputPair<? extends InputType extends Vectorizable,OutputType>>,NearestNeighborKDTree<InputType extends Vectorizable,OutputType>>
data
- Dataset from which to create a new NearestNeighbor