- Cache(Matrix, Matrix, Vector, double) - Constructor for class gov.sandia.cognition.learning.function.cost.SumSquaredErrorCostFunction.Cache
-
Creates a new instance of Cache
- call() - Method in class gov.sandia.cognition.framework.concurrent.MultithreadedCognitiveModel.ModuleEvaluator
-
- call() - Method in class gov.sandia.cognition.learning.algorithm.clustering.ParallelizedKMeansClusterer.AssignDataToCluster
-
- call() - Method in class gov.sandia.cognition.learning.algorithm.clustering.ParallelizedKMeansClusterer.CreateClustersFromAssignments
-
- call() - Method in class gov.sandia.cognition.learning.algorithm.genetic.ParallelizedGeneticAlgorithm.EvaluateGenome
-
- call() - Method in class gov.sandia.cognition.learning.algorithm.hmm.ParallelBaumWelchAlgorithm.DistributionEstimatorTask
-
- call() - Method in class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel.ComputeTransitionsTask
-
- call() - Method in class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel.LogLikelihoodTask
-
- call() - Method in class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel.NormalizeTransitionTask
-
- call() - Method in class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel.ObservationLikelihoodTask
-
- call() - Method in class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel.StateObservationLikelihoodTask
-
- call() - Method in class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel.ViterbiTask
-
- call() - Method in class gov.sandia.cognition.learning.function.cost.ParallelizedCostFunctionContainer.SubCostEvaluate
-
- call() - Method in class gov.sandia.cognition.learning.function.cost.ParallelizedCostFunctionContainer.SubCostGradient
-
- call() - Method in class gov.sandia.cognition.learning.function.cost.ParallelNegativeLogLikelihood.NegativeLogLikelihoodTask
-
- call() - Method in class gov.sandia.cognition.statistics.bayesian.ParallelDirichletProcessMixtureModel.ClusterUpdaterTask
-
- call() - Method in class gov.sandia.cognition.statistics.bayesian.ParallelDirichletProcessMixtureModel.ObservationAssignmentTask
-
- call() - Method in class gov.sandia.cognition.statistics.distribution.StudentizedRangeDistribution.SampleRange
-
- call() - Method in class gov.sandia.cognition.statistics.method.MaximumLikelihoodDistributionEstimator.DistributionEstimationTask
-
- call() - Method in class gov.sandia.cognition.text.topic.ParallelLatentDirichletAllocationVectorGibbsSampler.DocumentSampleTask
-
- canExtract(File) - Method in class gov.sandia.cognition.text.document.extractor.AbstractDocumentExtractor
-
- canExtract(File) - Method in interface gov.sandia.cognition.text.document.extractor.DocumentExtractor
-
Determines if the given file can be extracted by this extractor.
- canExtract(URI) - Method in interface gov.sandia.cognition.text.document.extractor.DocumentExtractor
-
Determines if the given file can be extracted by this extractor.
- canExtract(URLConnection) - Method in interface gov.sandia.cognition.text.document.extractor.DocumentExtractor
-
Determines if the given file can be extracted by this extractor.
- canExtract(URI) - Method in class gov.sandia.cognition.text.document.extractor.TextDocumentExtractor
-
- canExtract(URLConnection) - Method in class gov.sandia.cognition.text.document.extractor.TextDocumentExtractor
-
- capitalizeFirstCharacter(String) - Static method in class gov.sandia.cognition.util.StringUtil
-
Capitalizes the first character of the given string.
- castOrCreateModel(Object) - Static method in class gov.sandia.cognition.framework.io.ModelFileHandler
-
Attempts to cast the given Object to a CognitiveModel.
- CategoricalDistribution - Class in gov.sandia.cognition.statistics.distribution
-
The Categorical Distribution is the multivariate generalization of the
Bernoulli distribution, where the outcome of an experiment is a one-of-N
output, where the output is a selector Vector.
- CategoricalDistribution() - Constructor for class gov.sandia.cognition.statistics.distribution.CategoricalDistribution
-
Creates a new instance of CategoricalDistribution
- CategoricalDistribution(int) - Constructor for class gov.sandia.cognition.statistics.distribution.CategoricalDistribution
-
Creates a new instance of CategoricalDistribution
- CategoricalDistribution(Vector) - Constructor for class gov.sandia.cognition.statistics.distribution.CategoricalDistribution
-
Creates a new instance of CategoricalDistribution
- CategoricalDistribution(CategoricalDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.CategoricalDistribution
-
Copy constructor
- CategoricalDistribution.PMF - Class in gov.sandia.cognition.statistics.distribution
-
PMF of the Categorical Distribution
- categories - Variable in class gov.sandia.cognition.learning.algorithm.tree.CategorizationTree
-
The list of possible output categories.
- categories - Variable in class gov.sandia.cognition.learning.algorithm.tree.VectorThresholdInformationGainLearner
-
The categories for the prior.
- categories - Variable in class gov.sandia.cognition.learning.function.categorization.AbstractCategorizer
-
The set of categories that are the possible output values of the
categorizer.
- CategorizationTree<InputType,OutputType> - Class in gov.sandia.cognition.learning.algorithm.tree
-
The CategorizationTree
class extends the DecisionTree
class
to implement a decision tree that does categorization.
- CategorizationTree() - Constructor for class gov.sandia.cognition.learning.algorithm.tree.CategorizationTree
-
Creates a new instance of CategorizationTree.
- CategorizationTree(DecisionTreeNode<InputType, OutputType>, Set<OutputType>) - Constructor for class gov.sandia.cognition.learning.algorithm.tree.CategorizationTree
-
Creates a new instance of CategorizationTree.
- CategorizationTreeLearner<InputType,OutputType> - Class in gov.sandia.cognition.learning.algorithm.tree
-
The CategorizationTreeLearner
class implements a supervised learning
algorithm for learning a categorization tree.
- CategorizationTreeLearner() - Constructor for class gov.sandia.cognition.learning.algorithm.tree.CategorizationTreeLearner
-
Creates a new instance of CategorizationTreeLearner.
- CategorizationTreeLearner(DeciderLearner<? super InputType, OutputType, ?, ?>) - Constructor for class gov.sandia.cognition.learning.algorithm.tree.CategorizationTreeLearner
-
Creates a new instance of CategorizationTreeLearner.
- CategorizationTreeLearner(DeciderLearner<? super InputType, OutputType, ?, ?>, int, int) - Constructor for class gov.sandia.cognition.learning.algorithm.tree.CategorizationTreeLearner
-
Creates a new instance of CategorizationTreeLearner.
- CategorizationTreeLearner(DeciderLearner<? super InputType, OutputType, ?, ?>, int, int, Map<OutputType, Double>) - Constructor for class gov.sandia.cognition.learning.algorithm.tree.CategorizationTreeLearner
-
Creates a new instance of CategorizationTreeLearner.
- CategorizationTreeNode<InputType,OutputType,InteriorType> - Class in gov.sandia.cognition.learning.algorithm.tree
-
The CategorizationTreeNode
implements a DecisionTreeNode
for
a tree that does categorization.
- CategorizationTreeNode() - Constructor for class gov.sandia.cognition.learning.algorithm.tree.CategorizationTreeNode
-
Creates a new instance of CategorizationTreeNode.
- CategorizationTreeNode(DecisionTreeNode<InputType, OutputType>, OutputType) - Constructor for class gov.sandia.cognition.learning.algorithm.tree.CategorizationTreeNode
-
Creates a new instance of CategorizationTreeNode.
- CategorizationTreeNode(DecisionTreeNode<InputType, OutputType>, OutputType, Object) - Constructor for class gov.sandia.cognition.learning.algorithm.tree.CategorizationTreeNode
-
Creates a new instance of CategorizationTreeNode.
- CategorizationTreeNode(DecisionTreeNode<InputType, OutputType>, Categorizer<? super InputType, ? extends InteriorType>, OutputType, Object) - Constructor for class gov.sandia.cognition.learning.algorithm.tree.CategorizationTreeNode
-
Creates a new instance of CategorizationTreeNode.
- Categorizer<InputType,CategoryType> - Interface in gov.sandia.cognition.learning.function.categorization
-
The Categorizer
interface defines the functionality of an
object that can take an input and evaluate what category out of a fixed
set of categories it belongs to.
- categorizer - Variable in class gov.sandia.cognition.learning.function.categorization.CompositeCategorizer
-
The categorizer.
- categorizers - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.BinaryCategorizerSelector
-
The collection of categorizers to evaluate and select from.
- CategoryBalancedBaggingLearner<InputType,CategoryType> - Class in gov.sandia.cognition.learning.algorithm.ensemble
-
An extension of the basic bagging learner that attempts to sample bags that
have equal numbers of examples from every category.
- CategoryBalancedBaggingLearner() - Constructor for class gov.sandia.cognition.learning.algorithm.ensemble.CategoryBalancedBaggingLearner
-
Creates a new instance of CategoryBalancedBaggingLearner.
- CategoryBalancedBaggingLearner(BatchLearner<? super Collection<? extends InputOutputPair<? extends InputType, CategoryType>>, ? extends Evaluator<? super InputType, ? extends CategoryType>>) - Constructor for class gov.sandia.cognition.learning.algorithm.ensemble.CategoryBalancedBaggingLearner
-
Creates a new instance of CategoryBalancedBaggingLearner.
- CategoryBalancedBaggingLearner(BatchLearner<? super Collection<? extends InputOutputPair<? extends InputType, CategoryType>>, ? extends Evaluator<? super InputType, ? extends CategoryType>>, int, double, Random) - Constructor for class gov.sandia.cognition.learning.algorithm.ensemble.CategoryBalancedBaggingLearner
-
Creates a new instance of CategoryBalancedBaggingLearner.
- CategoryBalancedIVotingLearner<InputType,CategoryType> - Class in gov.sandia.cognition.learning.algorithm.ensemble
-
An extension of IVoting for dealing with skew problems that makes sure that
there are an equal number of examples from each category in each sample that
an ensemble member is trained on.
- CategoryBalancedIVotingLearner() - Constructor for class gov.sandia.cognition.learning.algorithm.ensemble.CategoryBalancedIVotingLearner
-
Creates a new CategoryBalancedIVotingLearner
.
- CategoryBalancedIVotingLearner(BatchLearner<? super Collection<? extends InputOutputPair<? extends InputType, CategoryType>>, ? extends Evaluator<? super InputType, ? extends CategoryType>>, int, double, Random) - Constructor for class gov.sandia.cognition.learning.algorithm.ensemble.CategoryBalancedIVotingLearner
-
Creates a new CategoryBalancedIVotingLearner
.
