InputType
- The type of input data in the input-output pair that
the learner can learn from. The Evaluator
learned from the
algorithm also takes this as the input parameter.OutputType
- The type of output data in the input-output pair that
the learner can learn from. The Evaluator
learned from the
algorithm also produces this as its output.ResultType
- The type of object created by the learning algorithm.
For example, a LinearBinaryCategorizer
.public abstract class AbstractSupervisedBatchAndIncrementalLearner<InputType,OutputType,ResultType extends Evaluator<? super InputType,? extends OutputType>> extends AbstractBatchAndIncrementalLearner<InputOutputPair<? extends InputType,OutputType>,ResultType> implements SupervisedBatchAndIncrementalLearner<InputType,OutputType,ResultType>
Constructor and Description |
---|
AbstractSupervisedBatchAndIncrementalLearner()
Creates a new
AbstractSupervisedBatchAndIncrementalLearner . |
Modifier and Type | Method and Description |
---|---|
void |
update(ResultType target,
InputOutputPair<? extends InputType,OutputType> data)
The
update method updates an object of ResultType using
the given new data of type DataType , using some form of
"learning" algorithm. |
clone, learn, learn, update
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
update
learn
learn
createInitialLearnedObject, update
clone
public AbstractSupervisedBatchAndIncrementalLearner()
AbstractSupervisedBatchAndIncrementalLearner
.public void update(ResultType target, InputOutputPair<? extends InputType,OutputType> data)
IncrementalLearner
update
method updates an object of ResultType
using
the given new data of type DataType
, using some form of
"learning" algorithm.update
in interface IncrementalLearner<InputOutputPair<? extends InputType,OutputType>,ResultType extends Evaluator<? super InputType,? extends OutputType>>
target
- The object to update.data
- The new data for the learning algorithm to use to update
the object.