public static class UnivariateGaussian.CDF.Inverse extends UnivariateGaussian implements UnivariateScalarFunction
UnivariateGaussian.CDF, UnivariateGaussian.ErrorFunction, UnivariateGaussian.IncrementalEstimator, UnivariateGaussian.MaximumLikelihoodEstimator, UnivariateGaussian.PDF, UnivariateGaussian.SufficientStatistic, UnivariateGaussian.WeightedMaximumLikelihoodEstimatorBIG_Z, DEFAULT_MEAN, DEFAULT_VARIANCE, mean, PI2, SQRT2, variance| Constructor and Description | 
|---|
| Inverse()Creates a new instance of UnivariateGaussian
 with zero mean and unit variance | 
| Inverse(double mean,
       double variance)Creates a new instance of UnivariateGaussian | 
| Inverse(UnivariateGaussian other)Copy constructor | 
| Modifier and Type | Method and Description | 
|---|---|
| double | evaluate(double p)Evaluates the Inverse UnivariateGaussian CDF for the given
 probability. | 
| java.lang.Double | evaluate(java.lang.Double input)Evaluates the function on the given input and returns the output. | 
| static double | evaluate(double p,
        double mean,
        double variance)Evaluates the Inverse UnivariateGaussian CDF for the given
 probability. | 
| double | evaluateAsDouble(java.lang.Double input)Evaluates the scalar function as a double. | 
clone, convertFromVector, convertToVector, convolve, getCDF, getEstimator, getMaxSupport, getMean, getMeanAsDouble, getMinSupport, getProbabilityFunction, getStandardDeviation, getVariance, sampleAsDouble, sampleInto, setMean, setVariance, times, toStringsampleAsDoubles, sampleIntosample, sampleequals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitsample, sample, sampleIntopublic Inverse()
public Inverse(double mean,
               double variance)
mean - First central moment (expectation) of the distributionvariance - Second central moment (square of standard deviation) of the distributionpublic Inverse(UnivariateGaussian other)
other - UnivariateGaussian to copypublic java.lang.Double evaluate(java.lang.Double input)
Evaluatorevaluate in interface Evaluator<java.lang.Double,java.lang.Double>evaluate in interface ScalarFunction<java.lang.Double>evaluate in interface UnivariateScalarFunctioninput - The input to evaluate.public double evaluateAsDouble(java.lang.Double input)
ScalarFunctionevaluateAsDouble in interface ScalarFunction<java.lang.Double>evaluateAsDouble in interface UnivariateScalarFunctioninput - The input value.public double evaluate(double p)
evaluate in interface UnivariateScalarFunctionp - Value at which to solve for x such that x=CDF(p)public static double evaluate(double p,
                              double mean,
                              double variance)
p - Value at which to solve for x such that x=CDF(p)mean - Mean of the distributionvariance - Variance of the distribution.