- CategoryBalancedIVotingLearner(BatchLearner<? super Collection<? extends InputOutputPair<? extends InputType, CategoryType>>, ? extends Evaluator<? super InputType, ? extends CategoryType>>, int, double, double, boolean, Factory<? extends DataDistribution<CategoryType>>, Random) - Constructor for class gov.sandia.cognition.learning.algorithm.ensemble.CategoryBalancedIVotingLearner
-
Creates a new CategoryBalancedIVotingLearner
.
- categoryCounts - Variable in class gov.sandia.cognition.learning.algorithm.tree.VectorThresholdInformationGainLearner
-
The counts for each category.
- categoryList - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.CategoryBalancedBaggingLearner
-
The list of categories.
- categoryPairsToEvaluatorMap - Variable in class gov.sandia.cognition.learning.function.categorization.BinaryVersusCategorizer
-
Maps false-true category pairs .
- categoryPriors - Variable in class gov.sandia.cognition.learning.algorithm.tree.VectorThresholdInformationGainLearner
-
The priors for each category.
- categoryProbabilities - Variable in class gov.sandia.cognition.learning.algorithm.tree.VectorThresholdInformationGainLearner
-
Following is scratch space used when computing weighted
entropy.
- CauchyDistribution - Class in gov.sandia.cognition.statistics.distribution
-
A Cauchy Distribution is the ratio of two Gaussian Distributions, sometimes
known as the Lorentz distribution.
- CauchyDistribution() - Constructor for class gov.sandia.cognition.statistics.distribution.CauchyDistribution
-
Creates a new instance of CauchyDistribution
- CauchyDistribution(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.CauchyDistribution
-
Creates a new instance of CauchyDistribution
- CauchyDistribution(CauchyDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.CauchyDistribution
-
Copy constructor
- CauchyDistribution.CDF - Class in gov.sandia.cognition.statistics.distribution
-
CDF of the CauchyDistribution.
- CauchyDistribution.PDF - Class in gov.sandia.cognition.statistics.distribution
-
PDF of the CauchyDistribution.
- cdf - Variable in class gov.sandia.cognition.learning.function.scalar.KolmogorovSmirnovEvaluator
-
The cumulative distribution function to base the evaluator on.
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.BernoulliDistribution.CDF
-
Default constructor
- CDF(double) - Constructor for class gov.sandia.cognition.statistics.distribution.BernoulliDistribution.CDF
-
Creates a new instance of PMF
- CDF(BernoulliDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.BernoulliDistribution.CDF
-
Copy constructor
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.BetaBinomialDistribution.CDF
-
Creates a new instance of BetaBinomialDistribution
- CDF(int, double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.BetaBinomialDistribution.CDF
-
Creates a new instance of BetaBinomialDistribution
- CDF(BetaBinomialDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.BetaBinomialDistribution.CDF
-
Copy constructor
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.BetaDistribution.CDF
-
Default constructor.
- CDF(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.BetaDistribution.CDF
-
Creates a new CDF
- CDF(BetaDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.BetaDistribution.CDF
-
Copy constructor
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.BinomialDistribution.CDF
-
Default constructor.
- CDF(int, double) - Constructor for class gov.sandia.cognition.statistics.distribution.BinomialDistribution.CDF
-
Creates a new instance of BinomialDistribution
- CDF(BinomialDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.BinomialDistribution.CDF
-
Creates a new instance of CDF
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.CauchyDistribution.CDF
-
Creates a new instance of CauchyDistribution
- CDF(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.CauchyDistribution.CDF
-
Creates a new instance of CauchyDistribution
- CDF(CauchyDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.CauchyDistribution.CDF
-
Copy constructor
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.ChiSquareDistribution.CDF
-
Default constructor.
- CDF(double) - Constructor for class gov.sandia.cognition.statistics.distribution.ChiSquareDistribution.CDF
-
Creates a new instance of ChiSquareDistribution
- CDF(ChiSquareDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.ChiSquareDistribution.CDF
-
Copy constructor
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.DeterministicDistribution.CDF
-
Creates a new instance of DeterministicDistribution
- CDF(double) - Constructor for class gov.sandia.cognition.statistics.distribution.DeterministicDistribution.CDF
-
Creates a new instance of DeterministicDistribution
- CDF(DeterministicDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.DeterministicDistribution.CDF
-
Copy Constructor
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.ExponentialDistribution.CDF
-
Default constructor.
- CDF(double) - Constructor for class gov.sandia.cognition.statistics.distribution.ExponentialDistribution.CDF
-
Creates a new instance of CDF
- CDF(ExponentialDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.ExponentialDistribution.CDF
-
Copy constructor
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.GammaDistribution.CDF
-
Default constructor.
- CDF(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.GammaDistribution.CDF
-
Creates a new instance of CDF
- CDF(GammaDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.GammaDistribution.CDF
-
Copy constructor
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.GeometricDistribution.CDF
-
Creates a new instance of GeometricDistribution
- CDF(double) - Constructor for class gov.sandia.cognition.statistics.distribution.GeometricDistribution.CDF
-
Creates a new instance of GeometricDistribution
- CDF(GeometricDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.GeometricDistribution.CDF
-
Copy constructor
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.InverseGammaDistribution.CDF
-
Default constructor
- CDF(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.InverseGammaDistribution.CDF
-
Creates a new instance of InverseGammaDistribution
- CDF(InverseGammaDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.InverseGammaDistribution.CDF
-
Copy constructor
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.KolmogorovDistribution.CDF
-
Creates a new instance of CDF
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.LaplaceDistribution.CDF
-
Creates a new instance of LaplaceDistribution.CDF
- CDF(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.LaplaceDistribution.CDF
-
Creates a new instance of LaplaceDistribution.CDF
- CDF(LaplaceDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.LaplaceDistribution.CDF
-
Copy Constructor
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.LogisticDistribution.CDF
-
Default constructor
- CDF(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.LogisticDistribution.CDF
-
Creates a new instance of CDF
- CDF(LogisticDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.LogisticDistribution.CDF
-
Copy constructor
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.LogNormalDistribution.CDF
-
Default constructor.
- CDF(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.LogNormalDistribution.CDF
-
Creates a new instance of LogNormalDistribution
- CDF(LogNormalDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.LogNormalDistribution.CDF
-
Copy Constructor
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.NegativeBinomialDistribution.CDF
-
Creates a new instance of CDF
- CDF(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.NegativeBinomialDistribution.CDF
-
Creates a new instance of CDF
- CDF(NegativeBinomialDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.NegativeBinomialDistribution.CDF
-
Copy constructor
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.ParetoDistribution.CDF
-
Creates a new instance of CDF
- CDF(double, double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.ParetoDistribution.CDF
-
Creates a new instance of CDF
- CDF(ParetoDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.ParetoDistribution.CDF
-
Copy constructor
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.PoissonDistribution.CDF
-
Default constructor.
- CDF(double) - Constructor for class gov.sandia.cognition.statistics.distribution.PoissonDistribution.CDF
-
Creates a new CDF
- CDF(PoissonDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.PoissonDistribution.CDF
-
Copy constructor
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarDataDistribution.CDF
-
Default constructor
- CDF(ScalarDataDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarDataDistribution.CDF
-
Copy constructor
- CDF(Iterable<? extends Number>) - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarDataDistribution.CDF
-
Creates a new instance of PMF
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel.CDF
-
Creates a new instance of ScalarMixtureDensityModel
- CDF(SmoothUnivariateDistribution...) - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel.CDF
-
Creates a new instance of ScalarMixtureDensityModel
- CDF(Collection<? extends SmoothUnivariateDistribution>) - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel.CDF
-
Creates a new instance of ScalarMixtureDensityModel
- CDF(Collection<? extends SmoothUnivariateDistribution>, double[]) - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel.CDF
-
Creates a new instance of ScalarMixtureDensityModel
- CDF(ScalarMixtureDensityModel) - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel.CDF
-
Copy constructor
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.SnedecorFDistribution.CDF
-
Default constructor
- CDF(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.SnedecorFDistribution.CDF
-
Creates a new instance of CumulativeDistribution
- CDF(SnedecorFDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.SnedecorFDistribution.CDF
-
Copy Constructor
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.StudentizedRangeDistribution.CDF
-
Default constructor
- CDF(int, double) - Constructor for class gov.sandia.cognition.statistics.distribution.StudentizedRangeDistribution.CDF
-
Creates a new instance of StudentizedRangeDistribution
- CDF(StudentizedRangeDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.StudentizedRangeDistribution.CDF
-
Copy constructor
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.StudentTDistribution.CDF
-
Default constructor.
- CDF(double) - Constructor for class gov.sandia.cognition.statistics.distribution.StudentTDistribution.CDF
-
Creates a new instance of CDF
- CDF(double, double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.StudentTDistribution.CDF
-
Creates a new instance of PDF
- CDF(StudentTDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.StudentTDistribution.CDF
-
Creates a new instance of CDF
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.UniformDistribution.CDF
-
Creates a new instance of CDF
- CDF(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.UniformDistribution.CDF
-
Creates a new instance of CDF
- CDF(UniformDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.UniformDistribution.CDF
-
Copy constructor
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.UniformIntegerDistribution.CDF
-
- CDF(int, int) - Constructor for class gov.sandia.cognition.statistics.distribution.UniformIntegerDistribution.CDF
-
- CDF(UniformIntegerDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.UniformIntegerDistribution.CDF
-
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.CDF
-
Creates a new instance of UnivariateGaussian
with zero mean and unit variance
- CDF(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.CDF
-
Creates a new instance of UnivariateGaussian
- CDF(UnivariateGaussian) - Constructor for class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.CDF
-
Copy constructor
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.WeibullDistribution.CDF
-
Creates a new instance of WeibullDistribution
- CDF(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.WeibullDistribution.CDF
-
Creates a new instance of WeibullDistribution
- CDF(WeibullDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.WeibullDistribution.CDF
-
Copy constructor
- CDF() - Constructor for class gov.sandia.cognition.statistics.distribution.YuleSimonDistribution.CDF
-
Creates a new instance of YuleSimonDistribution
- CDF(double) - Constructor for class gov.sandia.cognition.statistics.distribution.YuleSimonDistribution.CDF
-
Creates a new instance of YuleSimonDistribution
- CDF(YuleSimonDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.YuleSimonDistribution.CDF
-
Copy constructor
- centerData - Variable in class gov.sandia.cognition.learning.algorithm.pca.KernelPrincipalComponentsAnalysis
-
Whether or not the data should be centered before doing KPCA.
