public class GammaInverseScaleBayesianEstimator extends AbstractConjugatePriorBayesianEstimator<java.lang.Double,java.lang.Double,GammaDistribution,GammaDistribution>
| Modifier and Type | Class and Description |
|---|---|
static class |
GammaInverseScaleBayesianEstimator.Parameter
Bayesian parameter describing this conjugate relationship.
|
| Modifier and Type | Field and Description |
|---|---|
static double |
DEFAULT_SHAPE
Default shape, 1.0.
|
parameter| Modifier | Constructor and Description |
|---|---|
|
GammaInverseScaleBayesianEstimator()
Creates a new instance of GammaInverseScaleBayesianEstimator
|
protected |
GammaInverseScaleBayesianEstimator(BayesianParameter<java.lang.Double,GammaDistribution,GammaDistribution> parameter)
Creates a new instance of GammaInverseScaleBayesianEstimator
|
|
GammaInverseScaleBayesianEstimator(double shape,
GammaDistribution prior)
Creates a new instance of GammaInverseScaleBayesianEstimator
|
|
GammaInverseScaleBayesianEstimator(GammaDistribution conditional,
GammaDistribution prior)
Creates a new instance of GammaInverseScaleBayesianEstimator
|
| Modifier and Type | Method and Description |
|---|---|
double |
computeEquivalentSampleSize(GammaDistribution belief)
Computes the equivalent sample size of using the given prior.
|
GammaInverseScaleBayesianEstimator.Parameter |
createParameter(GammaDistribution conditional,
GammaDistribution prior)
Creates a parameter linking the conditional and prior distributions
|
double |
getShape()
Gets the shape of the conditional distribution
|
void |
setShape(double shape)
Sets the shape of the conditional distribution
|
void |
update(GammaDistribution belief,
java.lang.Double data)
The
update method updates an object of ResultType using
the given new data of type DataType, using some form of
"learning" algorithm. |
clone, createConditionalDistribution, createInitialLearnedObject, getInitialBelief, getParameter, setParameterlearn, learn, updateequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitlearnupdatepublic static final double DEFAULT_SHAPE
public GammaInverseScaleBayesianEstimator()
public GammaInverseScaleBayesianEstimator(double shape,
GammaDistribution prior)
shape - Shape of the conditional distributionprior - Default conjugate prior.public GammaInverseScaleBayesianEstimator(GammaDistribution conditional, GammaDistribution prior)
prior - Default conjugate prior.conditional - Conditional distribution of the conjugate prior.protected GammaInverseScaleBayesianEstimator(BayesianParameter<java.lang.Double,GammaDistribution,GammaDistribution> parameter)
parameter - Bayesian parameter describing this conjugate relationship.public GammaInverseScaleBayesianEstimator.Parameter createParameter(GammaDistribution conditional, GammaDistribution prior)
ConjugatePriorBayesianEstimatorconditional - Distribution from which observations are generatedprior - Distribution that generates parameters for the conditionalpublic double getShape()
public void setShape(double shape)
shape - Shape of the conditional distributionpublic void update(GammaDistribution belief, java.lang.Double data)
IncrementalLearnerupdate method updates an object of ResultType using
the given new data of type DataType, using some form of
"learning" algorithm.belief - The object to update.data - The new data for the learning algorithm to use to update
the object.public double computeEquivalentSampleSize(GammaDistribution belief)
ConjugatePriorBayesianEstimatorbelief - Prior belief to measure.