public static class MultivariateStudentTDistribution.PDF extends MultivariateStudentTDistribution implements ProbabilityDensityFunction<Vector>, VectorInputEvaluator<Vector,java.lang.Double>
MultivariateStudentTDistribution.PDFDEFAULT_DEGREES_OF_FREEDOM, DEFAULT_DIMENSIONALITY, degreesOfFreedom, mean| Constructor and Description |
|---|
PDF()
Creates a new instance of MultivariateStudentTDistribution
|
PDF(double degreesOfFreedom,
Vector mean,
Matrix precision)
Creates a distribution with the given dimensionality.
|
PDF(int dimensionality)
Creates a distribution with the given dimensionality.
|
PDF(MultivariateStudentTDistribution other)
Copy constructor
|
| Modifier and Type | Method and Description |
|---|---|
java.lang.Double |
evaluate(Vector input)
Evaluates the function on the given input and returns the output.
|
java.lang.Double |
getLogDeterminantPrecision()
Getter for logDeterminantPrecision
|
MultivariateStudentTDistribution.PDF |
getProbabilityFunction()
Gets the distribution function associated with this Distribution,
either the PDF or PMF.
|
double |
logEvaluate(Vector input)
Evaluate the natural logarithm of the distribution function.
|
void |
setPrecision(Matrix precision)
Setter for precision
|
clone, convertFromVector, convertToVector, getCovariance, getDegreesOfFreedom, getInputDimensionality, getMean, getPrecision, sampleInto, setDegreesOfFreedom, setMeansample, sampleequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetMeanclone, convertFromVector, convertToVectorsample, sample, sampleIntogetInputDimensionalitypublic PDF()
public PDF(int dimensionality)
dimensionality - Dimensionality of the distribution.public PDF(double degreesOfFreedom,
Vector mean,
Matrix precision)
degreesOfFreedom - Degrees of freedom in the distribution, usually the number of
datapoints - 1, DOFs must be greater than zero.mean - Mean, or noncentrality parameter, of the distributionprecision - Precision, which is proportionate to the inverse of variance, of the
distribution, must be symmetric and positive definite.public PDF(MultivariateStudentTDistribution other)
other - MultivariateStudentTDistribution to copypublic MultivariateStudentTDistribution.PDF getProbabilityFunction()
ComputableDistributiongetProbabilityFunction in interface ComputableDistribution<Vector>getProbabilityFunction in interface ProbabilityDensityFunction<Vector>getProbabilityFunction in class MultivariateStudentTDistributionpublic double logEvaluate(Vector input)
ProbabilityFunctionlogEvaluate in interface ProbabilityFunction<Vector>input - The input to be evaluatedpublic java.lang.Double evaluate(Vector input)
Evaluatorpublic java.lang.Double getLogDeterminantPrecision()
public void setPrecision(Matrix precision)
MultivariateStudentTDistributionsetPrecision in class MultivariateStudentTDistributionprecision - Precision, which is proportionate to the inverse of variance, of the
distribution, must be symmetric and positive definite.