@PublicationReference(author="William M. Bolstad", title="Introduction to Bayesian Statistics: Second Edition", type=Book, year=2007, pages=143) public class BernoulliBayesianEstimator extends AbstractConjugatePriorBayesianEstimator<java.lang.Number,java.lang.Double,BernoulliDistribution,BetaDistribution>
Modifier and Type | Class and Description |
---|---|
static class |
BernoulliBayesianEstimator.Parameter
Parameter of this conjugate prior relationship.
|
parameter
Modifier | Constructor and Description |
---|---|
|
BernoulliBayesianEstimator()
Creates a new instance of BernoulliBayesianEstimator
|
protected |
BernoulliBayesianEstimator(BayesianParameter<java.lang.Double,BernoulliDistribution,BetaDistribution> parameter)
Creates a new instance of BernoulliBayesianEstimator
|
|
BernoulliBayesianEstimator(BernoulliDistribution conditional,
BetaDistribution prior)
Creates a new instance of BernoulliBayesianEstimator
|
|
BernoulliBayesianEstimator(BetaDistribution prior)
Creates a new instance of BernoulliBayesianEstimator
|
Modifier and Type | Method and Description |
---|---|
double |
computeEquivalentSampleSize(BetaDistribution belief)
Computes the equivalent sample size of using the given prior.
|
BernoulliBayesianEstimator.Parameter |
createParameter(BernoulliDistribution conditional,
BetaDistribution prior)
Creates a parameter linking the conditional and prior distributions
|
void |
update(BetaDistribution updater,
java.lang.Number data)
The
update method updates an object of ResultType using
the given new data of type DataType , using some form of
"learning" algorithm. |
clone, createConditionalDistribution, createInitialLearnedObject, getInitialBelief, getParameter, setParameter
learn, learn, update
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
learn
update
public BernoulliBayesianEstimator()
public BernoulliBayesianEstimator(BetaDistribution prior)
prior
- Default conjugate prior.public BernoulliBayesianEstimator(BernoulliDistribution conditional, BetaDistribution prior)
prior
- Default conjugate prior.conditional
- Conditional distribution of the conjugate prior.protected BernoulliBayesianEstimator(BayesianParameter<java.lang.Double,BernoulliDistribution,BetaDistribution> parameter)
parameter
- Bayesian hyperparameter relationship between the conditional
distribution and the conjugate prior distribution.public BernoulliBayesianEstimator.Parameter createParameter(BernoulliDistribution conditional, BetaDistribution prior)
ConjugatePriorBayesianEstimator
conditional
- Distribution from which observations are generatedprior
- Distribution that generates parameters for the conditionalpublic void update(BetaDistribution updater, java.lang.Number data)
IncrementalLearner
update
method updates an object of ResultType
using
the given new data of type DataType
, using some form of
"learning" algorithm.updater
- The object to update.data
- The new data for the learning algorithm to use to update
the object.public double computeEquivalentSampleSize(BetaDistribution belief)
ConjugatePriorBayesianEstimator
belief
- Prior belief to measure.