public static class MultivariateGaussian.PDF extends MultivariateGaussian implements ProbabilityDensityFunction<Vector>, VectorInputEvaluator<Vector,java.lang.Double>
MultivariateGaussian.IncrementalEstimator, MultivariateGaussian.IncrementalEstimatorCovarianceInverse, MultivariateGaussian.MaximumLikelihoodEstimator, MultivariateGaussian.PDF, MultivariateGaussian.SufficientStatistic, MultivariateGaussian.SufficientStatisticCovarianceInverse, MultivariateGaussian.WeightedMaximumLikelihoodEstimator
DEFAULT_COVARIANCE_SYMMETRY_TOLERANCE, DEFAULT_DIMENSIONALITY, LOG_TWO_PI
Constructor and Description |
---|
PDF()
Default constructor.
|
PDF(int dimensionality)
Creates a new instance of MultivariateGaussian.
|
PDF(MultivariateGaussian other)
Creates a new instance of MultivariateGaussian.
|
PDF(Vector mean,
Matrix covariance)
Creates a new instance of MultivariateGaussian.
|
Modifier and Type | Method and Description |
---|---|
java.lang.Double |
evaluate(Vector input)
Evaluates the function on the given input and returns the output.
|
MultivariateGaussian.PDF |
getProbabilityFunction()
Gets the distribution function associated with this Distribution,
either the PDF or PMF.
|
double |
logEvaluate(Vector input)
Evaluate the natural logarithm of the distribution function.
|
clone, computeZSquared, convertFromVector, convertToVector, convolve, equals, getCovariance, getCovarianceInverse, getEstimator, getInputDimensionality, getLogCovarianceDeterminant, getLogLeadingCoefficient, getMean, hashCode, plus, sample, sample, sampleInto, sampleInto, scale, setCovariance, setCovariance, setCovarianceInverse, setCovarianceInverse, setMean, times, toString
sample, sample
finalize, getClass, notify, notifyAll, wait, wait, wait
getMean
clone, convertFromVector, convertToVector
sample, sample, sampleInto
getInputDimensionality
public PDF()
public PDF(int dimensionality)
dimensionality
- Dimensionality of the Gaussian to create.public PDF(Vector mean, Matrix covariance)
mean
- The mean of the Gaussian distribution.covariance
- The covariance matrix, which should be a symmetric
matrix.public PDF(MultivariateGaussian other)
other
- The other MultivariateGaussian to copy.public java.lang.Double evaluate(Vector input)
Evaluator
public double logEvaluate(Vector input)
ProbabilityFunction
logEvaluate
in interface ProbabilityFunction<Vector>
input
- The input to be evaluatedpublic MultivariateGaussian.PDF getProbabilityFunction()
ComputableDistribution
getProbabilityFunction
in interface ComputableDistribution<Vector>
getProbabilityFunction
in interface ProbabilityDensityFunction<Vector>
getProbabilityFunction
in class MultivariateGaussian