public static class StudentTDistribution.CDF extends StudentTDistribution implements SmoothCumulativeDistributionFunction, InvertibleCumulativeDistributionFunction<java.lang.Double>
StudentTDistribution.CDF, StudentTDistribution.MaximumLikelihoodEstimator, StudentTDistribution.PDF, StudentTDistribution.WeightedMaximumLikelihoodEstimator
DEFAULT_DEGREES_OF_FREEDOM, DEFAULT_MEAN, DEFAULT_PRECISION, degreesOfFreedom, mean, precision
Constructor and Description |
---|
CDF()
Default constructor.
|
CDF(double degreesOfFreedom)
Creates a new instance of CDF
|
CDF(double degreesOfFreedom,
double mean,
double precision)
Creates a new instance of PDF
|
CDF(StudentTDistribution other)
Creates a new instance of CDF
|
Modifier and Type | Method and Description |
---|---|
java.lang.Double |
differentiate(java.lang.Double input)
Differentiates the output with respect to the input
|
double |
evaluate(double input)
Produces a double output for the given double input
|
java.lang.Double |
evaluate(java.lang.Double input)
Evaluates the function on the given input and returns the output.
|
double |
evaluateAsDouble(java.lang.Double input)
Evaluates the scalar function as a double.
|
StudentTDistribution.CDF |
getCDF()
Gets the CDF of a scalar distribution.
|
StudentTDistribution.PDF |
getDerivative()
Gets the closed-form derivative of the function.
|
java.lang.Double |
inverse(double p)
Evaluates the Inverse Student-t CDF for the given probability
and degrees of freedom
|
clone, convertFromVector, convertToVector, getDegreesOfFreedom, getEstimator, getMaxSupport, getMeanAsDouble, getMinSupport, getPrecision, getProbabilityFunction, getVariance, sampleInto, setDegreesOfFreedom, setMean, setPrecision, toString
getMean, sampleAsDouble, sampleAsDoubles, sampleInto
sample, sample
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getMean, getProbabilityFunction, sampleAsDouble, sampleAsDoubles, sampleInto
getMaxSupport, getMeanAsDouble, getMinSupport, getVariance
sample, sample, sampleInto
clone, convertFromVector, convertToVector
public CDF()
public CDF(double degreesOfFreedom)
degreesOfFreedom
- Degrees of freedom in the distribution, usually the number of
datapoints - 1, DOFs must be greater than zero.public CDF(double degreesOfFreedom, double mean, double precision)
degreesOfFreedom
- Degrees of freedom in the distribution, usually the number of
datapoints - 1, DOFs must be greater than zero.mean
- Mean, or noncentrality parameter, of the distributionprecision
- Precision, inverseRootFinder variance, of the distribution, must be greater
than zero.public CDF(StudentTDistribution other)
other
- The underlying Student t-distributionpublic java.lang.Double evaluate(java.lang.Double input)
Evaluator
evaluate
in interface Evaluator<java.lang.Double,java.lang.Double>
evaluate
in interface ScalarFunction<java.lang.Double>
evaluate
in interface UnivariateScalarFunction
input
- The input to evaluate.public double evaluateAsDouble(java.lang.Double input)
ScalarFunction
evaluateAsDouble
in interface ScalarFunction<java.lang.Double>
evaluateAsDouble
in interface UnivariateScalarFunction
input
- The input value.public double evaluate(double input)
UnivariateScalarFunction
evaluate
in interface UnivariateScalarFunction
input
- Input to the Evaluatorpublic java.lang.Double inverse(double p)
inverse
in interface InvertibleCumulativeDistributionFunction<java.lang.Double>
p
- Value at which to solve for x such that x=CDF(p)public StudentTDistribution.CDF getCDF()
UnivariateDistribution
getCDF
in interface ClosedFormUnivariateDistribution<java.lang.Double>
getCDF
in interface SmoothUnivariateDistribution
getCDF
in interface UnivariateDistribution<java.lang.Double>
getCDF
in class StudentTDistribution
public StudentTDistribution.PDF getDerivative()
ClosedFormDifferentiableEvaluator
getDerivative
in interface ClosedFormDifferentiableEvaluator<java.lang.Double,java.lang.Double,java.lang.Double>
getDerivative
in interface SmoothCumulativeDistributionFunction
public java.lang.Double differentiate(java.lang.Double input)
DifferentiableEvaluator
differentiate
in interface DifferentiableEvaluator<java.lang.Double,java.lang.Double,java.lang.Double>
input
- Input about which to compute the derivative