public static class MultivariateGaussian.MaximumLikelihoodEstimator extends AbstractCloneableSerializable implements DistributionEstimator<Vector,MultivariateGaussian.PDF>
| Modifier and Type | Field and Description |
|---|---|
static double |
DEFAULT_COVARIANCE
Default covariance used in estimation, 1.0E-5.
|
| Constructor and Description |
|---|
MaximumLikelihoodEstimator()
Default constructor;
|
MaximumLikelihoodEstimator(double defaultCovariance)
Creates a new instance of MaximumLikelihoodEstimator
|
| Modifier and Type | Method and Description |
|---|---|
MultivariateGaussian.PDF |
learn(java.util.Collection<? extends Vector> data)
Computes the Gaussian that estimates the maximum likelihood of
generating the given set of samples.
|
static MultivariateGaussian.PDF |
learn(java.util.Collection<? extends Vector> data,
double defaultCovariance)
Computes the Gaussian that estimates the maximum likelihood of
generating the given set of samples.
|
cloneequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitclonepublic static final double DEFAULT_COVARIANCE
public MaximumLikelihoodEstimator()
public MaximumLikelihoodEstimator(double defaultCovariance)
defaultCovariance - Amount to add to the diagonal of the
covariance matrixpublic static MultivariateGaussian.PDF learn(java.util.Collection<? extends Vector> data, double defaultCovariance)
defaultCovariance - amount to add to the diagonals of the
covariance matrix, typically on the order of 1e-4, can be 0.0.data - The samples to calculate the Gaussian from throws
IllegalArgumentException if samples has 1 or fewer samples.public MultivariateGaussian.PDF learn(java.util.Collection<? extends Vector> data)
learn in interface BatchLearner<java.util.Collection<? extends Vector>,MultivariateGaussian.PDF>data - The samples to calculate the Gaussian from throws
IllegalArgumentException if samples has 1 or fewer samples.