@PublicationReference(author="Wikipedia", title="Laplace distribution", type=WebPage, year=2009, url="http://en.wikipedia.org/wiki/Laplace_distribution") public class LaplaceDistribution extends AbstractClosedFormSmoothUnivariateDistribution implements EstimableDistribution<java.lang.Double,LaplaceDistribution>
Modifier and Type | Class and Description |
---|---|
static class |
LaplaceDistribution.CDF
CDF of the Laplace distribution.
|
static class |
LaplaceDistribution.MaximumLikelihoodEstimator
Estimates the ML parameters of a Laplace distribution from a
Collection of Numbers.
|
static class |
LaplaceDistribution.PDF
The PDF of a Laplace Distribution.
|
static class |
LaplaceDistribution.WeightedMaximumLikelihoodEstimator
Creates a UnivariateGaussian from weighted data
|
Modifier and Type | Field and Description |
---|---|
static double |
DEFAULT_MEAN
Default mean, 0.0.
|
static double |
DEFAULT_SCALE
Default scale, 1.0.
|
protected double |
mean
Mean of the distribution
|
protected double |
scale
Scale factor of the distribution, must be greater than zero.
|
Constructor and Description |
---|
LaplaceDistribution()
Creates a new instance of LaplaceDistribution
|
LaplaceDistribution(double mean,
double scale)
Creates a new instance of LaplaceDistribution
|
LaplaceDistribution(LaplaceDistribution other)
Copy Constructor
|
Modifier and Type | Method and Description |
---|---|
LaplaceDistribution |
clone()
This makes public the clone method on the
Object class and
removes the exception that it throws. |
void |
convertFromVector(Vector parameters)
Converts the object from a Vector of parameters.
|
Vector |
convertToVector()
Converts the object to a vector.
|
LaplaceDistribution.CDF |
getCDF()
Gets the CDF of a scalar distribution.
|
LaplaceDistribution.MaximumLikelihoodEstimator |
getEstimator()
Gets an estimator associated with this distribution.
|
java.lang.Double |
getMaxSupport()
Gets the minimum support (domain or input) of the distribution.
|
java.lang.Double |
getMean()
Gets the arithmetic mean, or "first central moment" or "expectation",
of the distribution.
|
double |
getMeanAsDouble()
Gets the mean of the distribution as a double.
|
java.lang.Double |
getMinSupport()
Gets the minimum support (domain or input) of the distribution.
|
LaplaceDistribution.PDF |
getProbabilityFunction()
Gets the distribution function associated with this Distribution,
either the PDF or PMF.
|
double |
getScale()
Getter for scale
|
double |
getVariance()
Gets the variance of the distribution.
|
double |
sampleAsDouble(java.util.Random random)
Samples a value from this distribution as a double.
|
void |
sampleInto(java.util.Random random,
double[] output,
int start,
int length)
Samples values from this distribution as an array of doubles.
|
void |
setMean(double mean)
Setter for mean
|
void |
setScale(double scale)
Setter for scale
|
java.lang.String |
toString() |
sampleAsDoubles, sampleInto
sample, sample
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
sample, sample, sampleInto
public static final double DEFAULT_MEAN
public static final double DEFAULT_SCALE
protected double mean
protected double scale
public LaplaceDistribution()
public LaplaceDistribution(double mean, double scale)
mean
- Mean of the distributionscale
- Scale factor of the distribution, must be greater than zero.public LaplaceDistribution(LaplaceDistribution other)
other
- LaplaceDistribution to copypublic LaplaceDistribution clone()
AbstractCloneableSerializable
Object
class and
removes the exception that it throws. Its default behavior is to
automatically create a clone of the exact type of object that the
clone is called on and to copy all primitives but to keep all references,
which means it is a shallow copy.
Extensions of this class may want to override this method (but call
super.clone()
to implement a "smart copy". That is, to target
the most common use case for creating a copy of the object. Because of
the default behavior being a shallow copy, extending classes only need
to handle fields that need to have a deeper copy (or those that need to
be reset). Some of the methods in ObjectUtil
may be helpful in
implementing a custom clone method.
Note: The contract of this method is that you must use
super.clone()
as the basis for your implementation.clone
in interface Vectorizable
clone
in interface CloneableSerializable
clone
in class AbstractClosedFormUnivariateDistribution<java.lang.Double>
public java.lang.Double getMean()
DistributionWithMean
getMean
in interface DistributionWithMean<java.lang.Double>
getMean
in interface SmoothUnivariateDistribution
getMean
in class AbstractClosedFormSmoothUnivariateDistribution
public double getMeanAsDouble()
UnivariateDistribution
getMeanAsDouble
in interface UnivariateDistribution<java.lang.Double>
public void setMean(double mean)
mean
- Mean of the distributionpublic double getScale()
public void setScale(double scale)
scale
- Scale factor of the distribution, must be greater than zero.public double sampleAsDouble(java.util.Random random)
SmoothUnivariateDistribution
sampleAsDouble
in interface SmoothUnivariateDistribution
sampleAsDouble
in class AbstractClosedFormSmoothUnivariateDistribution
random
- Random number generator to use.public void sampleInto(java.util.Random random, double[] output, int start, int length)
SmoothUnivariateDistribution
sampleInto
in interface SmoothUnivariateDistribution
random
- Random number generator to use.output
- The array to write the result into. Cannot be null.start
- The offset in the array to start writing at. Cannot be negative.length
- The number of values to sample. Cannot be negative.public Vector convertToVector()
Vectorizable
convertToVector
in interface Vectorizable
public void convertFromVector(Vector parameters)
Vectorizable
convertFromVector
in interface Vectorizable
parameters
- The parameters to incorporate.public double getVariance()
UnivariateDistribution
getVariance
in interface UnivariateDistribution<java.lang.Double>
public java.lang.String toString()
toString
in class java.lang.Object
public LaplaceDistribution.CDF getCDF()
UnivariateDistribution
getCDF
in interface ClosedFormUnivariateDistribution<java.lang.Double>
getCDF
in interface SmoothUnivariateDistribution
getCDF
in interface UnivariateDistribution<java.lang.Double>
public LaplaceDistribution.PDF getProbabilityFunction()
ComputableDistribution
getProbabilityFunction
in interface ComputableDistribution<java.lang.Double>
getProbabilityFunction
in interface SmoothUnivariateDistribution
public java.lang.Double getMinSupport()
UnivariateDistribution
getMinSupport
in interface UnivariateDistribution<java.lang.Double>
public java.lang.Double getMaxSupport()
UnivariateDistribution
getMaxSupport
in interface UnivariateDistribution<java.lang.Double>
public LaplaceDistribution.MaximumLikelihoodEstimator getEstimator()
EstimableDistribution
getEstimator
in interface EstimableDistribution<java.lang.Double,LaplaceDistribution>