DataType
- Type of Data sampled.@PublicationReference(author="Wikipedia", title="Importance Sampling", type=WebPage, year=2009, url="http://en.wikipedia.org/wiki/Importance_sampling") public class ImportanceSampler<DataType> extends AbstractCloneableSerializable implements MonteCarloSampler<DataType,WeightedValue<DataType>,Evaluator<? super DataType,java.lang.Double>>
Constructor and Description |
---|
ImportanceSampler()
Creates a new instance of ImportanceSampler
|
ImportanceSampler(ProbabilityDensityFunction<DataType> importanceDistribution)
Creates a new instance of ImportanceSampler.
|
Modifier and Type | Method and Description |
---|---|
ImportanceSampler<DataType> |
clone()
This makes public the clone method on the
Object class and
removes the exception that it throws. |
ProbabilityFunction<DataType> |
getImportanceDistribution()
Getter for importanceDistribution.
|
java.util.ArrayList<DefaultWeightedValue<DataType>> |
sample(Evaluator<? super DataType,java.lang.Double> targetFunction,
java.util.Random random,
int numSamples)
Draws samples according to the distribution of the target function.
|
void |
setImportanceDistribution(ProbabilityFunction<DataType> importanceDistribution)
Setter for importanceDistribution.
|
public ImportanceSampler()
public ImportanceSampler(ProbabilityDensityFunction<DataType> importanceDistribution)
importanceDistribution
- Importance distribution from which we sample and weight by the
target distribution.public ImportanceSampler<DataType> clone()
AbstractCloneableSerializable
Object
class and
removes the exception that it throws. Its default behavior is to
automatically create a clone of the exact type of object that the
clone is called on and to copy all primitives but to keep all references,
which means it is a shallow copy.
Extensions of this class may want to override this method (but call
super.clone()
to implement a "smart copy". That is, to target
the most common use case for creating a copy of the object. Because of
the default behavior being a shallow copy, extending classes only need
to handle fields that need to have a deeper copy (or those that need to
be reset). Some of the methods in ObjectUtil
may be helpful in
implementing a custom clone method.
Note: The contract of this method is that you must use
super.clone()
as the basis for your implementation.clone
in interface CloneableSerializable
clone
in class AbstractCloneableSerializable
public java.util.ArrayList<DefaultWeightedValue<DataType>> sample(Evaluator<? super DataType,java.lang.Double> targetFunction, java.util.Random random, int numSamples)
MonteCarloSampler
sample
in interface MonteCarloSampler<DataType,WeightedValue<DataType>,Evaluator<? super DataType,java.lang.Double>>
targetFunction
- Target function that we want to generate samples.random
- Random-number generator.numSamples
- Number of samples to generate.public ProbabilityFunction<DataType> getImportanceDistribution()
public void setImportanceDistribution(ProbabilityFunction<DataType> importanceDistribution)
importanceDistribution
- Importance distribution from which we sample and weight by the
target distribution.