DistributionType
- Type of Distribution in the mixturepublic static class MultivariateMixtureDensityModel.PDF<DistributionType extends ClosedFormComputableDistribution<Vector>> extends MultivariateMixtureDensityModel<DistributionType> implements ProbabilityDensityFunction<Vector>
MultivariateMixtureDensityModel.PDF<DistributionType extends ClosedFormComputableDistribution<Vector>>
distributions, priorWeights
Constructor and Description |
---|
PDF(java.util.Collection<? extends DistributionType> distributions)
Creates a new instance of MultivariateMixtureDensityModel
|
PDF(java.util.Collection<? extends DistributionType> distributions,
double[] priorWeights)
Creates a new instance of MultivariateMixtureDensityModel
|
PDF(MultivariateMixtureDensityModel<? extends DistributionType> other)
Copy Constructor
|
Modifier and Type | Method and Description |
---|---|
double[] |
computeRandomVariableLikelihoods(Vector input)
Computes the likelihoods of the underlying distributions
|
double[] |
computeRandomVariableProbabilities(Vector input)
Computes the probability distribution that the input was generated by
the underlying distributions
|
java.lang.Double |
evaluate(Vector input)
Evaluates the function on the given input and returns the output.
|
int |
getMostLikelyRandomVariable(Vector input)
Gets the index of the most-likely distribution, given the input.
|
MultivariateMixtureDensityModel.PDF<DistributionType> |
getProbabilityFunction()
Gets the distribution function associated with this Distribution,
either the PDF or PMF.
|
double |
logEvaluate(Vector input)
Evaluate the natural logarithm of the distribution function.
|
clone, convertFromVector, convertToVector, getMean
getDistributionCount, getDistributions, getPriorWeights, getPriorWeightSum, sample, sampleInto, setDistributions, setPriorWeights, toString
sample
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getMean
clone, convertFromVector, convertToVector
sample, sample, sampleInto
public PDF(java.util.Collection<? extends DistributionType> distributions)
distributions
- Underlying distributions from which we samplepublic PDF(java.util.Collection<? extends DistributionType> distributions, double[] priorWeights)
distributions
- Underlying distributions from which we samplepriorWeights
- Weights proportionate by which the distributions are sampledpublic PDF(MultivariateMixtureDensityModel<? extends DistributionType> other)
other
- MultivariateMixtureDensityModel to copypublic MultivariateMixtureDensityModel.PDF<DistributionType> getProbabilityFunction()
ComputableDistribution
getProbabilityFunction
in interface ComputableDistribution<Vector>
getProbabilityFunction
in interface ProbabilityDensityFunction<Vector>
getProbabilityFunction
in class MultivariateMixtureDensityModel<DistributionType extends ClosedFormComputableDistribution<Vector>>
public double logEvaluate(Vector input)
ProbabilityFunction
logEvaluate
in interface ProbabilityFunction<Vector>
input
- The input to be evaluatedpublic java.lang.Double evaluate(Vector input)
Evaluator
public double[] computeRandomVariableProbabilities(Vector input)
input
- Input to considerpublic double[] computeRandomVariableLikelihoods(Vector input)
input
- Input to considerpublic int getMostLikelyRandomVariable(Vector input)
input
- input to consider