public static class LogNormalDistribution.CDF extends LogNormalDistribution implements SmoothCumulativeDistributionFunction
LogNormalDistribution.CDF, LogNormalDistribution.MaximumLikelihoodEstimator, LogNormalDistribution.PDF, LogNormalDistribution.WeightedMaximumLikelihoodEstimator
DEFAULT_LOG_NORMAL_MEAN, DEFAULT_LOG_NORMAL_VARIANCE, SQRT2PI
Constructor and Description |
---|
CDF()
Default constructor.
|
CDF(double logNormalMean,
double logNormalVariance)
Creates a new instance of LogNormalDistribution
|
CDF(LogNormalDistribution other)
Copy Constructor
|
Modifier and Type | Method and Description |
---|---|
java.lang.Double |
differentiate(java.lang.Double input)
Differentiates the output with respect to the input
|
double |
evaluate(double input)
Produces a double output for the given double input
|
java.lang.Double |
evaluate(java.lang.Double input)
Evaluates the function on the given input and returns the output.
|
static double |
evaluate(double x,
double logNormalMean,
double logNormalVariance)
Evaluates the Log-Normal CDF for the given input and parameters
|
double |
evaluateAsDouble(java.lang.Double input)
Evaluates the scalar function as a double.
|
LogNormalDistribution.CDF |
getCDF()
Gets the CDF of a scalar distribution.
|
LogNormalDistribution.PDF |
getDerivative()
Gets the closed-form derivative of the function.
|
convertFromVector, convertToVector, getEstimator, getLogNormalMean, getLogNormalVariance, getMaxSupport, getMeanAsDouble, getMinSupport, getProbabilityFunction, getVariance, sampleAsDouble, sampleInto, setLogNormalMean, setLogNormalVariance, toString
getMean, sampleAsDoubles, sampleInto
clone
sample, sample
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getMean, getProbabilityFunction, sampleAsDouble, sampleAsDoubles, sampleInto
getMaxSupport, getMeanAsDouble, getMinSupport, getVariance
sample, sample, sampleInto
clone, convertFromVector, convertToVector
public CDF()
public CDF(double logNormalMean, double logNormalVariance)
logNormalMean
- Mean of the underlying distribution, (-infinity,+infinity)logNormalVariance
- Variance of the underlying distribution, (0,infinity)public CDF(LogNormalDistribution other)
other
- LogNormalDistribution to copypublic double evaluate(double input)
UnivariateScalarFunction
evaluate
in interface UnivariateScalarFunction
input
- Input to the Evaluatorpublic static double evaluate(double x, double logNormalMean, double logNormalVariance)
x
- Input about which to compute the CDFlogNormalMean
- Mean of the underlying distribution, (-infinity,+infinity)logNormalVariance
- Variance of the underlying distribution, (0,infinity)public java.lang.Double evaluate(java.lang.Double input)
Evaluator
evaluate
in interface Evaluator<java.lang.Double,java.lang.Double>
evaluate
in interface ScalarFunction<java.lang.Double>
evaluate
in interface UnivariateScalarFunction
input
- The input to evaluate.public double evaluateAsDouble(java.lang.Double input)
ScalarFunction
evaluateAsDouble
in interface ScalarFunction<java.lang.Double>
evaluateAsDouble
in interface UnivariateScalarFunction
input
- The input value.public LogNormalDistribution.CDF getCDF()
UnivariateDistribution
getCDF
in interface ClosedFormUnivariateDistribution<java.lang.Double>
getCDF
in interface SmoothUnivariateDistribution
getCDF
in interface UnivariateDistribution<java.lang.Double>
getCDF
in class LogNormalDistribution
public LogNormalDistribution.PDF getDerivative()
ClosedFormDifferentiableEvaluator
getDerivative
in interface ClosedFormDifferentiableEvaluator<java.lang.Double,java.lang.Double,java.lang.Double>
getDerivative
in interface SmoothCumulativeDistributionFunction
public java.lang.Double differentiate(java.lang.Double input)
DifferentiableEvaluator
differentiate
in interface DifferentiableEvaluator<java.lang.Double,java.lang.Double,java.lang.Double>
input
- Input about which to compute the derivative