public class GammaInverseScaleBayesianEstimator extends AbstractConjugatePriorBayesianEstimator<java.lang.Double,java.lang.Double,GammaDistribution,GammaDistribution>
Modifier and Type | Class and Description |
---|---|
static class |
GammaInverseScaleBayesianEstimator.Parameter
Bayesian parameter describing this conjugate relationship.
|
Modifier and Type | Field and Description |
---|---|
static double |
DEFAULT_SHAPE
Default shape, 1.0.
|
parameter
Modifier | Constructor and Description |
---|---|
|
GammaInverseScaleBayesianEstimator()
Creates a new instance of GammaInverseScaleBayesianEstimator
|
protected |
GammaInverseScaleBayesianEstimator(BayesianParameter<java.lang.Double,GammaDistribution,GammaDistribution> parameter)
Creates a new instance of GammaInverseScaleBayesianEstimator
|
|
GammaInverseScaleBayesianEstimator(double shape,
GammaDistribution prior)
Creates a new instance of GammaInverseScaleBayesianEstimator
|
|
GammaInverseScaleBayesianEstimator(GammaDistribution conditional,
GammaDistribution prior)
Creates a new instance of GammaInverseScaleBayesianEstimator
|
Modifier and Type | Method and Description |
---|---|
double |
computeEquivalentSampleSize(GammaDistribution belief)
Computes the equivalent sample size of using the given prior.
|
GammaInverseScaleBayesianEstimator.Parameter |
createParameter(GammaDistribution conditional,
GammaDistribution prior)
Creates a parameter linking the conditional and prior distributions
|
double |
getShape()
Gets the shape of the conditional distribution
|
void |
setShape(double shape)
Sets the shape of the conditional distribution
|
void |
update(GammaDistribution belief,
java.lang.Double data)
The
update method updates an object of ResultType using
the given new data of type DataType , using some form of
"learning" algorithm. |
clone, createConditionalDistribution, createInitialLearnedObject, getInitialBelief, getParameter, setParameter
learn, learn, update
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
learn
update
public static final double DEFAULT_SHAPE
public GammaInverseScaleBayesianEstimator()
public GammaInverseScaleBayesianEstimator(double shape, GammaDistribution prior)
shape
- Shape of the conditional distributionprior
- Default conjugate prior.public GammaInverseScaleBayesianEstimator(GammaDistribution conditional, GammaDistribution prior)
prior
- Default conjugate prior.conditional
- Conditional distribution of the conjugate prior.protected GammaInverseScaleBayesianEstimator(BayesianParameter<java.lang.Double,GammaDistribution,GammaDistribution> parameter)
parameter
- Bayesian parameter describing this conjugate relationship.public GammaInverseScaleBayesianEstimator.Parameter createParameter(GammaDistribution conditional, GammaDistribution prior)
ConjugatePriorBayesianEstimator
conditional
- Distribution from which observations are generatedprior
- Distribution that generates parameters for the conditionalpublic double getShape()
public void setShape(double shape)
shape
- Shape of the conditional distributionpublic void update(GammaDistribution belief, java.lang.Double data)
IncrementalLearner
update
method updates an object of ResultType
using
the given new data of type DataType
, using some form of
"learning" algorithm.belief
- The object to update.data
- The new data for the learning algorithm to use to update
the object.public double computeEquivalentSampleSize(GammaDistribution belief)
ConjugatePriorBayesianEstimator
belief
- Prior belief to measure.