InputType - The input type for the categorizer.EntryType - The type of weighted value entry in the categorizer's list of examples.public class KernelBinaryCategorizer<InputType,EntryType extends WeightedValue<? extends InputType>> extends AbstractDiscriminantBinaryCategorizer<InputType> implements KernelContainer<InputType>, ThresholdBinaryCategorizer<InputType>
KernelBinaryCategorizer class implements a binary
categorizer that uses a kernel to do its categorization. It is parameterized
by a kernel function, a list of examples and their weights, and a bias term.
This type of classifier represents what is learned by a standard Support
Vector Machine or the Kernel Perceptron.| Modifier and Type | Field and Description |
|---|---|
protected double |
bias
The bias term.
|
static double |
DEFAULT_BIAS
The default value for the bias is 0.0.
|
protected java.util.Collection<EntryType> |
examples
The list of weighted examples that are used for categorization.
|
protected Kernel<? super InputType> |
kernel
The internal kernel.
|
BINARY_CATEGORIES| Constructor and Description |
|---|
KernelBinaryCategorizer()
Creates a new instance of KernelBinaryCategorizer.
|
KernelBinaryCategorizer(Kernel<? super InputType> kernel)
Creates a new instance of KernelBinaryCategorizer with the given kernel.
|
KernelBinaryCategorizer(Kernel<? super InputType> kernel,
java.util.Collection<EntryType> examples,
double bias)
Creates a new instance of KernelBinaryCategorizer with the given kernel,
weighted examples, and bias.
|
KernelBinaryCategorizer(KernelBinaryCategorizer<InputType,? extends EntryType> other)
Creates a new copy of a KernelBinaryCategorizer.
|
| Modifier and Type | Method and Description |
|---|---|
double |
evaluateAsDouble(InputType input)
Categorizes the given input vector as a double by:
sum w_i * k(input, x_i)
|
double |
getBias()
Gets the bias term.
|
java.util.Collection<EntryType> |
getExamples()
Gets the list of weighted examples that categorizer is using.
|
Kernel<? super InputType> |
getKernel()
Gets the kernel.
|
double |
getThreshold()
Gets the threshold, which is the negative of the bias.
|
void |
setBias(double bias)
Sets the bias term.
|
void |
setExamples(java.util.Collection<EntryType> examples)
Sets the list of weighted examples that categorizer is using.
|
void |
setKernel(Kernel<? super InputType> kernel)
Sets the internal kernel.
|
void |
setThreshold(double threshold)
Sets the threshold, which is the negative of the bias.
|
evaluate, evaluateWithDiscriminantgetCategoriescloneequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitevaluateWithDiscriminantgetCategoriesclonepublic static final double DEFAULT_BIAS
protected java.util.Collection<EntryType extends WeightedValue<? extends InputType>> examples
protected double bias
public KernelBinaryCategorizer()
public KernelBinaryCategorizer(Kernel<? super InputType> kernel)
kernel - The kernel to use.public KernelBinaryCategorizer(Kernel<? super InputType> kernel, java.util.Collection<EntryType> examples, double bias)
kernel - The kernel to use.examples - The weighted examples.bias - The bias.public KernelBinaryCategorizer(KernelBinaryCategorizer<InputType,? extends EntryType> other)
other - The KernelBinaryCategorizer to copy.public double evaluateAsDouble(InputType input)
evaluateAsDouble in interface DiscriminantBinaryCategorizer<InputType>input - The input to categorize.public double getThreshold()
getThreshold in interface ThresholdBinaryCategorizer<InputType>public void setThreshold(double threshold)
setThreshold in interface ThresholdBinaryCategorizer<InputType>threshold - the threshold, which is the negative of the bias.public java.util.Collection<EntryType> getExamples()
public void setExamples(java.util.Collection<EntryType> examples)
examples - The list of weighted examples.public double getBias()
public void setBias(double bias)
bias - The bias term.public Kernel<? super InputType> getKernel()
KernelContainergetKernel in interface KernelContainer<InputType>