ObservationType
- Type of observationParameterType
- Type of parameters to inferpublic static class ImportanceSampling.DefaultUpdater<ObservationType,ParameterType> extends AbstractCloneableSerializable implements ImportanceSampling.Updater<ObservationType,ParameterType>
Modifier and Type | Field and Description |
---|---|
protected BayesianParameter<ParameterType,? extends ProbabilityFunction<ObservationType>,? extends ProbabilityFunction<ParameterType>> |
conjuctive
Defines the parameter that connects the conditional and prior
distributions.
|
Constructor and Description |
---|
DefaultUpdater()
Default constructor.
|
DefaultUpdater(BayesianParameter<ParameterType,? extends ProbabilityFunction<ObservationType>,? extends ProbabilityFunction<ParameterType>> conjuctive)
Creates a new instance of DefaultUpdater
|
Modifier and Type | Method and Description |
---|---|
double |
computeLogImportanceValue(ParameterType parameter)
Computes the parameter's importance weight.
|
double |
computeLogLikelihood(ParameterType parameter,
java.lang.Iterable<? extends ObservationType> data)
Computes the log likelihood of the data given the parameter
|
BayesianParameter<ParameterType,? extends ProbabilityFunction<ObservationType>,? extends ProbabilityFunction<ParameterType>> |
getConjuctive()
Getter for conjunctive
|
ParameterType |
makeProposal(java.util.Random random)
Samples from the parameter prior
|
void |
setConjuctive(BayesianParameter<ParameterType,? extends ProbabilityFunction<ObservationType>,? extends ProbabilityFunction<ParameterType>> conjuctive)
Setter for conjunctive
|
clone
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
clone
protected BayesianParameter<ParameterType,? extends ProbabilityFunction<ObservationType>,? extends ProbabilityFunction<ParameterType>> conjuctive
public DefaultUpdater()
public DefaultUpdater(BayesianParameter<ParameterType,? extends ProbabilityFunction<ObservationType>,? extends ProbabilityFunction<ParameterType>> conjuctive)
conjuctive
- Defines the parameter that connects the conditional and prior
distributions.public double computeLogLikelihood(ParameterType parameter, java.lang.Iterable<? extends ObservationType> data)
ImportanceSampling.Updater
computeLogLikelihood
in interface ImportanceSampling.Updater<ObservationType,ParameterType>
parameter
- Parameter to considerdata
- Data to considerpublic double computeLogImportanceValue(ParameterType parameter)
ImportanceSampling.Updater
computeLogImportanceValue
in interface ImportanceSampling.Updater<ObservationType,ParameterType>
parameter
- Parameter to considerpublic ParameterType makeProposal(java.util.Random random)
ImportanceSampling.Updater
makeProposal
in interface ImportanceSampling.Updater<ObservationType,ParameterType>
random
- Random number generator.public BayesianParameter<ParameterType,? extends ProbabilityFunction<ObservationType>,? extends ProbabilityFunction<ParameterType>> getConjuctive()
public void setConjuctive(BayesianParameter<ParameterType,? extends ProbabilityFunction<ObservationType>,? extends ProbabilityFunction<ParameterType>> conjuctive)
conjuctive
- Defines the parameter that connects the conditional and prior
distributions.