- centerData - Variable in class gov.sandia.cognition.learning.algorithm.pca.KernelPrincipalComponentsAnalysis.Function
-
A flag indicating if the incoming data needs to be centered or not.
- centerWeightsRange() - Method in class gov.sandia.cognition.text.algorithm.ValenceSpreader
-
This algorithm only works when there are some negative scores and some
positive scores.
- centroid - Variable in class gov.sandia.cognition.learning.algorithm.clustering.cluster.CentroidCluster
-
The center of the cluster.
- CentroidCluster<ClusterType> - Class in gov.sandia.cognition.learning.algorithm.clustering.cluster
-
The CentroidCluster class extends the default cluster to contain a central
element.
- CentroidCluster() - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.cluster.CentroidCluster
-
Creates a new instance of CentroidCluster.
- CentroidCluster(ClusterType) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.cluster.CentroidCluster
-
Creates a new instance of CentroidCluster.
- CentroidCluster(int, ClusterType) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.cluster.CentroidCluster
-
Creates a new instance of CentroidCluster.
- CentroidCluster(ClusterType, Collection<? extends ClusterType>) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.cluster.CentroidCluster
-
Creates a new instance of CentroidCluster.
- CentroidCluster(int, ClusterType, Collection<? extends ClusterType>) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.cluster.CentroidCluster
-
Creates a new instance of CentroidCluster.
- CentroidClusterDivergenceFunction<DataType> - Class in gov.sandia.cognition.learning.algorithm.clustering.divergence
-
The CentroidClusterDivergenceFunction class implements a divergence function
between a cluster and an object by computing the divergence between the
center of the cluster and the object.
- CentroidClusterDivergenceFunction(DivergenceFunction<? super DataType, ? super DataType>) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.divergence.CentroidClusterDivergenceFunction
-
Creates a new instance of CentroidClusterDivergenceFunction.
- changedCount - Variable in class gov.sandia.cognition.learning.algorithm.clustering.AffinityPropagation
-
The number of examples that have changed assignments in the last
iteration.
- changeOfLogLikelihood - Variable in class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis
-
The change in log-likelihood of the algorithm from the current
iteration.
- ChebyshevDistanceMetric - Class in gov.sandia.cognition.learning.function.distance
-
An implementation of the Chebyshev distance, which is the absolute value of
the largest difference between two vectors in a single dimension.
- ChebyshevDistanceMetric() - Constructor for class gov.sandia.cognition.learning.function.distance.ChebyshevDistanceMetric
-
Creates a new ChebyshevDistanceMetric
.
- ChebyshevInequality - Class in gov.sandia.cognition.statistics.method
-
Computes the Chebyshev Inequality for the given level of confidence.
- ChebyshevInequality() - Constructor for class gov.sandia.cognition.statistics.method.ChebyshevInequality
-
Creates a new instance of ChebyshevInequality
- checkConfidence(double) - Static method in class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrixConfidenceInterval
-
Checks to make sure that confidence is between 0.0 and 1.0.
- checkedAdd(int, int) - Static method in class gov.sandia.cognition.math.MathUtil
-
Safely checks for underflow/overflow before adding two integers.
- checkedMultiply(int, int) - Static method in class gov.sandia.cognition.math.MathUtil
-
Safely checks for overflow before multiplying two integers.
- checkMultiplicationDimensions(Matrix) - Method in class gov.sandia.cognition.math.matrix.AbstractMatrix
-
- checkMultiplicationDimensions(Matrix) - Method in interface gov.sandia.cognition.math.matrix.Matrix
-
Checks to see if the dimensions are appropriate for:
this.times( postMultiplicationMatrix )
- checkNumFolds(int) - Static method in class gov.sandia.cognition.learning.experiment.CrossFoldCreator
-
Checks the given number of folds to make sure that it is greater than
1.
- checkSameDimensionality(Vector) - Method in class gov.sandia.cognition.math.matrix.AbstractVector
-
- checkSameDimensionality(Vector) - Method in interface gov.sandia.cognition.math.matrix.Vector
-
Determines if this
and other
have the same
number of dimensions (size)
- checkSameDimensions(Matrix) - Method in class gov.sandia.cognition.math.matrix.AbstractMatrix
-
- checkSameDimensions(Matrix) - Method in interface gov.sandia.cognition.math.matrix.Matrix
-
Checks to see if the dimensions are the same between this
and otherMatrix
- checkTrainingPercent(double) - Static method in class gov.sandia.cognition.learning.data.RandomDataPartitioner
-
Checks to make sure the training percent greater than 0.0 and less than
1.0.
- child - Variable in class gov.sandia.cognition.math.Combinations.AbstractCombinationsIterator
-
Child iterator for recursion
- childMap - Variable in class gov.sandia.cognition.learning.algorithm.tree.AbstractDecisionTreeNode
-
The mapping of decider decision values to child nodes.
- children - Variable in class gov.sandia.cognition.learning.algorithm.clustering.hierarchy.DefaultClusterHierarchyNode
-
The list of children.
- children - Variable in class gov.sandia.cognition.math.geometry.Quadtree.Node
-
The list of children for this node.
- childrenDivergence - Variable in class gov.sandia.cognition.learning.algorithm.clustering.AgglomerativeClusterer.HierarchyNode
-
The divergence between the two children, if they exist.
- ChineseRestaurantProcess - Class in gov.sandia.cognition.statistics.distribution
-
A Chinese Restaurant Process is a discrete stochastic processes that
partitions data points to clusters.
- ChineseRestaurantProcess() - Constructor for class gov.sandia.cognition.statistics.distribution.ChineseRestaurantProcess
-
Creates a new instance of ChineseRestaurantProcess
- ChineseRestaurantProcess(double, int) - Constructor for class gov.sandia.cognition.statistics.distribution.ChineseRestaurantProcess
-
Creates a new instance of ChineseRestaurantProcess
- ChineseRestaurantProcess(ChineseRestaurantProcess) - Constructor for class gov.sandia.cognition.statistics.distribution.ChineseRestaurantProcess
-
Default constructor
- ChineseRestaurantProcess.PMF - Class in gov.sandia.cognition.statistics.distribution
-
PMF of the Chinese Restaurant Process
- ChiSquareConfidence - Class in gov.sandia.cognition.statistics.method
-
This is the chi-square goodness-of-fit test.
- ChiSquareConfidence() - Constructor for class gov.sandia.cognition.statistics.method.ChiSquareConfidence
-
Creates a new instance of ChiSquareConfidence
- ChiSquareConfidence.Statistic - Class in gov.sandia.cognition.statistics.method
-
Confidence Statistic for a chi-square test
- ChiSquareDistribution - Class in gov.sandia.cognition.statistics.distribution
-
Describes a Chi-Square Distribution.
- ChiSquareDistribution() - Constructor for class gov.sandia.cognition.statistics.distribution.ChiSquareDistribution
-
Default constructor.
- ChiSquareDistribution(double) - Constructor for class gov.sandia.cognition.statistics.distribution.ChiSquareDistribution
-
Creates a new instance of ChiSquareDistribution
- ChiSquareDistribution(ChiSquareDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.ChiSquareDistribution
-
Copy constructor
- ChiSquareDistribution.CDF - Class in gov.sandia.cognition.statistics.distribution
-
Cumulative Distribution Function (CDF) of a Chi-Square Distribution
- ChiSquareDistribution.PDF - Class in gov.sandia.cognition.statistics.distribution
-
PDF of the Chi-Square distribution
- ChiSquaredSimilarity - Class in gov.sandia.cognition.statistics
-
A class for computing the chi-squared similarity between two vectors.
- ChiSquaredSimilarity(Vector, Vector) - Constructor for class gov.sandia.cognition.statistics.ChiSquaredSimilarity
-
Basic constructor.
- CholeskyDecompositionMTJ - Class in gov.sandia.cognition.math.matrix.mtj.decomposition
-
Computes the Cholesky decomposition of the symmetric positive definite
matrix.
- chooseChild(InputType) - Method in class gov.sandia.cognition.learning.algorithm.tree.AbstractDecisionTreeNode
-
- chooseChild(InputType) - Method in interface gov.sandia.cognition.learning.algorithm.tree.DecisionTreeNode
-
Chooses the child node corresponding to the given input.
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.AbstractAnytimeBatchLearner
-
Called to clean up the learning algorithm's state after learning has
finished.
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.annealing.SimulatedAnnealer
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.clustering.AffinityPropagation
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.clustering.AgglomerativeClusterer
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.clustering.DBSCANClusterer
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.clustering.KMeansClusterer
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.clustering.MiniBatchKMeansClusterer
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractBaggingLearner
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.ensemble.AdaBoost
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.ensemble.CategoryBalancedBaggingLearner
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.ensemble.MultiCategoryAdaBoost
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachineAlternatingLeastSquares
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachineStochasticGradient
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.genetic.GeneticAlgorithm
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.hmm.BaumWelchAlgorithm
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerConjugateGradient
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerDirectionSetPowell
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerGradientDescent
-
Called to clean up the learning algorithm's state after learning has
finished.
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerNelderMead
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerQuasiNewton
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.AbstractAnytimeLineMinimizer
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.pca.GeneralizedHebbianAlgorithm
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.perceptron.BatchMultiPerceptron
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelAdatron
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelPerceptron
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.perceptron.Perceptron
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.regression.FletcherXuHybridEstimation
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.regression.GaussNewtonAlgorithm
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.regression.KernelBasedIterativeRegression
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.regression.KernelWeightedRobustRegression
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.regression.LevenbergMarquardtEstimation
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.regression.LogisticRegression
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.root.AbstractBracketedRootFinder
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.root.RootBracketExpander
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.root.RootFinderNewtonsMethod
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.svm.PrimalEstimatedSubGradient
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.svm.SequentialMinimalOptimization
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.statistics.bayesian.AbstractMarkovChainMonteCarlo
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.statistics.distribution.MixtureOfGaussians.EMLearner
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel.EMLearner
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.text.topic.LatentDirichletAllocationVectorGibbsSampler
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.text.topic.ParallelLatentDirichletAllocationVectorGibbsSampler
-
- cleanupAlgorithm() - Method in class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis
-
- clear() - Method in class gov.sandia.cognition.collection.AbstractScalarMap
-
- clear() - Method in class gov.sandia.cognition.collection.DefaultIndexer
-
- clear() - Method in class gov.sandia.cognition.collection.DynamicArrayMap
-
Runs in O(n).
