DataType
- The type of data generated by the Distribution.SufficientStatisticsType
- The type of the sufficient statistics for the distribution.DistributionType
- The type of Distribution this is the sufficient statistics of.public abstract class AbstractIncrementalEstimator<DataType,DistributionType extends Distribution<? extends DataType>,SufficientStatisticsType extends SufficientStatistic<DataType,DistributionType>> extends AbstractBatchAndIncrementalLearner<DataType,SufficientStatisticsType> implements IncrementalEstimator<DataType,DistributionType,SufficientStatisticsType>
IncrementalEstimator
.Constructor and Description |
---|
AbstractIncrementalEstimator()
Creates a new instance of AbstractIncrementalEstimator
|
Modifier and Type | Method and Description |
---|---|
AbstractIncrementalEstimator<DataType,DistributionType,SufficientStatisticsType> |
clone()
This makes public the clone method on the
Object class and
removes the exception that it throws. |
void |
update(SufficientStatisticsType target,
DataType data)
The
update method updates an object of ResultType using
the given new data of type DataType , using some form of
"learning" algorithm. |
learn, learn, update
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
learn
learn
createInitialLearnedObject, update
public AbstractIncrementalEstimator()
public AbstractIncrementalEstimator<DataType,DistributionType,SufficientStatisticsType> clone()
AbstractCloneableSerializable
Object
class and
removes the exception that it throws. Its default behavior is to
automatically create a clone of the exact type of object that the
clone is called on and to copy all primitives but to keep all references,
which means it is a shallow copy.
Extensions of this class may want to override this method (but call
super.clone()
to implement a "smart copy". That is, to target
the most common use case for creating a copy of the object. Because of
the default behavior being a shallow copy, extending classes only need
to handle fields that need to have a deeper copy (or those that need to
be reset). Some of the methods in ObjectUtil
may be helpful in
implementing a custom clone method.
Note: The contract of this method is that you must use
super.clone()
as the basis for your implementation.clone
in interface CloneableSerializable
clone
in class AbstractBatchAndIncrementalLearner<DataType,SufficientStatisticsType extends SufficientStatistic<DataType,DistributionType>>
public void update(SufficientStatisticsType target, DataType data)
IncrementalLearner
update
method updates an object of ResultType
using
the given new data of type DataType
, using some form of
"learning" algorithm.update
in interface IncrementalLearner<DataType,SufficientStatisticsType extends SufficientStatistic<DataType,DistributionType>>
target
- The object to update.data
- The new data for the learning algorithm to use to update
the object.