InputType
- Input class to map onto the Output classOutputType
- Output of the Evaluatorpublic static class LocallyWeightedFunction.Learner<InputType,OutputType> extends AbstractCloneableSerializable implements SupervisedBatchLearner<InputType,OutputType,LocallyWeightedFunction<? super InputType,OutputType>>
Constructor and Description |
---|
Learner(Kernel<? super InputType> kernel,
SupervisedBatchLearner<InputType,OutputType,?> learner)
Creates a new instance of LocallyWeightedFunction
|
Modifier and Type | Method and Description |
---|---|
Kernel<? super InputType> |
getKernel()
Getter for kernel
|
SupervisedBatchLearner<InputType,OutputType,?> |
getLearner()
Getter for learner
|
LocallyWeightedFunction<InputType,OutputType> |
learn(java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data)
The
learn method creates an object of ResultType using
data of type DataType , using some form of "learning" algorithm. |
void |
setKernel(Kernel<? super InputType> kernel)
Setter for kernel
|
void |
setLearner(SupervisedBatchLearner<InputType,OutputType,?> learner)
Setter for learner
|
clone
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
clone
public Learner(Kernel<? super InputType> kernel, SupervisedBatchLearner<InputType,OutputType,?> learner)
kernel
- Kernel that provides the weights between an input and each sample
in the input datasetlearner
- Learner that takes the Collection of WeightedInputOutputPairs from
the Kernel reweighting and creates a local function approximation at
the given input. I would strongly recommend using fast or closed-form
learners for this.public LocallyWeightedFunction<InputType,OutputType> learn(java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data)
BatchLearner
learn
method creates an object of ResultType
using
data of type DataType
, using some form of "learning" algorithm.learn
in interface BatchLearner<java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>>,LocallyWeightedFunction<? super InputType,OutputType>>
data
- The data that the learning algorithm will use to create an
object of ResultType
.public Kernel<? super InputType> getKernel()
public void setKernel(Kernel<? super InputType> kernel)
kernel
- Kernel that provides the weights between an input and each sample
in the input datasetpublic SupervisedBatchLearner<InputType,OutputType,?> getLearner()
public void setLearner(SupervisedBatchLearner<InputType,OutputType,?> learner)
learner
- The learner to use