- clear() - Method in class gov.sandia.cognition.collection.FiniteCapacityBuffer
-
- clear() - Method in interface gov.sandia.cognition.collection.Indexer
-
Clears the contents of this index.
- clear() - Method in interface gov.sandia.cognition.collection.NumericMap
-
Removes all elements from the map.
- clear() - Method in class gov.sandia.cognition.framework.lite.CognitiveModelLiteState
-
Clears this CognitiveModelLite state, resetting it to being
uninitialized.
- clear() - Method in class gov.sandia.cognition.framework.lite.CogxelStateLite
-
Clears all of the Cogxels in this CogxelState.
- clear() - Method in class gov.sandia.cognition.graph.DenseMemoryGraph
-
- clear() - Method in interface gov.sandia.cognition.graph.DirectedNodeEdgeGraph
-
Clears the graph back to the original, empty state
- clear() - Method in class gov.sandia.cognition.graph.GraphMetrics
-
Clears all cached metrics for the originally input graph.
- clear() - Method in class gov.sandia.cognition.graph.WeightedDenseMemoryGraph
-
- clear() - Method in interface gov.sandia.cognition.learning.performance.categorization.ConfusionMatrix
-
Empties out all the data in this confusion matrix.
- clear() - Method in class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrix
-
- clear() - Method in class gov.sandia.cognition.learning.performance.categorization.DefaultConfusionMatrix
-
- clear() - Method in class gov.sandia.cognition.math.RingAccumulator
-
Clears the accumulator.
- clear() - Method in class gov.sandia.cognition.statistics.distribution.DefaultDataDistribution
-
- clear() - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.SufficientStatistic
-
Resets this set of sufficient statistics to its empty state.
- clear() - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.SufficientStatisticCovarianceInverse
-
Resets this set of sufficient statistics to its empty state.
- clear() - Method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.SufficientStatistic
-
Resets this set of sufficient statistics to its empty state.
- clearLabels() - Method in class gov.sandia.cognition.graph.inference.GraphWrappingEnergyFunction
-
Clears labels previously set.
- clearStoredCosts() - Method in class gov.sandia.cognition.graph.inference.CostSpeedupEnergyFunction
-
Clears the pre-computed costs that were stored to keep from calling log
and potential each time.
- clone() - Method in class gov.sandia.cognition.algorithm.AbstractIterativeAlgorithm
-
- clone() - Method in class gov.sandia.cognition.algorithm.AbstractParallelAlgorithm
-
- clone() - Method in class gov.sandia.cognition.algorithm.AnytimeAlgorithmWrapper
-
- clone() - Method in class gov.sandia.cognition.collection.AbstractLogNumberMap
-
- clone() - Method in class gov.sandia.cognition.collection.AbstractMutableDoubleMap
-
- clone() - Method in class gov.sandia.cognition.collection.AbstractScalarMap
-
- clone() - Method in class gov.sandia.cognition.collection.DefaultIndexer
-
- clone() - Method in class gov.sandia.cognition.collection.DynamicArrayMap
-
Creates a new clone (shallow copy) of this object.
- clone() - Method in class gov.sandia.cognition.collection.FiniteCapacityBuffer
-
- clone() - Method in class gov.sandia.cognition.collection.IntegerSpan
-
- clone() - Method in class gov.sandia.cognition.data.convert.IdentityDataConverter
-
- clone() - Method in class gov.sandia.cognition.evaluator.AbstractStatefulEvaluator
-
- clone() - Method in class gov.sandia.cognition.evaluator.CompositeEvaluatorList
-
- clone() - Method in class gov.sandia.cognition.evaluator.IdentityEvaluator
-
- clone() - Method in class gov.sandia.cognition.evaluator.ValueClamper
-
- clone() - Method in class gov.sandia.cognition.evaluator.ValueMapper
-
- clone() - Method in class gov.sandia.cognition.factory.ConstructorBasedFactory
-
- clone() - Method in class gov.sandia.cognition.factory.PrototypeFactory
-
Clones this PrototypeFactory
.
- clone() - Method in interface gov.sandia.cognition.framework.CognitiveModelState
-
A deep copy clone of this state.
- clone() - Method in interface gov.sandia.cognition.framework.CognitiveModuleState
-
Performs a deep copy of the state.
- clone() - Method in interface gov.sandia.cognition.framework.Cogxel
-
Clones the Cogxel.
- clone() - Method in interface gov.sandia.cognition.framework.CogxelState
-
Clones this Cogxel state, returning a deep copy of the Cogxels.
- clone() - Method in class gov.sandia.cognition.framework.DefaultCogxel
-
This makes public the clone method on the Object
class and
removes the exception that it throws.
- clone() - Method in class gov.sandia.cognition.framework.DefaultSemanticIdentifierMap
-
- clone() - Method in class gov.sandia.cognition.framework.learning.converter.AbstractCogxelConverter
-
- clone() - Method in class gov.sandia.cognition.framework.learning.converter.AbstractCogxelPairConverter
-
- clone() - Method in class gov.sandia.cognition.framework.learning.converter.CogxelBooleanConverter
-
- clone() - Method in interface gov.sandia.cognition.framework.learning.converter.CogxelConverter
-
Creates a new clone (shallow copy) of this object.
- clone() - Method in class gov.sandia.cognition.framework.learning.converter.CogxelDoubleConverter
-
Creates a new clone (shallow copy) of this object.
- clone() - Method in class gov.sandia.cognition.framework.learning.converter.CogxelMatrixConverter
-
Creates a new clone (shallow copy) of this object.
- clone() - Method in class gov.sandia.cognition.framework.learning.converter.CogxelVectorCollectionConverter
-
Creates a new clone (shallow copy) of this object.
- clone() - Method in class gov.sandia.cognition.framework.learning.converter.CogxelVectorConverter
-
This makes public the clone method on the Object
class and
removes the exception that it throws.
- clone() - Method in class gov.sandia.cognition.framework.learning.converter.CogxelWeightedInputOutputPairConverter
-
Creates a new clone (shallow copy) of this object.
- clone() - Method in class gov.sandia.cognition.framework.learning.EvaluatorBasedCognitiveModuleFactory
-
Creates a clone of this EvaluatorBasedCognitiveModuleFactory.
- clone() - Method in class gov.sandia.cognition.framework.learning.EvaluatorBasedCognitiveModuleFactoryLearner
-
Creates a copy of this EvaluatorBasedCognitiveModuleFactoryLearner.
- clone() - Method in class gov.sandia.cognition.framework.learning.EvaluatorBasedCognitiveModuleSettings
-
Creates a clone of this EvaluatorBasedCognitiveModuleSettings.
- clone() - Method in class gov.sandia.cognition.framework.lite.CognitiveModelLiteState
-
This makes public the clone method on the Object
class and
removes the exception that it throws.
- clone() - Method in class gov.sandia.cognition.framework.lite.CognitiveModuleStateWrapper
-
This makes public the clone method on the Object
class and
removes the exception that it throws.
- clone() - Method in class gov.sandia.cognition.framework.lite.CogxelStateLite
-
This makes public the clone method on the Object
class and
removes the exception that it throws.
- clone() - Method in interface gov.sandia.cognition.framework.lite.PatternRecognizerLite
-
Creates a deep copy of the pattern recognizer.
- clone() - Method in class gov.sandia.cognition.framework.lite.SharedSemanticMemoryLiteFactory
-
This makes public the clone method on the Object
class and
removes the exception that it throws.
- clone() - Method in class gov.sandia.cognition.framework.lite.SharedSemanticMemoryLiteSettings
-
This makes public the clone method on the Object
class and
removes the exception that it throws.
- clone() - Method in class gov.sandia.cognition.framework.lite.SimplePatternRecognizer
-
This makes public the clone method on the Object
class and
removes the exception that it throws.
- clone() - Method in class gov.sandia.cognition.framework.lite.SimplePatternRecognizerState
-
This makes public the clone method on the Object
class and
removes the exception that it throws.
- clone() - Method in class gov.sandia.cognition.framework.lite.VectorBasedCognitiveModelInput
-
This makes public the clone method on the Object
class and
removes the exception that it throws.
- clone() - Method in class gov.sandia.cognition.hash.AbstractHashFunction
-
- clone() - Method in class gov.sandia.cognition.hash.Eva32Hash
-
- clone() - Method in class gov.sandia.cognition.hash.Eva64Hash
-
- clone() - Method in class gov.sandia.cognition.hash.FNV1a32Hash
-
- clone() - Method in class gov.sandia.cognition.hash.FNV1a64Hash
-
- clone() - Method in class gov.sandia.cognition.hash.Murmur32Hash
-
- clone() - Method in class gov.sandia.cognition.hash.Prime32Hash
-
- clone() - Method in class gov.sandia.cognition.hash.Prime64Hash
-
- clone() - Method in class gov.sandia.cognition.hash.SHA256Hash
-
- clone() - Method in class gov.sandia.cognition.hash.SHA512Hash
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.AbstractAnytimeBatchLearner
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.AbstractBatchAndIncrementalLearner
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.AbstractBatchLearnerContainer
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.annealing.SimulatedAnnealer
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.annealing.VectorizablePerturber
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.baseline.IdentityLearner
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.bayes.DiscreteNaiveBayesCategorizer
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.bayes.VectorNaiveBayesCategorizer
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.clustering.AffinityPropagation
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.clustering.AgglomerativeClusterer
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.clustering.cluster.DefaultCluster
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.clustering.DBSCANClusterer
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.clustering.DirichletProcessClustering
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.clustering.divergence.CentroidClusterDivergenceFunction
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.clustering.divergence.WithinClusterDivergenceWrapper
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.clustering.divergence.WithinNormalizedCentroidClusterCosineDivergence
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.clustering.initializer.AbstractMinDistanceFixedClusterInitializer
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.clustering.initializer.DistanceSamplingClusterInitializer
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.clustering.initializer.GreedyClusterInitializer
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.clustering.initializer.RandomClusterInitializer
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.clustering.KMeansClusterer
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.clustering.MiniBatchKMeansClusterer
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.clustering.OptimizedKMeansClusterer
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.clustering.ParallelizedKMeansClusterer
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractUnweightedEnsemble
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractWeightedEnsemble
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachine
-
- clone() - Method in interface gov.sandia.cognition.learning.algorithm.gradient.GradientDescendable
-
Creates a new clone (shallow copy) of this object.
