@PublicationReference(author={"Koby Crammer","Alex Kulesza","Mark Dredze"}, title="Adaptive Regularization of Weight Vectors", year=2009, type=Conference, publication="Advances in Neural Information Processing Systems", url="http://papers.nips.cc/paper/3848-adaptive-regularization-of-weight-vectors.pdf") public class AdaptiveRegularizationOfWeights extends AbstractSupervisedBatchAndIncrementalLearner<Vectorizable,java.lang.Boolean,DefaultConfidenceWeightedBinaryCategorizer>
Modifier and Type | Field and Description |
---|---|
static double |
DEFAULT_R
The default value of r is 0.001.
|
protected double |
r
The r parameter that controls regularization weight.
|
Constructor and Description |
---|
AdaptiveRegularizationOfWeights()
Creates a new
AdaptiveRegularizationOfWeights with default
parameters. |
AdaptiveRegularizationOfWeights(double r)
Creates a new
AdaptiveRegularizationOfWeights with the given
parameters |
Modifier and Type | Method and Description |
---|---|
DefaultConfidenceWeightedBinaryCategorizer |
createInitialLearnedObject()
Creates a new initial learned object, before any data is given.
|
double |
getR()
Gets the regularization parameter.
|
void |
setR(double r)
Sets the regularization parameter.
|
void |
update(DefaultConfidenceWeightedBinaryCategorizer target,
Vector input,
boolean label)
Perform an update for the target using the given input and associated
label.
|
void |
update(DefaultConfidenceWeightedBinaryCategorizer target,
Vectorizable input,
java.lang.Boolean output)
The
update method updates an object of ResultType using
the given a new supervised input-output pair, using some form of
"learning" algorithm. |
update
clone, learn, learn, update
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
learn
learn
update
clone
public static final double DEFAULT_R
protected double r
public AdaptiveRegularizationOfWeights()
AdaptiveRegularizationOfWeights
with default
parameters.public AdaptiveRegularizationOfWeights(double r)
AdaptiveRegularizationOfWeights
with the given
parametersr
- The regularization parameter. Must be positive.public DefaultConfidenceWeightedBinaryCategorizer createInitialLearnedObject()
IncrementalLearner
public void update(DefaultConfidenceWeightedBinaryCategorizer target, Vectorizable input, java.lang.Boolean output)
SupervisedIncrementalLearner
update
method updates an object of ResultType
using
the given a new supervised input-output pair, using some form of
"learning" algorithm.target
- The object to update.input
- The supervised input to learn from.output
- The supervised output to learn from.public void update(DefaultConfidenceWeightedBinaryCategorizer target, Vector input, boolean label)
target
- The target to update.input
- The input value.label
- The label associated with the input.public double getR()
public void setR(double r)
r
- The regularization parameter. Must be positive.