public static class UnivariateGaussian.PDF extends UnivariateGaussian implements UnivariateProbabilityDensityFunction
UnivariateGaussian.CDF, UnivariateGaussian.ErrorFunction, UnivariateGaussian.IncrementalEstimator, UnivariateGaussian.MaximumLikelihoodEstimator, UnivariateGaussian.PDF, UnivariateGaussian.SufficientStatistic, UnivariateGaussian.WeightedMaximumLikelihoodEstimatorBIG_Z, DEFAULT_MEAN, DEFAULT_VARIANCE, mean, PI2, SQRT2, variance| Constructor and Description |
|---|
PDF()
Creates a new instance of UnivariateGaussian
with zero mean and unit variance
|
PDF(double mean,
double variance)
Creates a new instance of UnivariateGaussian
|
PDF(UnivariateGaussian other)
Copy constructor
|
| Modifier and Type | Method and Description |
|---|---|
double |
evaluate(double input)
Produces a double output for the given double input
|
java.lang.Double |
evaluate(java.lang.Double input)
Evaluates the function on the given input and returns the output.
|
static double |
evaluate(double input,
double mean,
double variance)
Computes the value of the Probability Density Function at the input
|
double |
evaluateAsDouble(java.lang.Double input)
Evaluates the scalar function as a double.
|
UnivariateGaussian.PDF |
getProbabilityFunction()
Gets the distribution function associated with this Distribution,
either the PDF or PMF.
|
double |
logEvaluate(double input)
Evaluate the natural logarithm of the distribution function.
|
double |
logEvaluate(java.lang.Double input)
Evaluate the natural logarithm of the distribution function.
|
static double |
logEvaluate(double input,
double mean,
double variance)
Computes the natural logarithm of the pdf.
|
clone, convertFromVector, convertToVector, convolve, getCDF, getEstimator, getMaxSupport, getMean, getMeanAsDouble, getMinSupport, getStandardDeviation, getVariance, sampleAsDouble, sampleInto, setMean, setVariance, times, toStringsampleAsDoubles, sampleIntosample, sampleequals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetCDF, getMean, sampleAsDouble, sampleAsDoubles, sampleIntogetMaxSupport, getMeanAsDouble, getMinSupport, getVariancesample, sample, sampleIntoclone, convertFromVector, convertToVectorpublic PDF()
public PDF(double mean,
double variance)
mean - First central moment (expectation) of the distributionvariance - Second central moment (square of standard deviation) of the distributionpublic PDF(UnivariateGaussian other)
other - UnivariateGaussian to copypublic java.lang.Double evaluate(java.lang.Double input)
Evaluatorevaluate in interface Evaluator<java.lang.Double,java.lang.Double>evaluate in interface ScalarFunction<java.lang.Double>evaluate in interface UnivariateScalarFunctioninput - The input to evaluate.public double evaluateAsDouble(java.lang.Double input)
ScalarFunctionevaluateAsDouble in interface ScalarFunction<java.lang.Double>evaluateAsDouble in interface UnivariateScalarFunctioninput - The input value.public double evaluate(double input)
UnivariateScalarFunctionevaluate in interface UnivariateScalarFunctioninput - Input to the Evaluatorpublic static double evaluate(double input,
double mean,
double variance)
input - Input value to compute the PDF at, that is, p(input|mean,variance)mean - Mean of the distributionvariance - Variance of the distributionpublic double logEvaluate(java.lang.Double input)
ProbabilityFunctionlogEvaluate in interface ProbabilityFunction<java.lang.Double>input - The input to be evaluatedpublic double logEvaluate(double input)
UnivariateProbabilityDensityFunctionlogEvaluate in interface UnivariateProbabilityDensityFunctioninput - The input value.public static double logEvaluate(double input,
double mean,
double variance)
input - Input to consider.mean - Mean of the Gaussian.variance - Variance of the Gaussian.public UnivariateGaussian.PDF getProbabilityFunction()
ComputableDistributiongetProbabilityFunction in interface ComputableDistribution<java.lang.Double>getProbabilityFunction in interface ProbabilityDensityFunction<java.lang.Double>getProbabilityFunction in interface SmoothUnivariateDistributiongetProbabilityFunction in interface UnivariateProbabilityDensityFunctiongetProbabilityFunction in class UnivariateGaussian