- clone() - Method in class gov.sandia.cognition.learning.algorithm.gradient.GradientDescendableApproximator
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.hmm.AbstractBaumWelchAlgorithm
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.hmm.BaumWelchAlgorithm
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.hmm.MarkovChain
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.InputOutputTransformedBatchLearner
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.DirectionalVectorToDifferentiableScalarFunction
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.DirectionalVectorToScalarFunction
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.InputOutputSlopeTriplet
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.LineBracket
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.WolfeConditions
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.minimization.matrix.ConjugateGradientMatrixSolver
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.minimization.matrix.ConjugateGradientWithPreconditionerMatrixSolver
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.minimization.matrix.IterativeMatrixSolver
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.minimization.matrix.OverconstrainedConjugateGradientMatrixMinimizer
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.minimization.matrix.SteepestDescentMatrixSolver
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.nearest.AbstractKNearestNeighbor
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.nearest.KNearestNeighborExhaustive
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.nearest.KNearestNeighborKDTree
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.nearest.NearestNeighborExhaustive
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.nearest.NearestNeighborKDTree
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.pca.AbstractPrincipalComponentsAnalysis
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.pca.GeneralizedHebbianAlgorithm
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.pca.PrincipalComponentsAnalysisFunction
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.perceptron.Perceptron
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.perceptron.Winnow
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.regression.AbstractLogisticRegression
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.regression.AbstractMinimizerBasedParameterCostMinimizer
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.regression.KernelBasedIterativeRegression
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.regression.LinearBasisRegression
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.regression.LinearRegression
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.regression.LinearRegression.Statistic
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.regression.LogisticRegression
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.regression.LogisticRegression.Function
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.regression.MultivariateLinearRegression
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.regression.ParameterDerivativeFreeCostMinimizer
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.regression.ParameterDerivativeFreeCostMinimizer.ParameterCostEvaluatorDerivativeFree
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.regression.ParameterDifferentiableCostMinimizer
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.regression.ParameterDifferentiableCostMinimizer.ParameterCostEvaluatorDerivativeBased
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.root.AbstractRootFinder
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.root.RootFinderNewtonsMethod
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.tree.AbstractDecisionTreeLearner
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.tree.AbstractDecisionTreeNode
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.tree.AbstractVectorThresholdMaximumGainLearner
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.tree.CategorizationTree
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.tree.CategorizationTreeLearner
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.tree.CategorizationTreeNode
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.tree.DecisionTree
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.tree.RandomSubVectorThresholdLearner
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.tree.RegressionTree
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.tree.RegressionTreeLearner
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.tree.RegressionTreeNode
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.tree.VectorThresholdGiniImpurityLearner
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.tree.VectorThresholdHellingerDistanceLearner
-
- clone() - Method in class gov.sandia.cognition.learning.algorithm.tree.VectorThresholdInformationGainLearner
-
- clone() - Method in class gov.sandia.cognition.learning.data.DefaultTargetEstimatePair
-
- clone() - Method in class gov.sandia.cognition.learning.data.DefaultValueDiscriminantPair
-
- clone() - Method in class gov.sandia.cognition.learning.data.feature.DelayFunction
-
- clone() - Method in class gov.sandia.cognition.learning.data.feature.LinearRegressionCoefficientExtractor
-
- clone() - Method in class gov.sandia.cognition.learning.data.feature.MultivariateDecorrelator
-
Creates a new copy of this MultivariateDecorrelator.
- clone() - Method in class gov.sandia.cognition.learning.data.feature.StandardDistributionNormalizer
-
Creates a new copy of this StandardDistributionNormalizer.
- clone() - Method in class gov.sandia.cognition.learning.function.categorization.AbstractCategorizer
-
- clone() - Method in class gov.sandia.cognition.learning.function.categorization.BinaryVersusCategorizer
-
- clone() - Method in class gov.sandia.cognition.learning.function.categorization.CompositeCategorizer
-
- clone() - Method in class gov.sandia.cognition.learning.function.categorization.EvaluatorToCategorizerAdapter.Learner
-
- clone() - Method in class gov.sandia.cognition.learning.function.categorization.FisherLinearDiscriminantBinaryCategorizer
-
- clone() - Method in class gov.sandia.cognition.learning.function.categorization.LinearBinaryCategorizer
-
- clone() - Method in class gov.sandia.cognition.learning.function.categorization.LinearMultiCategorizer
-
- clone() - Method in class gov.sandia.cognition.learning.function.categorization.MaximumAPosterioriCategorizer
-
- clone() - Method in class gov.sandia.cognition.learning.function.categorization.MaximumAPosterioriCategorizer.Learner
-
- clone() - Method in class gov.sandia.cognition.learning.function.categorization.ScalarFunctionToBinaryCategorizerAdapter
-
- clone() - Method in class gov.sandia.cognition.learning.function.categorization.ScalarThresholdBinaryCategorizer
-
- clone() - Method in class gov.sandia.cognition.learning.function.categorization.VectorElementThresholdCategorizer
-
- clone() - Method in class gov.sandia.cognition.learning.function.cost.AbstractCostFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.cost.AbstractSupervisedCostFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.cost.ClusterDistortionMeasure
-
- clone() - Method in interface gov.sandia.cognition.learning.function.cost.CostFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.cost.EuclideanDistanceCostFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.cost.MeanL1CostFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.cost.MeanSquaredErrorCostFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.cost.ParallelizedCostFunctionContainer
-
- clone() - Method in class gov.sandia.cognition.learning.function.cost.SumSquaredErrorCostFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.distance.DefaultDivergenceFunctionContainer
-
- clone() - Method in class gov.sandia.cognition.learning.function.distance.DivergencesEvaluator
-
- clone() - Method in class gov.sandia.cognition.learning.function.distance.DivergencesEvaluator.Learner
-
- clone() - Method in class gov.sandia.cognition.learning.function.distance.WeightedEuclideanDistanceMetric
-
- clone() - Method in class gov.sandia.cognition.learning.function.kernel.DefaultKernelContainer
-
- clone() - Method in class gov.sandia.cognition.learning.function.kernel.DefaultKernelsContainer
-
- clone() - Method in class gov.sandia.cognition.learning.function.kernel.ExponentialKernel
-
- clone() - Method in class gov.sandia.cognition.learning.function.kernel.KernelDistanceMetric
-
- clone() - Method in class gov.sandia.cognition.learning.function.kernel.LinearKernel
-
- clone() - Method in class gov.sandia.cognition.learning.function.kernel.NormalizedKernel
-
- clone() - Method in class gov.sandia.cognition.learning.function.kernel.PolynomialKernel
-
- clone() - Method in class gov.sandia.cognition.learning.function.kernel.ProductKernel
-
- clone() - Method in class gov.sandia.cognition.learning.function.kernel.RadialBasisKernel
-
- clone() - Method in class gov.sandia.cognition.learning.function.kernel.ScalarFunctionKernel
-
- clone() - Method in class gov.sandia.cognition.learning.function.kernel.SigmoidKernel
-
- clone() - Method in class gov.sandia.cognition.learning.function.kernel.SumKernel
-
- clone() - Method in class gov.sandia.cognition.learning.function.kernel.VectorFunctionKernel
-
- clone() - Method in class gov.sandia.cognition.learning.function.kernel.WeightedKernel
-
Creates a copy of this kernel.
- clone() - Method in class gov.sandia.cognition.learning.function.kernel.ZeroKernel
-
- clone() - Method in class gov.sandia.cognition.learning.function.LinearCombinationFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.AtanFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.CosineFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.HardSigmoidFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.HardTanHFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.IdentityScalarFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.KolmogorovSmirnovEvaluator
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.LeakyRectifiedLinearFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.LinearCombinationScalarFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.LinearDiscriminant
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.LinearDiscriminantWithBias
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.LinearFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.LinearVectorScalarFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Cubic
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Linear
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Quadratic
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.RectifiedLinearFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.SigmoidFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.SoftPlusFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.TanHFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.ThresholdFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.VectorEntryFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.VectorFunctionLinearDiscriminant
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.VectorFunctionToScalarFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.scalar.VectorFunctionToScalarFunction.Learner
-
- clone() - Method in class gov.sandia.cognition.learning.function.vector.DifferentiableFeedforwardNeuralNetwork
-
- clone() - Method in class gov.sandia.cognition.learning.function.vector.DifferentiableGeneralizedLinearModel
-
- clone() - Method in class gov.sandia.cognition.learning.function.vector.ElementWiseVectorFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.vector.FeedforwardNeuralNetwork
-
- clone() - Method in class gov.sandia.cognition.learning.function.vector.GaussianContextRecognizer
-
- clone() - Method in class gov.sandia.cognition.learning.function.vector.GeneralizedLinearModel
-
- clone() - Method in class gov.sandia.cognition.learning.function.vector.LinearCombinationVectorFunction
-
- clone() - Method in class gov.sandia.cognition.learning.function.vector.MultivariateDiscriminant
-
- clone() - Method in class gov.sandia.cognition.learning.function.vector.MultivariateDiscriminantWithBias
-
- clone() - Method in class gov.sandia.cognition.learning.function.vector.ThreeLayerFeedforwardNeuralNetwork
-
- clone() - Method in class gov.sandia.cognition.learning.function.vector.VectorizableVectorConverter
-
- clone() - Method in class gov.sandia.cognition.learning.function.vector.VectorizableVectorConverterWithBias
-
This makes public the clone method on the Object
class and
removes the exception that it throws.
- clone() - Method in class gov.sandia.cognition.learning.parameter.ParameterAdaptableBatchLearnerWrapper
-
- clone() - Method in class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrix
-
- clone() - Method in class gov.sandia.cognition.learning.performance.categorization.DefaultConfusionMatrix
-
- clone() - Method in class gov.sandia.cognition.math.AbstractRing
-
- clone() - Method in class gov.sandia.cognition.math.Combinations
-
- clone() - Method in class gov.sandia.cognition.math.ComplexNumber
-
Returns a deep copy of this
- clone() - Method in class gov.sandia.cognition.math.geometry.KDTree
-
- clone() - Method in class gov.sandia.cognition.math.LogNumber
-
- clone() - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
-
Returns a deep copy of this.
- clone() - Method in class gov.sandia.cognition.math.matrix.custom.DenseVector
-
- clone() - Method in class gov.sandia.cognition.math.matrix.custom.DiagonalMatrix
-
- clone() - Method in class gov.sandia.cognition.math.matrix.custom.ParallelSparseMatrix
-
This makes public the clone method on the Object
class and
removes the exception that it throws.
