ClusterType
- Type of Cluster<DataType>
used in theaceous learn()
method.DataType
- The algorithm operates on a Collection<DataType>
, so
DataType
will be something like Vector or String.public abstract class AbstractMinDistanceFixedClusterInitializer<ClusterType extends Cluster<DataType>,DataType> extends DefaultDivergenceFunctionContainer<DataType,DataType> implements FixedClusterInitializer<ClusterType,DataType>, Randomized
Modifier and Type | Field and Description |
---|---|
protected ClusterCreator<ClusterType,DataType> |
creator
The ClusterCreator to create the initial clusters from.
|
protected java.util.Random |
random
The random number generator to use.
|
divergenceFunction
Constructor and Description |
---|
AbstractMinDistanceFixedClusterInitializer()
Creates a new, empty instance of
AbstractMinDistanceFixedClusterInitializer . |
AbstractMinDistanceFixedClusterInitializer(DivergenceFunction<? super DataType,? super DataType> divergenceFunction,
ClusterCreator<ClusterType,DataType> creator,
java.util.Random random)
Creates a new instance of
AbstractMinDistanceFixedClusterInitializer . |
Modifier and Type | Method and Description |
---|---|
AbstractMinDistanceFixedClusterInitializer<ClusterType,DataType> |
clone()
This makes public the clone method on the
Object class and
removes the exception that it throws. |
ClusterCreator<ClusterType,DataType> |
getCreator()
Gets the cluster creator used to create the initial clusters.
|
java.util.Random |
getRandom()
Gets the random number generator used by this object.
|
java.util.ArrayList<ClusterType> |
initializeClusters(int numClusters,
java.util.Collection<? extends DataType> elements)
Initializes a given number of clusters from the given elements using the
greedy initialization algorithm.
|
protected abstract int |
selectNextClusterIndex(double[] minDistances,
boolean[] selected)
Select the index for the next cluster based on the given minimum
distances and array indicating which clusters have already been selected.
|
void |
setCreator(ClusterCreator<ClusterType,DataType> creator)
Sets the cluster creator used to create the initial clusters.
|
void |
setRandom(java.util.Random random)
Sets the random number generator used by this object.
|
getDivergenceFunction, setDivergenceFunction
protected ClusterCreator<ClusterType extends Cluster<DataType>,DataType> creator
protected java.util.Random random
public AbstractMinDistanceFixedClusterInitializer()
AbstractMinDistanceFixedClusterInitializer
.public AbstractMinDistanceFixedClusterInitializer(DivergenceFunction<? super DataType,? super DataType> divergenceFunction, ClusterCreator<ClusterType,DataType> creator, java.util.Random random)
AbstractMinDistanceFixedClusterInitializer
.divergenceFunction
- The divergence function to use.creator
- The cluster creator to use.random
- The random number generator to use.public AbstractMinDistanceFixedClusterInitializer<ClusterType,DataType> clone()
AbstractCloneableSerializable
Object
class and
removes the exception that it throws. Its default behavior is to
automatically create a clone of the exact type of object that the
clone is called on and to copy all primitives but to keep all references,
which means it is a shallow copy.
Extensions of this class may want to override this method (but call
super.clone()
to implement a "smart copy". That is, to target
the most common use case for creating a copy of the object. Because of
the default behavior being a shallow copy, extending classes only need
to handle fields that need to have a deeper copy (or those that need to
be reset). Some of the methods in ObjectUtil
may be helpful in
implementing a custom clone method.
Note: The contract of this method is that you must use
super.clone()
as the basis for your implementation.clone
in interface CloneableSerializable
clone
in class DefaultDivergenceFunctionContainer<DataType,DataType>
public java.util.ArrayList<ClusterType> initializeClusters(int numClusters, java.util.Collection<? extends DataType> elements)
initializeClusters
in interface FixedClusterInitializer<ClusterType extends Cluster<DataType>,DataType>
numClusters
- The number of clusters to create.elements
- The elements to create the clusters from.java.lang.IllegalArgumentException
- If numClusters is less than 0.java.lang.NullPointerException
- If elements is null.protected abstract int selectNextClusterIndex(double[] minDistances, boolean[] selected)
minDistances
- The array of minimum distances.selected
- The array corresponding to whether or not an item has already
been selected.public ClusterCreator<ClusterType,DataType> getCreator()
public void setCreator(ClusterCreator<ClusterType,DataType> creator)
creator
- The new cluster creator.public java.util.Random getRandom()
Randomized
getRandom
in interface Randomized
public void setRandom(java.util.Random random)
Randomized
setRandom
in interface Randomized
random
- The random number generator for this object to use.