InputType - Type of inputs to the categorizer.CategoryType - Type of the categories of the categorizer.public static class DiscreteNaiveBayesCategorizer.Learner<InputType,CategoryType> extends AbstractCloneableSerializable implements SupervisedBatchLearner<java.util.Collection<InputType>,CategoryType,DiscreteNaiveBayesCategorizer<InputType,CategoryType>>
| Constructor and Description |
|---|
Learner()
Default constructor.
|
| Modifier and Type | Method and Description |
|---|---|
DiscreteNaiveBayesCategorizer<InputType,CategoryType> |
learn(java.util.Collection<? extends InputOutputPair<? extends java.util.Collection<InputType>,CategoryType>> data)
The
learn method creates an object of ResultType using
data of type DataType, using some form of "learning" algorithm. |
cloneequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitclonepublic DiscreteNaiveBayesCategorizer<InputType,CategoryType> learn(java.util.Collection<? extends InputOutputPair<? extends java.util.Collection<InputType>,CategoryType>> data)
BatchLearnerlearn method creates an object of ResultType using
data of type DataType, using some form of "learning" algorithm.learn in interface BatchLearner<java.util.Collection<? extends InputOutputPair<? extends java.util.Collection<InputType>,CategoryType>>,DiscreteNaiveBayesCategorizer<InputType,CategoryType>>data - The data that the learning algorithm will use to create an
object of ResultType.