- clone() - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
This makes public the clone method on the Object
class and
removes the exception that it throws.
- clone() - Method in class gov.sandia.cognition.math.matrix.custom.SparseVector
-
- clone() - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
-
- clone() - Method in interface gov.sandia.cognition.math.matrix.Matrix
-
- clone() - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJMatrix
-
- clone() - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJVector
-
- clone() - Method in class gov.sandia.cognition.math.matrix.mtj.DenseMatrix
-
- clone() - Method in class gov.sandia.cognition.math.matrix.mtj.Vector1
-
- clone() - Method in class gov.sandia.cognition.math.matrix.mtj.Vector2
-
- clone() - Method in class gov.sandia.cognition.math.matrix.mtj.Vector3
-
- clone() - Method in class gov.sandia.cognition.math.matrix.NumericalDifferentiator
-
- clone() - Method in interface gov.sandia.cognition.math.matrix.Quaternion
-
Clones this object.
- clone() - Method in interface gov.sandia.cognition.math.matrix.Vector
-
- clone() - Method in interface gov.sandia.cognition.math.matrix.Vectorizable
-
- clone() - Method in class gov.sandia.cognition.math.matrix.VectorizableIndexComparator
-
- clone() - Method in interface gov.sandia.cognition.math.matrix.VectorizableVectorFunction
-
Creates a new clone (shallow copy) of this object.
- clone() - Method in class gov.sandia.cognition.math.MutableDouble
-
- clone() - Method in class gov.sandia.cognition.math.MutableInteger
-
- clone() - Method in class gov.sandia.cognition.math.MutableLong
-
- clone() - Method in interface gov.sandia.cognition.math.Ring
-
Returns a smart copy of this
, such that changing the values
of the return class will not effect this
- clone() - Method in class gov.sandia.cognition.math.signals.AutoRegressiveMovingAverageFilter
-
- clone() - Method in class gov.sandia.cognition.math.signals.LinearDynamicalSystem
-
- clone() - Method in class gov.sandia.cognition.math.signals.MovingAverageFilter
-
- clone() - Method in class gov.sandia.cognition.math.UnivariateSummaryStatistics
-
- clone() - Method in class gov.sandia.cognition.math.UnsignedLogNumber
-
- clone() - Method in class gov.sandia.cognition.statistics.AbstractClosedFormUnivariateDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.AbstractDataDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.AbstractIncrementalEstimator
-
- clone() - Method in class gov.sandia.cognition.statistics.AbstractSufficientStatistic
-
- clone() - Method in class gov.sandia.cognition.statistics.bayesian.AbstractBayesianParameter
-
- clone() - Method in class gov.sandia.cognition.statistics.bayesian.AbstractKalmanFilter
-
- clone() - Method in class gov.sandia.cognition.statistics.bayesian.AbstractMarkovChainMonteCarlo
-
- clone() - Method in class gov.sandia.cognition.statistics.bayesian.AbstractParticleFilter
-
- clone() - Method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.AbstractEnvelope
-
- clone() - Method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling
-
- clone() - Method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.LogEvaluator
-
- clone() - Method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.UpperEnvelope
-
- clone() - Method in class gov.sandia.cognition.statistics.bayesian.BayesianLinearRegression
-
- clone() - Method in class gov.sandia.cognition.statistics.bayesian.BayesianRobustLinearRegression
-
- clone() - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.AbstractConjugatePriorBayesianEstimator
-
- clone() - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.BinomialBayesianEstimator
-
- clone() - Method in class gov.sandia.cognition.statistics.bayesian.DefaultBayesianParameter
-
- clone() - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel
-
- clone() - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.DPMMCluster
-
- clone() - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.MultivariateMeanCovarianceUpdater
-
- clone() - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.MultivariateMeanUpdater
-
- clone() - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.Sample
-
- clone() - Method in class gov.sandia.cognition.statistics.bayesian.ExtendedKalmanFilter
-
- clone() - Method in class gov.sandia.cognition.statistics.bayesian.GaussianProcessRegression
-
- clone() - Method in class gov.sandia.cognition.statistics.bayesian.ImportanceSampling
-
- clone() - Method in class gov.sandia.cognition.statistics.bayesian.KalmanFilter
-
- clone() - Method in class gov.sandia.cognition.statistics.bayesian.MetropolisHastingsAlgorithm
-
- clone() - Method in class gov.sandia.cognition.statistics.bayesian.RejectionSampling
-
- clone() - Method in interface gov.sandia.cognition.statistics.DataDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.DefaultDistributionParameter
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.BetaBinomialDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.BetaDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.BinomialDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.CategoricalDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.CauchyDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.ChineseRestaurantProcess
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.ChiSquareDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.DefaultDataDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.DirichletDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.ExponentialDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.GammaDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.GeometricDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.InverseGammaDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.InverseWishartDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.LaplaceDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.LinearMixtureModel
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.LogisticDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.MixtureOfGaussians.PDF
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.MultinomialDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.SufficientStatistic
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.SufficientStatisticCovarianceInverse
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussianInverseGammaDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.MultivariateMixtureDensityModel
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.MultivariatePolyaDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.MultivariateStudentTDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.NegativeBinomialDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.NormalInverseGammaDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.NormalInverseWishartDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.ParetoDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.PoissonDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.ScalarDataDistribution.CDF
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.ScalarDataDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.SnedecorFDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.StudentizedRangeDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.StudentTDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.UniformDistribution.CDF
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.UniformDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.UniformIntegerDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.SufficientStatistic
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.WeibullDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.distribution.YuleSimonDistribution
-
- clone() - Method in class gov.sandia.cognition.statistics.method.AbstractMultipleHypothesisComparison.Statistic
-
- clone() - Method in class gov.sandia.cognition.statistics.method.AbstractPairwiseMultipleHypothesisComparison
-
- clone() - Method in class gov.sandia.cognition.statistics.method.AbstractPairwiseMultipleHypothesisComparison.Statistic
-
- clone() - Method in class gov.sandia.cognition.statistics.method.AdjustedPValueStatistic
-
- clone() - Method in class gov.sandia.cognition.statistics.method.AnalysisOfVarianceOneWay.Statistic
-
- clone() - Method in class gov.sandia.cognition.statistics.method.BonferroniCorrection
-
- clone() - Method in class gov.sandia.cognition.statistics.method.ConvexReceiverOperatingCharacteristic
-
- clone() - Method in class gov.sandia.cognition.statistics.method.DistributionParameterEstimator
-
- clone() - Method in class gov.sandia.cognition.statistics.method.DistributionParameterEstimator.DistributionWrapper
-
- clone() - Method in class gov.sandia.cognition.statistics.method.FriedmanConfidence.Statistic
-
- clone() - Method in class gov.sandia.cognition.statistics.method.HolmCorrection
-
- clone() - Method in class gov.sandia.cognition.statistics.method.MaximumLikelihoodDistributionEstimator
-
- clone() - Method in class gov.sandia.cognition.statistics.method.MultipleComparisonExperiment
-
- clone() - Method in class gov.sandia.cognition.statistics.method.NemenyiConfidence.Statistic
-
- clone() - Method in class gov.sandia.cognition.statistics.method.ReceiverOperatingCharacteristic
-
- clone() - Method in class gov.sandia.cognition.statistics.method.ShafferStaticCorrection
-
- clone() - Method in class gov.sandia.cognition.statistics.method.SidakCorrection
-
- clone() - Method in class gov.sandia.cognition.statistics.method.StudentTConfidence.Statistic
-
- clone() - Method in class gov.sandia.cognition.statistics.method.TukeyKramerConfidence
-
- clone() - Method in class gov.sandia.cognition.statistics.method.TukeyKramerConfidence.Statistic
-
- clone() - Method in class gov.sandia.cognition.statistics.montecarlo.ImportanceSampler
-
- clone() - Method in class gov.sandia.cognition.statistics.UnivariateRandomVariable
-
- clone() - Method in class gov.sandia.cognition.text.DefaultTextual
-
- clone() - Method in class gov.sandia.cognition.text.term.DefaultIndexedTerm
-
- clone() - Method in class gov.sandia.cognition.text.term.DefaultTerm
-
- clone() - Method in class gov.sandia.cognition.text.term.DefaultTermIndex
-
- clone() - Method in class gov.sandia.cognition.text.term.DefaultTermNGram
-
- clone() - Method in class gov.sandia.cognition.text.term.filter.DefaultStopList
-
- clone() - Method in class gov.sandia.cognition.text.term.filter.NGramFilter
-
- clone() - Method in class gov.sandia.cognition.text.term.vector.weighter.CompositeLocalGlobalTermWeighter
-
- clone() - Method in class gov.sandia.cognition.text.term.vector.weighter.global.AbstractEntropyBasedGlobalTermWeighter
-
- clone() - Method in class gov.sandia.cognition.text.term.vector.weighter.global.AbstractFrequencyBasedGlobalTermWeighter
-
- clone() - Method in class gov.sandia.cognition.text.term.vector.weighter.global.DominanceGlobalTermWeighter
-
- clone() - Method in class gov.sandia.cognition.text.term.vector.weighter.global.EntropyGlobalTermWeighter
-
- clone() - Method in class gov.sandia.cognition.text.term.vector.weighter.global.InverseDocumentFrequencyGlobalTermWeighter
-
- clone() - Method in class gov.sandia.cognition.util.AbstractCloneableSerializable
-
This makes public the clone method on the Object
class and
removes the exception that it throws.
- clone() - Method in class gov.sandia.cognition.util.AbstractNamed
-
- clone() - Method in class gov.sandia.cognition.util.AbstractRandomized
-
- clone() - Method in class gov.sandia.cognition.util.AbstractTemporal
-
- clone() - Method in interface gov.sandia.cognition.util.CloneableSerializable
-
Creates a new clone (shallow copy) of this object.
- clone() - Method in class gov.sandia.cognition.util.DefaultNamedValue
-
- clone() - Method in class gov.sandia.cognition.util.DefaultPair
-
- clone() - Method in class gov.sandia.cognition.util.DefaultTriple
-
- clone() - Method in class gov.sandia.cognition.util.DefaultWeightedValue
-
Creates a shallow copy of the WeightedValue.
- CloneableSerializable - Interface in gov.sandia.cognition.util
-
An object that is both cloneable and serializable, because Java's
Cloneable interface mistakenly doesn't have a clone() method
(search on the Web, it's funny "lost in the mists of time..." )
- cloneSafe(T) - Static method in class gov.sandia.cognition.util.ObjectUtil
-
Calls the Clone method on the given object of some type that extends
CloneableSerializable.
