public static class ScalarMixtureDensityModel.CDF extends ScalarMixtureDensityModel implements SmoothCumulativeDistributionFunction
ScalarMixtureDensityModel.CDF, ScalarMixtureDensityModel.EMLearner, ScalarMixtureDensityModel.PDF
distributions, priorWeights
Constructor and Description |
---|
CDF()
Creates a new instance of ScalarMixtureDensityModel
|
CDF(java.util.Collection<? extends SmoothUnivariateDistribution> distributions)
Creates a new instance of ScalarMixtureDensityModel
|
CDF(java.util.Collection<? extends SmoothUnivariateDistribution> distributions,
double[] priorWeights)
Creates a new instance of ScalarMixtureDensityModel
|
CDF(ScalarMixtureDensityModel other)
Copy constructor
|
CDF(SmoothUnivariateDistribution... distributions)
Creates a new instance of ScalarMixtureDensityModel
|
Modifier and Type | Method and Description |
---|---|
java.lang.Double |
differentiate(java.lang.Double input)
Differentiates the output with respect to the input
|
double |
evaluate(double input)
Produces a double output for the given double input
|
java.lang.Double |
evaluate(java.lang.Double input)
Evaluates the function on the given input and returns the output.
|
double |
evaluateAsDouble(java.lang.Double input)
Evaluates the scalar function as a double.
|
ScalarMixtureDensityModel.CDF |
getCDF()
Gets the CDF of a scalar distribution.
|
ScalarMixtureDensityModel.PDF |
getDerivative()
Gets the closed-form derivative of the function.
|
clone, convertFromVector, convertToVector, getMaxSupport, getMean, getMeanAsDouble, getMinSupport, getProbabilityFunction, getVariance, sampleAsDouble, sampleAsDoubles, sampleInto
getDistributionCount, getDistributions, getPriorWeights, getPriorWeightSum, sample, sampleInto, setDistributions, setPriorWeights, toString
sample
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getMean, getProbabilityFunction, sampleAsDouble, sampleAsDoubles, sampleInto
getMaxSupport, getMeanAsDouble, getMinSupport, getVariance
sample, sample, sampleInto
clone, convertFromVector, convertToVector
public CDF()
public CDF(SmoothUnivariateDistribution... distributions)
distributions
- Distributions that comprise the SMDM with equal prior weightpublic CDF(java.util.Collection<? extends SmoothUnivariateDistribution> distributions)
distributions
- Distributions that comprise the SMDM with equal prior weightpublic CDF(java.util.Collection<? extends SmoothUnivariateDistribution> distributions, double[] priorWeights)
distributions
- Distributions that comprise the SMDMpriorWeights
- Weights proportionate by which the distributions are sampledpublic CDF(ScalarMixtureDensityModel other)
other
- SMDM to copypublic ScalarMixtureDensityModel.PDF getDerivative()
ClosedFormDifferentiableEvaluator
getDerivative
in interface ClosedFormDifferentiableEvaluator<java.lang.Double,java.lang.Double,java.lang.Double>
getDerivative
in interface SmoothCumulativeDistributionFunction
public java.lang.Double evaluate(java.lang.Double input)
Evaluator
evaluate
in interface Evaluator<java.lang.Double,java.lang.Double>
evaluate
in interface ScalarFunction<java.lang.Double>
evaluate
in interface UnivariateScalarFunction
input
- The input to evaluate.public double evaluateAsDouble(java.lang.Double input)
ScalarFunction
evaluateAsDouble
in interface ScalarFunction<java.lang.Double>
evaluateAsDouble
in interface UnivariateScalarFunction
input
- The input value.public double evaluate(double input)
UnivariateScalarFunction
evaluate
in interface UnivariateScalarFunction
input
- Input to the Evaluatorpublic java.lang.Double differentiate(java.lang.Double input)
DifferentiableEvaluator
differentiate
in interface DifferentiableEvaluator<java.lang.Double,java.lang.Double,java.lang.Double>
input
- Input about which to compute the derivativepublic ScalarMixtureDensityModel.CDF getCDF()
UnivariateDistribution
getCDF
in interface ClosedFormUnivariateDistribution<java.lang.Double>
getCDF
in interface SmoothUnivariateDistribution
getCDF
in interface UnivariateDistribution<java.lang.Double>
getCDF
in class ScalarMixtureDensityModel