InputType - The input type for nearest neighbor.OutputType - The output type for nearest neighbor.public static class NearestNeighborExhaustive.Learner<InputType,OutputType> extends DefaultDivergenceFunctionContainer<InputType,InputType> implements SupervisedBatchLearner<InputType,OutputType,NearestNeighborExhaustive<InputType,OutputType>>
NearestNeighborExhaustive.Learner class implements a batch learner for
the NearestNeighborExhaustive class.divergenceFunction| Constructor and Description |
|---|
Learner()
Creates a new instance of
NearestNeighborExhaustive.Learner. |
Learner(DivergenceFunction<? super InputType,? super InputType> divergenceFunction)
Creates a new instance of
NearestNeighborExhaustive.Learner. |
| Modifier and Type | Method and Description |
|---|---|
NearestNeighborExhaustive<InputType,OutputType> |
learn(java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data)
The
learn method creates an object of ResultType using
data of type DataType, using some form of "learning" algorithm. |
clone, getDivergenceFunction, setDivergenceFunctionequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitclonepublic Learner()
NearestNeighborExhaustive.Learner.public Learner(DivergenceFunction<? super InputType,? super InputType> divergenceFunction)
NearestNeighborExhaustive.Learner.divergenceFunction - The divergence function to use.public NearestNeighborExhaustive<InputType,OutputType> learn(java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data)
BatchLearnerlearn method creates an object of ResultType using
data of type DataType, using some form of "learning" algorithm.learn in interface BatchLearner<java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>>,NearestNeighborExhaustive<InputType,OutputType>>data - The data that the learning algorithm will use to create an
object of ResultType.