@PublicationReference(author="Wikipedia", title="Sherman\u2013Morrison formula", type=WebPage, year=2011, url="http://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula") public static class MultivariateGaussian.SufficientStatisticCovarianceInverse extends AbstractSufficientStatistic<Vector,MultivariateGaussian>
Modifier and Type | Field and Description |
---|---|
static double |
DEFAULT_COVARIANCE_INVERSE
Default covariance of the statistics, 99999.99999999999.
|
protected double |
defaultCovarianceInverse
Default covariance inverse of the distribution
|
count
Constructor and Description |
---|
SufficientStatisticCovarianceInverse()
Default constructor
|
SufficientStatisticCovarianceInverse(double defaultCovarianceInverse)
Creates a new instance of SufficientStatisticCovarianceInverse
|
Modifier and Type | Method and Description |
---|---|
void |
clear()
Resets this set of sufficient statistics to its empty state.
|
MultivariateGaussian.SufficientStatisticCovarianceInverse |
clone()
This makes public the clone method on the
Object class and
removes the exception that it throws. |
MultivariateGaussian.PDF |
create()
Creates a new instance of an object.
|
void |
create(MultivariateGaussian distribution)
Modifies the given distribution with the parameters indicated by the
sufficient statistics
|
Matrix |
getCovarianceInverse()
Gets the covariance Inverse of the Gaussian.
|
double |
getDefaultCovarianceInverse()
Getter for defaultCovarianceInverse
|
Vector |
getMean()
Getter for mean
|
Matrix |
getSumSquaredDifferencesInverse()
Getter for sumSquaredDifferences
|
void |
setDefaultCovariance(double defaultCovarianceInverse)
Setter for defaultCovarianceInverse
|
void |
update(Vector value)
Updates the sufficient statistics from the given value
|
getCount, setCount, update
public static final double DEFAULT_COVARIANCE_INVERSE
protected double defaultCovarianceInverse
public SufficientStatisticCovarianceInverse()
public SufficientStatisticCovarianceInverse(double defaultCovarianceInverse)
defaultCovarianceInverse
- Default covariance inverse of the
distributionpublic MultivariateGaussian.SufficientStatisticCovarianceInverse clone()
AbstractCloneableSerializable
Object
class and
removes the exception that it throws. Its default behavior is to
automatically create a clone of the exact type of object that the
clone is called on and to copy all primitives but to keep all references,
which means it is a shallow copy.
Extensions of this class may want to override this method (but call
super.clone()
to implement a "smart copy". That is, to target
the most common use case for creating a copy of the object. Because of
the default behavior being a shallow copy, extending classes only need
to handle fields that need to have a deeper copy (or those that need to
be reset). Some of the methods in ObjectUtil
may be helpful in
implementing a custom clone method.
Note: The contract of this method is that you must use
super.clone()
as the basis for your implementation.clone
in interface CloneableSerializable
clone
in class AbstractSufficientStatistic<Vector,MultivariateGaussian>
public void clear()
public void update(Vector value)
SufficientStatistic
value
- Value to update the sufficient statisticspublic MultivariateGaussian.PDF create()
Factory
public void create(MultivariateGaussian distribution)
SufficientStatistic
distribution
- Distribution to modify by side effectpublic double getDefaultCovarianceInverse()
public void setDefaultCovariance(double defaultCovarianceInverse)
defaultCovarianceInverse
- Default covariance Inverse of the
distributionpublic Vector getMean()
public Matrix getSumSquaredDifferencesInverse()
public Matrix getCovarianceInverse()