ObservationType
- Type of observations handled by the algorithm.ParameterType
- Type of parameters to infer.@PublicationReference(author={"M. Sanjeev Arulampalam","Simon Maskell","Neil Gordon","Tim Clapp"}, title="A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking", type=Journal, publication="IEEE Transactions on Signal Processing, Vol. 50, No. 2", year=2002, pages={174,188}, url="http://people.cs.ubc.ca/~murphyk/Software/Kalman/ParticleFilterTutorial.pdf") public class SamplingImportanceResamplingParticleFilter<ObservationType,ParameterType> extends AbstractParticleFilter<ObservationType,ParameterType>
ParticleFilter.Updater<ObservationType,ParameterType>
Modifier and Type | Field and Description |
---|---|
protected double |
particlePctThreadhold
Percentage of effective particles, below which we resample.
|
numParticles, random, updater
Constructor and Description |
---|
SamplingImportanceResamplingParticleFilter()
Creates a new instance of SamplingImportanceResamplingParticleFilter
|
Modifier and Type | Method and Description |
---|---|
double |
getParticlePctThreadhold()
Getter for particlePctThreadhold
|
void |
setParticlePctThreadhold(double particlePctThreadhold)
Setter for particlePctThreadhold
|
void |
update(DataDistribution<ParameterType> particles,
ObservationType value)
The
update method updates an object of ResultType using
the given new data of type DataType , using some form of
"learning" algorithm. |
clone, computeEffectiveParticles, createInitialLearnedObject, getNumParticles, getRandom, getUpdater, setNumParticles, setRandom, setUpdater
learn, learn, update
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
learn
update
protected double particlePctThreadhold
public SamplingImportanceResamplingParticleFilter()
public double getParticlePctThreadhold()
public void setParticlePctThreadhold(double particlePctThreadhold)
particlePctThreadhold
- Number of effective particles, below which we resample.public void update(DataDistribution<ParameterType> particles, ObservationType value)
IncrementalLearner
update
method updates an object of ResultType
using
the given new data of type DataType
, using some form of
"learning" algorithm.particles
- The object to update.value
- The new data for the learning algorithm to use to update
the object.