public static class OnlinePassiveAggressivePerceptron.LinearSoftMargin extends OnlinePassiveAggressivePerceptron.AbstractSoftMargin
OnlinePassiveAggressivePerceptron.AbstractSoftMargin, OnlinePassiveAggressivePerceptron.LinearSoftMargin, OnlinePassiveAggressivePerceptron.QuadraticSoftMarginaggressiveness, DEFAULT_AGGRESSIVENESSDEFAULT_UPDATE_BIASupdateBiasvectorFactory| Constructor and Description | 
|---|
| LinearSoftMargin()Creates a new  LinearSoftMarginwith default parameters. | 
| LinearSoftMargin(double aggressiveness)Creates a new  LinearSoftMarginwith the given
 aggressiveness. | 
| LinearSoftMargin(double aggressiveness,
                VectorFactory<?> vectorFactory)Creates a new  LinearSoftMarginwith the given parameters. | 
| Modifier and Type | Method and Description | 
|---|---|
| protected double | computeUpdate(double actual,
             double predicted,
             double loss,
             double inputNorm2Squared)Compute the update value (tau) for the algorithm. | 
getAggressiveness, setAggressivenesscomputeUpdate, computeUpdatecomputeDecay, computeDecay, computeRescaling, computeRescaling, createInitialLearnedObject, initialize, initialize, isUpdateBias, setUpdateBias, update, updatecreateKernelLearner, learn, update, update, updatecreateInitialLearnedObject, getVectorFactory, setVectorFactory, updateupdateclone, learn, learn, updateequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitupdatelearnlearncreateInitialLearnedObject, update, updateclonepublic LinearSoftMargin()
LinearSoftMargin with default parameters.public LinearSoftMargin(double aggressiveness)
LinearSoftMargin with the given
 aggressiveness.aggressiveness - The aggressiveness. Must be positive.public LinearSoftMargin(double aggressiveness,
                        VectorFactory<?> vectorFactory)
LinearSoftMargin with the given parameters.aggressiveness - The aggressiveness. Must be positive.vectorFactory - The factory to use to create new weight vectors.protected double computeUpdate(double actual,
                               double predicted,
                               double loss,
                               double inputNorm2Squared)
OnlinePassiveAggressivePerceptroncomputeUpdate in class OnlinePassiveAggressivePerceptronactual - The actual label represented as a double (-1 or +1).predicted - The value predicted by the current categorizer (w * x + b).loss - The loss function (1 - predicted).inputNorm2Squared - The squared 2-norm of the input (||x||^2).