InputType
- Type of inputs to map through the kernel@PublicationReference(author="Christopher M. Bishop",title="Pattern Recognition and Machine Learning",type=Book,year=2006,pages={303,312}) @PublicationReference(author="Hanna M. Wallach",title="Introduction to Gaussian Process Regression",type=Misc,year=2005,url="http://www.cs.umass.edu/~wallach/talks/gp_intro.pdf") @PublicationReference(author="Wikipedia",title="Kriging",type=WebPage,year=2010,url="http://en.wikipedia.org/wiki/Kriging") public class GaussianProcessRegression<InputType> extends DefaultKernelContainer<InputType> implements BayesianEstimator<InputOutputPair<? extends InputType,java.lang.Double>,Vector,MultivariateGaussian>
Modifier and Type | Class and Description |
---|---|
class |
GaussianProcessRegression.PredictiveDistribution
Predictive distribution for Gaussian Process Regression.
|
Modifier and Type | Field and Description |
---|---|
static double |
DEFAULT_MEASUREMENT_VARIANCE
Default assumed variance of the measurements, 1.0.
|
kernel
Constructor and Description |
---|
GaussianProcessRegression()
Creates a new instance of GaussianProcessRegression
|
GaussianProcessRegression(Kernel<InputType> kernel,
double outputVariance)
Creates a new instance of GaussianProcessRegression
|
Modifier and Type | Method and Description |
---|---|
GaussianProcessRegression<InputType> |
clone()
This makes public the clone method on the
Object class and
removes the exception that it throws. |
GaussianProcessRegression.PredictiveDistribution |
createPredictiveDistribution(MultivariateGaussian posterior,
java.util.ArrayList<InputType> inputs)
Creates the predictive distribution for future points.
|
double |
getOutputVariance()
Getter for outputVariance
|
MultivariateGaussian |
learn(java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>> data)
The
learn method creates an object of ResultType using
data of type DataType , using some form of "learning" algorithm. |
void |
setOutputVariance(double outputVariance)
Getter for outputVariance
|
getKernel, setKernel
public static final double DEFAULT_MEASUREMENT_VARIANCE
public GaussianProcessRegression()
public GaussianProcessRegression(Kernel<InputType> kernel, double outputVariance)
kernel
- Kernel to map the InputType to the Vector spaceoutputVariance
- Assumed known variance of the outputs (measurements),
must be greater than or equal to zero.public GaussianProcessRegression<InputType> clone()
AbstractCloneableSerializable
Object
class and
removes the exception that it throws. Its default behavior is to
automatically create a clone of the exact type of object that the
clone is called on and to copy all primitives but to keep all references,
which means it is a shallow copy.
Extensions of this class may want to override this method (but call
super.clone()
to implement a "smart copy". That is, to target
the most common use case for creating a copy of the object. Because of
the default behavior being a shallow copy, extending classes only need
to handle fields that need to have a deeper copy (or those that need to
be reset). Some of the methods in ObjectUtil
may be helpful in
implementing a custom clone method.
Note: The contract of this method is that you must use
super.clone()
as the basis for your implementation.clone
in interface CloneableSerializable
clone
in class DefaultKernelContainer<InputType>
public MultivariateGaussian learn(java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>> data)
BatchLearner
learn
method creates an object of ResultType
using
data of type DataType
, using some form of "learning" algorithm.learn
in interface BatchLearner<java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>>,MultivariateGaussian>
data
- The data that the learning algorithm will use to create an
object of ResultType
.public double getOutputVariance()
public void setOutputVariance(double outputVariance)
outputVariance
- Assumed known variance of the outputs (measurements),
must be greater than or equal to zero.public GaussianProcessRegression.PredictiveDistribution createPredictiveDistribution(MultivariateGaussian posterior, java.util.ArrayList<InputType> inputs)
posterior
- Posterior from the fitting of the training data.inputs
- Training data inputs