DataType
- Type of data generated by the distributionDistributionType
- Type of distribution to estimate the parameters of.public class DistributionParameterEstimator<DataType,DistributionType extends ClosedFormDistribution<? extends DataType>> extends AnytimeAlgorithmWrapper<DistributionType,FunctionMinimizer<Vector,java.lang.Double,? super DistributionParameterEstimator.DistributionWrapper>> implements BatchLearner<java.util.Collection<? extends DataType>,DistributionType>, MeasurablePerformanceAlgorithm
Modifier and Type | Class and Description |
---|---|
protected class |
DistributionParameterEstimator.DistributionWrapper
Maps the parameters of a Distribution and a CostFunction into a
Vector/Double Evaluator.
|
DEFAULT_ITERATION, iteration
Constructor and Description |
---|
DistributionParameterEstimator(DistributionType distribution,
CostFunction<? super DistributionType,java.util.Collection<? extends DataType>> costFunction)
Creates a new instance of DistributionParameterEstimator
|
DistributionParameterEstimator(DistributionType distribution,
CostFunction<? super DistributionType,java.util.Collection<? extends DataType>> costFunction,
FunctionMinimizer<Vector,java.lang.Double,? super DistributionParameterEstimator.DistributionWrapper> algorithm)
Creates a new instance of DistributionParameterEstimator
|
Modifier and Type | Method and Description |
---|---|
DistributionParameterEstimator<DataType,DistributionType> |
clone()
This makes public the clone method on the
Object class and
removes the exception that it throws. |
NamedValue<? extends java.lang.Number> |
getPerformance()
Gets the name-value pair that describes the current performance of the
algorithm.
|
DistributionType |
getResult()
Gets the current result of the algorithm.
|
DistributionType |
learn(java.util.Collection<? extends DataType> minimizationParameters)
The
learn method creates an object of ResultType using
data of type DataType , using some form of "learning" algorithm. |
algorithmEnded, algorithmStarted, getAlgorithm, getIteration, getMaxIterations, isResultValid, readResolve, setAlgorithm, setMaxIterations, stepEnded, stepStarted, stop
addIterativeAlgorithmListener, fireAlgorithmEnded, fireAlgorithmStarted, fireStepEnded, fireStepStarted, getListeners, removeIterativeAlgorithmListener, setIteration, setListeners
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
addIterativeAlgorithmListener, removeIterativeAlgorithmListener
public DistributionParameterEstimator(DistributionType distribution, CostFunction<? super DistributionType,java.util.Collection<? extends DataType>> costFunction)
distribution
- Distribution to estimate the parameters ofcostFunction
- Cost function to use in the minimization procedurepublic DistributionParameterEstimator(DistributionType distribution, CostFunction<? super DistributionType,java.util.Collection<? extends DataType>> costFunction, FunctionMinimizer<Vector,java.lang.Double,? super DistributionParameterEstimator.DistributionWrapper> algorithm)
distribution
- Distribution to estimate the parameters ofcostFunction
- Cost function to use in the minimization procedurealgorithm
- Minimization algorithm to use, such as FunctionMinimizerBFGS,
FunctionMinimizerDirectionSetPowell, etc.public DistributionParameterEstimator<DataType,DistributionType> clone()
AbstractCloneableSerializable
Object
class and
removes the exception that it throws. Its default behavior is to
automatically create a clone of the exact type of object that the
clone is called on and to copy all primitives but to keep all references,
which means it is a shallow copy.
Extensions of this class may want to override this method (but call
super.clone()
to implement a "smart copy". That is, to target
the most common use case for creating a copy of the object. Because of
the default behavior being a shallow copy, extending classes only need
to handle fields that need to have a deeper copy (or those that need to
be reset). Some of the methods in ObjectUtil
may be helpful in
implementing a custom clone method.
Note: The contract of this method is that you must use
super.clone()
as the basis for your implementation.clone
in interface CloneableSerializable
clone
in class AnytimeAlgorithmWrapper<DistributionType extends ClosedFormDistribution<? extends DataType>,FunctionMinimizer<Vector,java.lang.Double,? super DistributionParameterEstimator.DistributionWrapper>>
public DistributionType learn(java.util.Collection<? extends DataType> minimizationParameters)
BatchLearner
learn
method creates an object of ResultType
using
data of type DataType
, using some form of "learning" algorithm.learn
in interface BatchLearner<java.util.Collection<? extends DataType>,DistributionType extends ClosedFormDistribution<? extends DataType>>
minimizationParameters
- The data that the learning algorithm will use to create an
object of ResultType
.public DistributionType getResult()
AnytimeAlgorithm
getResult
in interface AnytimeAlgorithm<DistributionType extends ClosedFormDistribution<? extends DataType>>
public NamedValue<? extends java.lang.Number> getPerformance()
MeasurablePerformanceAlgorithm
getPerformance
in interface MeasurablePerformanceAlgorithm