@PublicationReference(title="Online Passive-Aggressive Algorithms on a Budget", author={"Zhuang Wang","Slobodan Vucetic"}, year=2010, type=Conference, publication="Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS)", url="http://jmlr.csail.mit.edu/proceedings/papers/v9/wang10b/wang10b.pdf", notes="This presents the PA-I-R algorithm. This implementation is non-budgeted form. We this also implements PA-R and PA-II-R") public class OnlineRampPassiveAggressivePerceptron extends OnlinePassiveAggressivePerceptron.QuadraticSoftMargin
OnlinePassiveAggressivePerceptron.AbstractSoftMargin, OnlinePassiveAggressivePerceptron.LinearSoftMargin, OnlinePassiveAggressivePerceptron.QuadraticSoftMargin
aggressiveness, DEFAULT_AGGRESSIVENESS
DEFAULT_UPDATE_BIAS
updateBias
vectorFactory
Constructor and Description |
---|
OnlineRampPassiveAggressivePerceptron()
Creates a new
OnlineRampPassiveAggressivePerceptron with default parameters. |
OnlineRampPassiveAggressivePerceptron(double aggressiveness)
Creates a new
OnlineRampPassiveAggressivePerceptron with the given
aggressiveness. |
OnlineRampPassiveAggressivePerceptron(double aggressiveness,
VectorFactory<?> vectorFactory)
Creates a new
OnlineRampPassiveAggressivePerceptron with the given parameters. |
Modifier and Type | Method and Description |
---|---|
<InputType> |
computeUpdate(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean actualCategory,
double predicted)
Compute the update weight in the linear case.
|
double |
computeUpdate(LinearBinaryCategorizer target,
Vector input,
boolean actualCategory,
double predicted)
Compute the update weight in the linear case.
|
computeUpdate
getAggressiveness, setAggressiveness
computeDecay, computeDecay, computeRescaling, computeRescaling, createInitialLearnedObject, initialize, initialize, isUpdateBias, setUpdateBias, update, update
createKernelLearner, learn, update, update, update
createInitialLearnedObject, getVectorFactory, setVectorFactory, update
update
clone, learn, learn, update
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
update
learn
learn
createInitialLearnedObject, update, update
clone
public OnlineRampPassiveAggressivePerceptron()
OnlineRampPassiveAggressivePerceptron
with default parameters.public OnlineRampPassiveAggressivePerceptron(double aggressiveness)
OnlineRampPassiveAggressivePerceptron
with the given
aggressiveness.aggressiveness
- The aggressiveness. Must be positive.public OnlineRampPassiveAggressivePerceptron(double aggressiveness, VectorFactory<?> vectorFactory)
OnlineRampPassiveAggressivePerceptron
with the given parameters.aggressiveness
- The aggressiveness. Must be positive.vectorFactory
- The factory to use to create new weight vectors.public double computeUpdate(LinearBinaryCategorizer target, Vector input, boolean actualCategory, double predicted)
AbstractLinearCombinationOnlineLearner
computeUpdate
in class OnlinePassiveAggressivePerceptron
target
- Target to compute the update for.input
- Input to use in computing the update.actualCategory
- The actual category of the input.predicted
- The predicted category of the input.public <InputType> double computeUpdate(DefaultKernelBinaryCategorizer<InputType> target, InputType input, boolean actualCategory, double predicted)
AbstractLinearCombinationOnlineLearner
computeUpdate
in class OnlinePassiveAggressivePerceptron
InputType
- The input value for learning.target
- Target to compute the update for.input
- Input to use in computing the update.actualCategory
- The actual category of the input.predicted
- The predicted category of the input.