@PublicationReference(author={"William H. Press","Saul A. Teukolsky","William T. Vetterling","Brian P. Flannery"}, title="Numerical Recipes in C, Second Edition", type=Book, year=1992, pages={400,405}, url="http://www.nrbook.com/a/bookcpdf.php") public class LineMinimizerDerivativeFree extends AbstractAnytimeLineMinimizer<Evaluator<java.lang.Double,java.lang.Double>>
| Modifier and Type | Field and Description |
|---|---|
static LineBracketInterpolator<? super Evaluator<java.lang.Double,java.lang.Double>> |
DEFAULT_INTERPOLATOR
Default interpolation algorithm, LineBracketInterpolatorBrent.
|
static double |
STEP_MAX
Maximum step size allowed by a parabolic fit, 100.0.
|
DEFAULT_MAX_ITERATIONS, DEFAULT_TOLERANCEinitialGuess, result, tolerancedata, keepGoingmaxIterationsDEFAULT_ITERATION, iteration| Constructor and Description |
|---|
LineMinimizerDerivativeFree()
Creates a new instance of LineMinimizerDerivativeFree
|
LineMinimizerDerivativeFree(LineBracketInterpolator<? super Evaluator<java.lang.Double,java.lang.Double>> interpolator)
Creates a new instance of LineMinimizerDerivativeFree
|
| Modifier and Type | Method and Description |
|---|---|
boolean |
bracketingStep()
Here's the general idea of derivative-free minimum bracketing:
Given an initial point, a={x,f(x)}, we're looking to find a triplet of points {a,b,c} such that bx is between ax and cx. |
boolean |
sectioningStep()
Continues the sectioning phase of the algorihtm.
|
cleanupAlgorithm, getBracket, getInitialGuessFunctionValue, getInitialGuessSlope, getInterpolator, initializeAlgorithm, isValidBracket, minimizeAlongDirection, setBracket, setData, setInitialGuess, setInitialGuessFunctionValue, setInitialGuessSlope, setInterpolator, setValidBracket, stepgetInitialGuess, getResult, getTolerance, setResult, setToleranceclone, getData, getKeepGoing, learn, setKeepGoing, stopgetMaxIterations, isResultValid, setMaxIterationsaddIterativeAlgorithmListener, fireAlgorithmEnded, fireAlgorithmStarted, fireStepEnded, fireStepStarted, getIteration, getListeners, removeIterativeAlgorithmListener, setIteration, setListenersequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetInitialGuess, getTolerance, learn, setToleranceclonegetMaxIterations, getResult, setMaxIterationsaddIterativeAlgorithmListener, getIteration, removeIterativeAlgorithmListenerisResultValid, stoppublic static final double STEP_MAX
public static final LineBracketInterpolator<? super Evaluator<java.lang.Double,java.lang.Double>> DEFAULT_INTERPOLATOR
public LineMinimizerDerivativeFree()
public LineMinimizerDerivativeFree(LineBracketInterpolator<? super Evaluator<java.lang.Double,java.lang.Double>> interpolator)
interpolator - Type of algorithm to fit data points and find an interpolated minimum
to the known points.@PublicationReference(author={"William H. Press","Saul A. Teukolsky","William T. Vetterling","Brian P. Flannery"}, title="Numerical Recipes in C, Second Edition", type=Book, year=1992, pages={400,401}, url="http://www.nrbook.com/a/bookcpdf.php") public boolean bracketingStep()
bracketingStep in interface LineMinimizer<Evaluator<java.lang.Double,java.lang.Double>>bracketingStep in class AbstractAnytimeLineMinimizer<Evaluator<java.lang.Double,java.lang.Double>>@PublicationReference(author={"William H. Press","Saul A. Teukolsky","William T. Vetterling","Brian P. Flannery"}, title="Numerical Recipes in C, Second Edition", type=Book, year=1992, pages={404,405}, url="http://www.nrbook.com/a/bookcpdf.php") public boolean sectioningStep()
LineMinimizersectioningStep in interface LineMinimizer<Evaluator<java.lang.Double,java.lang.Double>>sectioningStep in class AbstractAnytimeLineMinimizer<Evaluator<java.lang.Double,java.lang.Double>>