- cloneSmart(T) - Static method in class gov.sandia.cognition.util.ObjectUtil
-
Attempts to clone a given object.
- cloneSmartArrayAndElements(T[]) - Static method in class gov.sandia.cognition.util.ObjectUtil
-
Clones an array and its elements.
- cloneSmartElementsAsArrayList(Collection<T>) - Static method in class gov.sandia.cognition.util.ObjectUtil
-
Creates a new ArrayList
and attempts to copy all of the elements
from the given collection into it by calling the cloneSmart method on
each of them.
- cloneSmartElementsAsLinkedList(Iterable<T>) - Static method in class gov.sandia.cognition.util.ObjectUtil
-
Creates a new LinkedList
and attempts to copy all of the elements
from the given collection into it by calling the cloneSmart method on
each of them.
- ClosedFormComputableDiscreteDistribution<DataType> - Interface in gov.sandia.cognition.statistics
-
A discrete, closed-form Distribution with a PMF.
- ClosedFormComputableDistribution<DataType> - Interface in gov.sandia.cognition.statistics
-
A closed-form Distribution that also has an associated distribution function.
- ClosedFormCumulativeDistributionFunction<DomainType extends java.lang.Number> - Interface in gov.sandia.cognition.statistics
-
Functionality of a cumulative distribution function that's defined with
closed-form parameters.
- ClosedFormDifferentiableEvaluator<InputType,OutputType,DerivativeType> - Interface in gov.sandia.cognition.math
-
A differentiable function that has a closed-form derivative.
- ClosedFormDiscreteUnivariateDistribution<DomainType extends java.lang.Number> - Interface in gov.sandia.cognition.statistics
-
A ClosedFormUnivariateDistribution that is also a DiscreteDistribution
- ClosedFormDistribution<DataType> - Interface in gov.sandia.cognition.statistics
-
Defines a distribution that is described a parameterized mathematical
equation.
- ClosedFormSolver() - Constructor for class gov.sandia.cognition.learning.function.categorization.FisherLinearDiscriminantBinaryCategorizer.ClosedFormSolver
-
Default constructor.
- ClosedFormSolver(double) - Constructor for class gov.sandia.cognition.learning.function.categorization.FisherLinearDiscriminantBinaryCategorizer.ClosedFormSolver
-
Creates a new ClosedFormSolver
.
- ClosedFormUnivariateDistribution<NumberType extends java.lang.Number> - Interface in gov.sandia.cognition.statistics
-
Defines the functionality associated with a closed-form scalar distribution.
- Cluster<ClusterType> - Interface in gov.sandia.cognition.learning.algorithm.clustering.cluster
-
The Cluster interface defines the general functionality of a cluster, which
is just the ability to get the members of the cluster.
- cluster - Variable in class gov.sandia.cognition.learning.algorithm.clustering.hierarchy.AbstractClusterHierarchyNode
-
The cluster associated with the node.
- ClusterCentroidDivergenceFunction<DataType> - Class in gov.sandia.cognition.learning.algorithm.clustering.divergence
-
The ClusterCentroidDivergenceFunction class implements the distance
between two clusters by computing the distance between the cluster's
centroid.
- ClusterCentroidDivergenceFunction() - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.divergence.ClusterCentroidDivergenceFunction
-
Creates a new instance of ClusterCompleteLinkDivergenceFunction.
- ClusterCentroidDivergenceFunction(DivergenceFunction<? super DataType, ? super DataType>) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.divergence.ClusterCentroidDivergenceFunction
-
Creates a new instance of ClusterCompleteLinkDivergenceFunction using
the given divergence function for elements.
- ClusterCompleteLinkDivergenceFunction<ClusterType extends Cluster<DataType>,DataType> - Class in gov.sandia.cognition.learning.algorithm.clustering.divergence
-
The ClusterCompleteLinkDivergenceFunction class implements the complete
linkage distance metric between two clusters.
- ClusterCompleteLinkDivergenceFunction() - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.divergence.ClusterCompleteLinkDivergenceFunction
-
Creates a new instance of ClusterCompleteLinkDivergenceFunction.
- ClusterCompleteLinkDivergenceFunction(DivergenceFunction<? super DataType, ? super DataType>) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.divergence.ClusterCompleteLinkDivergenceFunction
-
Creates a new instance of ClusterCompleteLinkDivergenceFunction using
the given divergence function for elements.
- clusterCounts - Variable in class gov.sandia.cognition.learning.algorithm.clustering.KMeansClusterer
-
The current number of elements assigned to each cluster.
- ClusterCreator<ClusterType extends Cluster<DataType>,DataType> - Interface in gov.sandia.cognition.learning.algorithm.clustering.cluster
-
The ClusterCreator defines the functionality of a class that can create a
new cluster from a given collection of members of that cluster.
- clusterDistances - Variable in class gov.sandia.cognition.learning.algorithm.clustering.OptimizedKMeansClusterer
-
The distances between clusters.
- ClusterDistortionMeasure<DataType,ClusterType extends Cluster<DataType>> - Class in gov.sandia.cognition.learning.function.cost
-
Computes the objective measure for a clustering algorithm, based on the
internal "distortion" of each cluster.
- ClusterDistortionMeasure() - Constructor for class gov.sandia.cognition.learning.function.cost.ClusterDistortionMeasure
-
Creates a new instance of ClusterDistortionMeasure
- ClusterDistortionMeasure(ClusterDivergenceFunction<ClusterType, DataType>) - Constructor for class gov.sandia.cognition.learning.function.cost.ClusterDistortionMeasure
-
Creates a new instance of ClusterDistortionMeasure
- ClusterDivergenceFunction<ClusterType extends Cluster<DataType>,DataType> - Interface in gov.sandia.cognition.learning.algorithm.clustering.divergence
-
The ClusterDivergenceFunction interface defines a function that computes
the divergence between a cluster and some other object.
- clusterDivergenceFunction - Variable in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
-
The divergence function used to find the distance between two clusters.
- clusterHierarchically(Collection<? extends DataType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.AgglomerativeClusterer
-
- clusterHierarchically(Collection<? extends DataType>) - Method in interface gov.sandia.cognition.learning.algorithm.clustering.hierarchy.BatchHierarchicalClusterer
-
Performs hierarchical clustering on the given elements.
- clusterHierarchically(Collection<? extends DataType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
-
- ClusterHierarchyNode<DataType,ClusterType extends Cluster<DataType>> - Interface in gov.sandia.cognition.learning.algorithm.clustering.hierarchy
-
Defines a node in a hierarchy of clusters.
- ClusterMeanLinkDivergenceFunction<ClusterType extends Cluster<DataType>,DataType> - Class in gov.sandia.cognition.learning.algorithm.clustering.divergence
-
The ClusterMeanLinkDivergenceFunction class implements the mean linkage
distance metric between two clusters.
- ClusterMeanLinkDivergenceFunction() - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.divergence.ClusterMeanLinkDivergenceFunction
-
Creates a new instance of ClusterMeanLinkDivergenceFunction.
- ClusterMeanLinkDivergenceFunction(DivergenceFunction<? super DataType, ? super DataType>) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.divergence.ClusterMeanLinkDivergenceFunction
-
Creates a new instance of ClusterMeanLinkDivergenceFunction using
the given divergence function for elements.
- clusters - Variable in class gov.sandia.cognition.learning.algorithm.clustering.AffinityPropagation
-
The clusters that have been found so far.
- clusters - Variable in class gov.sandia.cognition.learning.algorithm.clustering.AgglomerativeClusterer
-
The current set of clusters.
- clusters - Variable in class gov.sandia.cognition.learning.algorithm.clustering.KMeansClusterer
-
The current set of clusters.
- clusters - Variable in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
-
The current set of clusters all clusters created.
- clusters - Variable in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.Sample
-
Point mass realizations from the base distribution.
- clustersHierarchy - Variable in class gov.sandia.cognition.learning.algorithm.clustering.AgglomerativeClusterer
-
The current set of hierarchical clusters.
- clustersHierarchy - Variable in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
-
The current set of hierarchical clusters created.
- ClusterSingleLinkDivergenceFunction<ClusterType extends Cluster<DataType>,DataType> - Class in gov.sandia.cognition.learning.algorithm.clustering.divergence
-
The ClusterSingleLinkDivergenceFunction class implements the complete
linkage distance metric between two clusters.
- ClusterSingleLinkDivergenceFunction() - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.divergence.ClusterSingleLinkDivergenceFunction
-
Creates a new instance of ClusterSingleLinkDivergenceFunction.
- ClusterSingleLinkDivergenceFunction(DivergenceFunction<? super DataType, ? super DataType>) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.divergence.ClusterSingleLinkDivergenceFunction
-
Creates a new instance of ClusterSingleLinkDivergenceFunction using
the given divergence function for elements.
- ClusterToClusterDivergenceFunction<ClusterType extends Cluster<DataType>,DataType> - Interface in gov.sandia.cognition.learning.algorithm.clustering.divergence
-
The ClusterToClusterDivergenceFunction defines a DivergenceFunction between
two clusters of the same data type.
- ClusterUpdaterTask() - Constructor for class gov.sandia.cognition.statistics.bayesian.ParallelDirichletProcessMixtureModel.ClusterUpdaterTask
-
Creates a new instance of ClusterUpdaterTask
- clusterUpdaterTasks - Variable in class gov.sandia.cognition.statistics.bayesian.ParallelDirichletProcessMixtureModel
-
Tasks that update the values of the clusters for Gibbs sampling
- clusterWeights - Variable in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel
-
Holds the cluster weights so that we don't have to re-allocate them
each mcmcUpdate step.
- CodeReview - Annotation Type in gov.sandia.cognition.annotation
-
The CodeReview
annotation describes information about the last code
review for a piece of code.
- CodeReviewResponse - Annotation Type in gov.sandia.cognition.annotation
-
The CodeReviewResponse
annotation contains information regarding a
response to a CodeReview
annotation.
- CodeReviews - Annotation Type in gov.sandia.cognition.annotation
-
The CodeReviews
annotation defines a container for one or more
CodeReview
annotations.
- CognitiveModel - Interface in gov.sandia.cognition.framework
-
The CognitiveModel interface defines the basic functionality of a cognitive
model.
- CognitiveModelFactory - Interface in gov.sandia.cognition.framework
-
The CognitiveModelFactory interface defines an interface for creating a
new CognitiveModel using a predefined set of CognitiveModules, as created
by CognitiveModuleFactories.
