@PublicationReference(title="Confidence-Weighted Linear Classification", author={"Mark Dredze","Koby Crammer","Fernando Pereira"}, year=2008, type=Conference, publication="International Conference on Machine Learning", url="http://portal.acm.org/citation.cfm?id=1390190") public class ConfidenceWeightedDiagonalVarianceProject extends ConfidenceWeightedDiagonalVariance
confidence, DEFAULT_CONFIDENCE, DEFAULT_DEFAULT_VARIANCE, defaultVariance, phi
Constructor and Description |
---|
ConfidenceWeightedDiagonalVarianceProject()
Creates a new
ConfidenceWeightedDiagonalVarianceProject with default
parameters. |
ConfidenceWeightedDiagonalVarianceProject(double confidence,
double defaultVariance)
Creates a new
ConfidenceWeightedDiagonalVarianceProject with the given
parameters. |
Modifier and Type | Method and Description |
---|---|
void |
update(DiagonalConfidenceWeightedBinaryCategorizer target,
Vector input,
boolean label)
Updates the target using the given input and associated label.
|
createInitialLearnedObject, getConfidence, getDefaultVariance, setConfidence, setDefaultVariance, update
update
clone, learn, learn, update
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
learn
learn
update
clone
public ConfidenceWeightedDiagonalVarianceProject()
ConfidenceWeightedDiagonalVarianceProject
with default
parameters.public ConfidenceWeightedDiagonalVarianceProject(double confidence, double defaultVariance)
ConfidenceWeightedDiagonalVarianceProject
with the given
parameters.confidence
- The confidence to use. Must be in [0, 1].defaultVariance
- The default value to initialize the covariance matrix to.public void update(DiagonalConfidenceWeightedBinaryCategorizer target, Vector input, boolean label)
ConfidenceWeightedDiagonalVariance
update
in class ConfidenceWeightedDiagonalVariance
target
- The target to update.input
- The supervised input value.label
- The output label associated with the input.