public static class LogNormalDistribution.CDF extends LogNormalDistribution implements SmoothCumulativeDistributionFunction
LogNormalDistribution.CDF, LogNormalDistribution.MaximumLikelihoodEstimator, LogNormalDistribution.PDF, LogNormalDistribution.WeightedMaximumLikelihoodEstimatorDEFAULT_LOG_NORMAL_MEAN, DEFAULT_LOG_NORMAL_VARIANCE, SQRT2PI| Constructor and Description |
|---|
CDF()
Default constructor.
|
CDF(double logNormalMean,
double logNormalVariance)
Creates a new instance of LogNormalDistribution
|
CDF(LogNormalDistribution other)
Copy Constructor
|
| Modifier and Type | Method and Description |
|---|---|
java.lang.Double |
differentiate(java.lang.Double input)
Differentiates the output with respect to the input
|
double |
evaluate(double input)
Produces a double output for the given double input
|
java.lang.Double |
evaluate(java.lang.Double input)
Evaluates the function on the given input and returns the output.
|
static double |
evaluate(double x,
double logNormalMean,
double logNormalVariance)
Evaluates the Log-Normal CDF for the given input and parameters
|
double |
evaluateAsDouble(java.lang.Double input)
Evaluates the scalar function as a double.
|
LogNormalDistribution.CDF |
getCDF()
Gets the CDF of a scalar distribution.
|
LogNormalDistribution.PDF |
getDerivative()
Gets the closed-form derivative of the function.
|
convertFromVector, convertToVector, getEstimator, getLogNormalMean, getLogNormalVariance, getMaxSupport, getMeanAsDouble, getMinSupport, getProbabilityFunction, getVariance, sampleAsDouble, sampleInto, setLogNormalMean, setLogNormalVariance, toStringgetMean, sampleAsDoubles, sampleIntoclonesample, sampleequals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetMean, getProbabilityFunction, sampleAsDouble, sampleAsDoubles, sampleIntogetMaxSupport, getMeanAsDouble, getMinSupport, getVariancesample, sample, sampleIntoclone, convertFromVector, convertToVectorpublic CDF()
public CDF(double logNormalMean,
double logNormalVariance)
logNormalMean - Mean of the underlying distribution, (-infinity,+infinity)logNormalVariance - Variance of the underlying distribution, (0,infinity)public CDF(LogNormalDistribution other)
other - LogNormalDistribution to copypublic double evaluate(double input)
UnivariateScalarFunctionevaluate in interface UnivariateScalarFunctioninput - Input to the Evaluatorpublic static double evaluate(double x,
double logNormalMean,
double logNormalVariance)
x - Input about which to compute the CDFlogNormalMean - Mean of the underlying distribution, (-infinity,+infinity)logNormalVariance - Variance of the underlying distribution, (0,infinity)public java.lang.Double evaluate(java.lang.Double input)
Evaluatorevaluate in interface Evaluator<java.lang.Double,java.lang.Double>evaluate in interface ScalarFunction<java.lang.Double>evaluate in interface UnivariateScalarFunctioninput - The input to evaluate.public double evaluateAsDouble(java.lang.Double input)
ScalarFunctionevaluateAsDouble in interface ScalarFunction<java.lang.Double>evaluateAsDouble in interface UnivariateScalarFunctioninput - The input value.public LogNormalDistribution.CDF getCDF()
UnivariateDistributiongetCDF in interface ClosedFormUnivariateDistribution<java.lang.Double>getCDF in interface SmoothUnivariateDistributiongetCDF in interface UnivariateDistribution<java.lang.Double>getCDF in class LogNormalDistributionpublic LogNormalDistribution.PDF getDerivative()
ClosedFormDifferentiableEvaluatorgetDerivative in interface ClosedFormDifferentiableEvaluator<java.lang.Double,java.lang.Double,java.lang.Double>getDerivative in interface SmoothCumulativeDistributionFunctionpublic java.lang.Double differentiate(java.lang.Double input)
DifferentiableEvaluatordifferentiate in interface DifferentiableEvaluator<java.lang.Double,java.lang.Double,java.lang.Double>input - Input about which to compute the derivative