- CognitiveModelInput - Interface in gov.sandia.cognition.framework
-
The CognitiveModelInput defines the inteface for an input to a
CognitiveModel.
- CognitiveModelListener - Interface in gov.sandia.cognition.framework
-
The CognitiveModelListener interface is an event listener that listens for
events on a CognitiveModel.
- CognitiveModelLite - Class in gov.sandia.cognition.framework.lite
-
This class provides a lite implementation of the CognitiveModel interface.
- CognitiveModelLite(CognitiveModuleFactory...) - Constructor for class gov.sandia.cognition.framework.lite.CognitiveModelLite
-
Creates a new instance of CognitiveModelLite.
- CognitiveModelLite(Iterable<? extends CognitiveModuleFactory>) - Constructor for class gov.sandia.cognition.framework.lite.CognitiveModelLite
-
Creates a new instance of CognitiveModelLite.
- CognitiveModelLiteFactory - Class in gov.sandia.cognition.framework.lite
-
The CognitiveModelLiteFactory defines a CognitiveModelFactory for creating
CognitiveModelLite objects.
- CognitiveModelLiteFactory() - Constructor for class gov.sandia.cognition.framework.lite.CognitiveModelLiteFactory
-
Creates a new instance of CognitiveModelLiteFactory.
- CognitiveModelLiteFactory(Collection<CognitiveModuleFactory>) - Constructor for class gov.sandia.cognition.framework.lite.CognitiveModelLiteFactory
-
Creates a new instance of CognitiveModelLiteFactory
.
- CognitiveModelLiteState - Class in gov.sandia.cognition.framework.lite
-
The CognitiveModelLiteState class implements a CognitiveModelState
object for the CognitiveModelLite.
- CognitiveModelLiteState(int) - Constructor for class gov.sandia.cognition.framework.lite.CognitiveModelLiteState
-
Creates a new instance of CognitiveModelState.
- CognitiveModelLiteState(int, int) - Constructor for class gov.sandia.cognition.framework.lite.CognitiveModelLiteState
-
Creates a new instance of CognitiveModelState.
- CognitiveModelLiteState(CognitiveModelLiteState) - Constructor for class gov.sandia.cognition.framework.lite.CognitiveModelLiteState
-
Creates a new copy of a CognitiveModelLiteState.
- CognitiveModelState - Interface in gov.sandia.cognition.framework
-
The CognitiveModelState interface defines the general functionality required
of an object that represents the state of a CognitiveModel.
- CognitiveModelStateChangeEvent - Class in gov.sandia.cognition.framework
-
The CognitiveModelStateChangeEvent class is an EventObject that contains the
data pertaining to a change in the state of a CognitiveModel.
- CognitiveModelStateChangeEvent(CognitiveModel, CognitiveModelState) - Constructor for class gov.sandia.cognition.framework.CognitiveModelStateChangeEvent
-
Creates a new instance of CognitiveModelStateChangeEvent.
- CognitiveModule - Interface in gov.sandia.cognition.framework
-
The CognitiveModule interface defines the functionality of a general module
that can be used in a CognitiveModel.
- CognitiveModuleFactory - Interface in gov.sandia.cognition.framework
-
The CognitiveModuleFactory interface defines the functionality required by
something that creates new CognitiveModules for a CognitiveModel.
- CognitiveModuleFactoryLearner - Interface in gov.sandia.cognition.framework.learning
-
The CognitiveModuleFactoryLearner is an interface defining the functionality
of an Object that can learn a CognitiveModuleFactory from a collection of
input data.
- CognitiveModuleSettings - Interface in gov.sandia.cognition.framework
-
The CogntiviteModuleSettings class defines the functionality required for
the settings of a CognitiveModule.
- CognitiveModuleState - Interface in gov.sandia.cognition.framework
-
The CognitiveModuleState defines the interface for the state of a
CognitiveModule.
- CognitiveModuleStateWrapper - Class in gov.sandia.cognition.framework.lite
-
The CognitiveModuleStateWrapper wraps some other object as a
CognitiveModuleState object.
- CognitiveModuleStateWrapper() - Constructor for class gov.sandia.cognition.framework.lite.CognitiveModuleStateWrapper
-
Creates a new instance of CognitiveModuleStateWrapper.
- CognitiveModuleStateWrapper(CloneableSerializable) - Constructor for class gov.sandia.cognition.framework.lite.CognitiveModuleStateWrapper
-
Creates a new instance of CognitiveModuleStateWrapper.
- Cogxel - Interface in gov.sandia.cognition.framework
-
The interface for the fundamental unit of operation inside a CognitiveModel.
- CogxelBooleanConverter - Class in gov.sandia.cognition.framework.learning.converter
-
Implements a CogxelConverter
that encodes booleans as positive and
negative values (+1/-1).
- CogxelBooleanConverter() - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelBooleanConverter
-
Creates a new instance of CogxelBooleanConverter.
- CogxelBooleanConverter(SemanticLabel) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelBooleanConverter
-
Creates a new instance of CogxelDoubleConverter.
- CogxelBooleanConverter(SemanticLabel, SemanticIdentifierMap) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelBooleanConverter
-
Creates a new instance of CogxelBooleanConverter.
- CogxelBooleanConverter(SemanticLabel, SemanticIdentifierMap, CogxelFactory) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelBooleanConverter
-
Creates a new instance of CogxelBooleanConverter.
- CogxelConverter<DataType> - Interface in gov.sandia.cognition.framework.learning.converter
-
The CogxelConverter interface defines the functionality required for an
object to act as a converter from some DataType to and from a CogxelState
object.
- CogxelDoubleConverter - Class in gov.sandia.cognition.framework.learning.converter
-
The CogxelDoubleConverter class converts a Cogxel to and from a double
value by using its activation.
- CogxelDoubleConverter() - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelDoubleConverter
-
Creates a new instance of CogxelDoubleConverter.
- CogxelDoubleConverter(SemanticLabel) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelDoubleConverter
-
Creates a new instance of CogxelDoubleConverter.
- CogxelDoubleConverter(SemanticLabel, SemanticIdentifierMap) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelDoubleConverter
-
Creates a new instance of CogxelDoubleConverter.
- CogxelDoubleConverter(SemanticLabel, SemanticIdentifierMap, CogxelFactory) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelDoubleConverter
-
Creates a new instance of CogxelDoubleConverter.
- CogxelDoubleConverter(CogxelDoubleConverter) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelDoubleConverter
-
Creates a new instance of CogxelDoubleConverter.
- CogxelFactory - Interface in gov.sandia.cognition.framework
-
The CogxelFactory interface defines the functionality required for an object
to be used to create a Cogxel for a CognitiveModel.
- CogxelInputOutputPairConverter<InputType,OutputType> - Class in gov.sandia.cognition.framework.learning.converter
-
The InputOutputPairCogxelConverter class implements a converter to and from
Cogxels to InputOutputPair objects.
- CogxelInputOutputPairConverter() - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelInputOutputPairConverter
-
Default constructor
- CogxelInputOutputPairConverter(CogxelConverter<InputType>, CogxelConverter<OutputType>) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelInputOutputPairConverter
-
Creates a new instance of InputOutputCogxelConverter.
- CogxelInputOutputPairConverter(CogxelConverter<InputType>, CogxelConverter<OutputType>, SemanticIdentifierMap) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelInputOutputPairConverter
-
Creates a new instance of InputOutputCogxelConverter.
- CogxelMatrixConverter - Class in gov.sandia.cognition.framework.learning.converter
-
The CogxelVectorConverter implements a converter to convert Cogxels to and
from Matrix objects.
- CogxelMatrixConverter(Collection<? extends Iterable<SemanticLabel>>) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelMatrixConverter
-
Creates a new instance of CogxelMatrixConverter
- CogxelMatrixConverter(ArrayList<CogxelVectorConverter>) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelMatrixConverter
-
Creates a new instance of CogxelMatrixConverter
- CogxelMatrixConverter(ArrayList<CogxelVectorConverter>, SemanticIdentifierMap) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelMatrixConverter
-
Creates a new instance of CogxelMatrixConverter
- CogxelMatrixConverter(CogxelMatrixConverter) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelMatrixConverter
-
Copy constructor
- CogxelState - Interface in gov.sandia.cognition.framework
-
Keeps a collection of Cogxels and some accessor methods.
- CogxelStateLite - Class in gov.sandia.cognition.framework.lite
-
The CogxelStateLite class implements a CogxelState to be used with the
CognitiveModelLite.
- CogxelStateLite() - Constructor for class gov.sandia.cognition.framework.lite.CogxelStateLite
-
Creates a new instance of CogxelStateLite
- CogxelStateLite(int) - Constructor for class gov.sandia.cognition.framework.lite.CogxelStateLite
-
Creates a new instance of CogxelStateLite with an expected initial
capacity for the number of cogxels contained in it.
- CogxelStateLite(CogxelState) - Constructor for class gov.sandia.cognition.framework.lite.CogxelStateLite
-
Creates a copy of a CogxelStateLite
- CogxelTargetEstimatePairConverter<TargetType,EstimateType> - Class in gov.sandia.cognition.framework.learning.converter
-
CogxelConverter based on a TargetEstimatePair.
- CogxelTargetEstimatePairConverter() - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelTargetEstimatePairConverter
-
Creates a new CogxelTargetEstimatePairConverter.
- CogxelTargetEstimatePairConverter(CogxelConverter<TargetType>, CogxelConverter<EstimateType>) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelTargetEstimatePairConverter
-
Creates a new CogxelTargetEstimatePairConverter with the given
converters for each element of the pair.
- CogxelTargetEstimatePairConverter(CogxelConverter<TargetType>, CogxelConverter<EstimateType>, SemanticIdentifierMap) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelTargetEstimatePairConverter
-
Creates a new CogxelTargetEstimatePairConverter with the given
converters for each element of the pair.
- CogxelVectorCollectionConverter - Class in gov.sandia.cognition.framework.learning.converter
-
Converts a Collection of Vectors to and from a CogxelState
- CogxelVectorCollectionConverter(Collection<CogxelVectorConverter>) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelVectorCollectionConverter
-
Creates a new instance of CogxelVectorCollectionConverter
- CogxelVectorCollectionConverter(CogxelVectorConverter...) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelVectorCollectionConverter
-
Creates a new instance of CogxelVectorCollectionConverter
- CogxelVectorCollectionConverter(CogxelVectorCollectionConverter) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelVectorCollectionConverter
-
Copy Constructor
- CogxelVectorConverter - