ObservationType
- Observations from the ConditionalType that are used to estimate the
parameters of the distribution.BeliefType
- Type of Distribution that represents uncertainty in the parameters.ParameterType
- Type of parameter estimated by this algorithm, which is used to
parameterize the conditional distribution.ConditionalType
- Type of conditional distribution that generates observations for this
relationship.@PublicationReference(author="Daniel Fink",title="A Compendium of Conjugate Priors",type=TechnicalReport,year=1997,url="http://www.stat.columbia.edu/~cook/movabletype/mlm/CONJINTRnew%2BTEX.pdf") @PublicationReference(author="Wikipedia",title="Conjugate Prior",type=WebPage,year=2009,url="http://en.wikipedia.org/wiki/Conjugate_prior") public interface ConjugatePriorBayesianEstimator<ObservationType,ParameterType,ConditionalType extends ClosedFormDistribution<ObservationType>,BeliefType extends ClosedFormDistribution<ParameterType>> extends RecursiveBayesianEstimator<ObservationType,ParameterType,BeliefType>
Modifier and Type | Method and Description |
---|---|
double |
computeEquivalentSampleSize(BeliefType belief)
Computes the equivalent sample size of using the given prior.
|
ConditionalType |
createConditionalDistribution(ParameterType parameter)
Creates an instance of the class conditional distribution,
parameterized by the given parameter value.
|
BayesianParameter<ParameterType,ConditionalType,BeliefType> |
createParameter(ConditionalType conditional,
BeliefType prior)
Creates a parameter linking the conditional and prior distributions
|
BayesianParameter<ParameterType,ConditionalType,BeliefType> |
getParameter()
Gets the Bayesian hyperparameter relationship between the conditional
distribution and the conjugate prior distribution.
|
learn
clone
createInitialLearnedObject, update, update
BayesianParameter<ParameterType,ConditionalType,BeliefType> createParameter(ConditionalType conditional, BeliefType prior)
conditional
- Distribution from which observations are generatedprior
- Distribution that generates parameters for the conditionalBayesianParameter<ParameterType,ConditionalType,BeliefType> getParameter()
ConditionalType createConditionalDistribution(ParameterType parameter)
parameter
- Parameter used to create the class conditional distribution.double computeEquivalentSampleSize(BeliefType belief)
belief
- Prior belief to measure.