InputType
- The type of the input to the evaluator to compute the
performance of.public class MeanAbsoluteErrorEvaluator<InputType> extends AbstractSupervisedPerformanceEvaluator<InputType,java.lang.Double,java.lang.Double,java.lang.Double>
MeanAbsoluteError
class implements a method for computing the
performance of a supervised learner for a scalar function by the mean
absolute value between the target and estimated outputs. This can also be
referred to as the mean L1 error.Constructor and Description |
---|
MeanAbsoluteErrorEvaluator()
Creates a new instance of MeanAbsoluteError
|
Modifier and Type | Method and Description |
---|---|
static double |
compute(java.util.Collection<? extends TargetEstimatePair<? extends java.lang.Double,? extends java.lang.Double>> data)
Computes the mean absolute error for the given pairs of values.
|
java.lang.Double |
evaluatePerformance(java.util.Collection<? extends TargetEstimatePair<? extends java.lang.Double,? extends java.lang.Double>> data)
Evaluates the performance accuracy of the given estimates against the
given targets.
|
evaluatePerformance, summarize
clone
public MeanAbsoluteErrorEvaluator()
public java.lang.Double evaluatePerformance(java.util.Collection<? extends TargetEstimatePair<? extends java.lang.Double,? extends java.lang.Double>> data)
evaluatePerformance
in interface SupervisedPerformanceEvaluator<InputType,java.lang.Double,java.lang.Double,java.lang.Double>
evaluatePerformance
in class AbstractSupervisedPerformanceEvaluator<InputType,java.lang.Double,java.lang.Double,java.lang.Double>
data
- The target-estimate pairs to use to evaluate performance.public static double compute(java.util.Collection<? extends TargetEstimatePair<? extends java.lang.Double,? extends java.lang.Double>> data)
data
- The data to compute the mean absolute error over.