public static class MultivariateStudentTDistribution.PDF extends MultivariateStudentTDistribution implements ProbabilityDensityFunction<Vector>, VectorInputEvaluator<Vector,java.lang.Double>
MultivariateStudentTDistribution.PDF
DEFAULT_DEGREES_OF_FREEDOM, DEFAULT_DIMENSIONALITY, degreesOfFreedom, mean
Constructor and Description |
---|
PDF()
Creates a new instance of MultivariateStudentTDistribution
|
PDF(double degreesOfFreedom,
Vector mean,
Matrix precision)
Creates a distribution with the given dimensionality.
|
PDF(int dimensionality)
Creates a distribution with the given dimensionality.
|
PDF(MultivariateStudentTDistribution other)
Copy constructor
|
Modifier and Type | Method and Description |
---|---|
java.lang.Double |
evaluate(Vector input)
Evaluates the function on the given input and returns the output.
|
java.lang.Double |
getLogDeterminantPrecision()
Getter for logDeterminantPrecision
|
MultivariateStudentTDistribution.PDF |
getProbabilityFunction()
Gets the distribution function associated with this Distribution,
either the PDF or PMF.
|
double |
logEvaluate(Vector input)
Evaluate the natural logarithm of the distribution function.
|
void |
setPrecision(Matrix precision)
Setter for precision
|
clone, convertFromVector, convertToVector, getCovariance, getDegreesOfFreedom, getInputDimensionality, getMean, getPrecision, sampleInto, setDegreesOfFreedom, setMean
sample, sample
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getMean
clone, convertFromVector, convertToVector
sample, sample, sampleInto
getInputDimensionality
public PDF()
public PDF(int dimensionality)
dimensionality
- Dimensionality of the distribution.public PDF(double degreesOfFreedom, Vector mean, Matrix precision)
degreesOfFreedom
- Degrees of freedom in the distribution, usually the number of
datapoints - 1, DOFs must be greater than zero.mean
- Mean, or noncentrality parameter, of the distributionprecision
- Precision, which is proportionate to the inverse of variance, of the
distribution, must be symmetric and positive definite.public PDF(MultivariateStudentTDistribution other)
other
- MultivariateStudentTDistribution to copypublic MultivariateStudentTDistribution.PDF getProbabilityFunction()
ComputableDistribution
getProbabilityFunction
in interface ComputableDistribution<Vector>
getProbabilityFunction
in interface ProbabilityDensityFunction<Vector>
getProbabilityFunction
in class MultivariateStudentTDistribution
public double logEvaluate(Vector input)
ProbabilityFunction
logEvaluate
in interface ProbabilityFunction<Vector>
input
- The input to be evaluatedpublic java.lang.Double evaluate(Vector input)
Evaluator
public java.lang.Double getLogDeterminantPrecision()
public void setPrecision(Matrix precision)
MultivariateStudentTDistribution
setPrecision
in class MultivariateStudentTDistribution
precision
- Precision, which is proportionate to the inverse of variance, of the
distribution, must be symmetric and positive definite.