public static class UniformDistribution.PDF extends UniformDistribution implements UnivariateProbabilityDensityFunction
UniformDistribution.CDF, UniformDistribution.MaximumLikelihoodEstimator, UniformDistribution.PDF
DEFAULT_MAX, DEFAULT_MIN
Constructor and Description |
---|
PDF()
Creates a new instance of PDF
|
PDF(double minSupport,
double maxSupport)
Creates a new instance of PDF
|
PDF(UniformDistribution other)
Copy constructor
|
Modifier and Type | Method and Description |
---|---|
double |
evaluate(double input)
Produces a double output for the given double input
|
java.lang.Double |
evaluate(java.lang.Double input)
Evaluates the function on the given input and returns the output.
|
static double |
evaluate(double input,
double minSupport,
double maxSupport)
Evaluates the Uniform(minSupport,maxSupport) PDF for the given input
|
double |
evaluateAsDouble(java.lang.Double input)
Evaluates the scalar function as a double.
|
UniformDistribution.PDF |
getProbabilityFunction()
Gets the distribution function associated with this Distribution,
either the PDF or PMF.
|
double |
logEvaluate(double input)
Evaluate the natural logarithm of the distribution function.
|
double |
logEvaluate(java.lang.Double input)
Evaluate the natural logarithm of the distribution function.
|
clone, convertFromVector, convertToVector, getCDF, getEstimator, getMaxSupport, getMeanAsDouble, getMinSupport, getVariance, sample, sampleInto, setMaxSupport, setMinSupport
getMean, sampleAsDouble, sampleAsDoubles, sampleInto
sample
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getCDF, getMean, sampleAsDouble, sampleAsDoubles, sampleInto
getMaxSupport, getMeanAsDouble, getMinSupport, getVariance
sample, sample, sampleInto
clone, convertFromVector, convertToVector
public PDF()
public PDF(double minSupport, double maxSupport)
minSupport
- Minimum x bound on the distributionmaxSupport
- Maximum bound on the distributionpublic PDF(UniformDistribution other)
other
- UniformDistribution to copypublic double evaluate(double input)
UnivariateScalarFunction
evaluate
in interface UnivariateScalarFunction
input
- Input to the Evaluatorpublic static double evaluate(double input, double minSupport, double maxSupport)
minSupport
- Minimum x bound on the distributionmaxSupport
- Maximum x bound on the distributioninput
- Input to evaluate the CDF atpublic java.lang.Double evaluate(java.lang.Double input)
Evaluator
evaluate
in interface Evaluator<java.lang.Double,java.lang.Double>
evaluate
in interface ScalarFunction<java.lang.Double>
evaluate
in interface UnivariateScalarFunction
input
- The input to evaluate.public double evaluateAsDouble(java.lang.Double input)
ScalarFunction
evaluateAsDouble
in interface ScalarFunction<java.lang.Double>
evaluateAsDouble
in interface UnivariateScalarFunction
input
- The input value.public double logEvaluate(java.lang.Double input)
ProbabilityFunction
logEvaluate
in interface ProbabilityFunction<java.lang.Double>
input
- The input to be evaluatedpublic double logEvaluate(double input)
UnivariateProbabilityDensityFunction
logEvaluate
in interface UnivariateProbabilityDensityFunction
input
- The input value.public UniformDistribution.PDF getProbabilityFunction()
ComputableDistribution
getProbabilityFunction
in interface ComputableDistribution<java.lang.Double>
getProbabilityFunction
in interface ProbabilityDensityFunction<java.lang.Double>
getProbabilityFunction
in interface SmoothUnivariateDistribution
getProbabilityFunction
in interface UnivariateProbabilityDensityFunction
getProbabilityFunction
in class UniformDistribution