@ConfidenceTestAssumptions(name="Fisher Sign Test", alsoKnownAs="Sign Test", description={"Determines if there is a statistically significant between the means of two groups","A robust nonparameteric alternative to the paired Student\'s t-test."}, assumptions="The data from each group is sampled independently of each other.", nullHypothesis="The means of the two groups is the same.", dataPaired=true, dataSameSize=true, distribution=BinomialDistribution.CDF.class, reference=@PublicationReference(author="Eric W. Weisstein",title="Fisher Sign Test",type=WebPage,year=2009,url="http://mathworld.wolfram.com/FisherSignTest.html")) public class FisherSignConfidence extends AbstractCloneableSerializable implements NullHypothesisEvaluator<java.util.Collection<? extends java.lang.Number>>
Modifier and Type | Class and Description |
---|---|
static class |
FisherSignConfidence.Statistic
Contains the parameters from the Sign Test null-hypothesis evaluation
|
Constructor and Description |
---|
FisherSignConfidence()
Default Constructor
|
Modifier and Type | Method and Description |
---|---|
FisherSignConfidence.Statistic |
evaluateNullHypothesis(java.util.Collection<? extends java.lang.Number> data1,
java.util.Collection<? extends java.lang.Number> data2)
Computes the probability that two data were generated by
the same distribution.
|
clone
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
clone
public FisherSignConfidence.Statistic evaluateNullHypothesis(java.util.Collection<? extends java.lang.Number> data1, java.util.Collection<? extends java.lang.Number> data2)
NullHypothesisEvaluator
evaluateNullHypothesis
in interface NullHypothesisEvaluator<java.util.Collection<? extends java.lang.Number>>
data1
- First dataset to considerdata2
- Second dataset to consider