ObservationType - Type of observationsCategoryType - Type of categories@PublicationReference(author="Wikipedia", title="Maximum a posteriori estimation", type=WebPage, year=2010, url="http://en.wikipedia.org/wiki/Maximum_a_posteriori_estimation") public class MaximumAPosterioriCategorizer<ObservationType,CategoryType> extends AbstractDistribution<ObservationType> implements DiscriminantCategorizer<ObservationType,CategoryType,java.lang.Double>
| Modifier and Type | Class and Description |
|---|---|
static class |
MaximumAPosterioriCategorizer.Learner<ObservationType,CategoryType>
Learner for the MAP categorizer
|
| Constructor and Description |
|---|
MaximumAPosterioriCategorizer()
Creates a new instance of MaximumAPosterioriCategorizer
|
| Modifier and Type | Method and Description |
|---|---|
void |
addCategory(CategoryType category,
double mass,
ProbabilityFunction<ObservationType> conditional)
Adds the given category with the given mass (which is divided by the
masses of all categories to determine the prior probability weight)
and the distribution function
|
MaximumAPosterioriCategorizer<ObservationType,CategoryType> |
clone()
This makes public the clone method on the
Object class and
removes the exception that it throws. |
double |
computePosterior(ObservationType observation,
CategoryType category)
Computes the posterior of the observation given the category.
|
CategoryType |
evaluate(ObservationType input)
Evaluates the function on the given input and returns the output.
|
DefaultWeightedValueDiscriminant<CategoryType> |
evaluateWithDiscriminant(ObservationType input)
Evaluate the categorizer on the given input to produce the expected
category plus a discriminant for later producing an ordering of how well
items fit into that category.
|
java.util.Set<? extends CategoryType> |
getCategories()
Gets the list of possible categories that the categorizer can produce.
|
WeightedValue<ProbabilityFunction<ObservationType>> |
getCategory(CategoryType category)
Gets the prior probability weight and conditional distribution for
the given category.
|
ObservationType |
getMean()
Gets the mean category, if it is a number or ring.
|
void |
sampleInto(java.util.Random random,
int numSamples,
java.util.Collection<? super ObservationType> output)
Draws multiple random samples from the distribution and puts the result
into the given collection.
|
sample, samplepublic MaximumAPosterioriCategorizer()
public MaximumAPosterioriCategorizer<ObservationType,CategoryType> clone()
AbstractCloneableSerializableObject class and
removes the exception that it throws. Its default behavior is to
automatically create a clone of the exact type of object that the
clone is called on and to copy all primitives but to keep all references,
which means it is a shallow copy.
Extensions of this class may want to override this method (but call
super.clone() to implement a "smart copy". That is, to target
the most common use case for creating a copy of the object. Because of
the default behavior being a shallow copy, extending classes only need
to handle fields that need to have a deeper copy (or those that need to
be reset). Some of the methods in ObjectUtil may be helpful in
implementing a custom clone method.
Note: The contract of this method is that you must use
super.clone() as the basis for your implementation.clone in interface CloneableSerializableclone in class AbstractCloneableSerializablepublic void addCategory(CategoryType category, double mass, ProbabilityFunction<ObservationType> conditional)
category - Category to addmass - Mass of the categoryconditional - Conditional probability function of observations for the categorypublic WeightedValue<ProbabilityFunction<ObservationType>> getCategory(CategoryType category)
category - Category to considerpublic java.util.Set<? extends CategoryType> getCategories()
CategorizergetCategories in interface Categorizer<ObservationType,CategoryType>public CategoryType evaluate(ObservationType input)
Evaluatorevaluate in interface Evaluator<ObservationType,CategoryType>input - The input to evaluate.public DefaultWeightedValueDiscriminant<CategoryType> evaluateWithDiscriminant(ObservationType input)
DiscriminantCategorizerevaluateWithDiscriminant in interface DiscriminantCategorizer<ObservationType,CategoryType,java.lang.Double>input - The input value to categorize with a discriminatepublic double computePosterior(ObservationType observation, CategoryType category)
observation - Observation to considercategory - Category to considerpublic ObservationType getMean()
public void sampleInto(java.util.Random random,
int numSamples,
java.util.Collection<? super ObservationType> output)
DistributionsampleInto in interface Distribution<ObservationType>random - Random number generator to use.numSamples - The number of samples to draw. Cannot be negative.output - The collection to add the samples into.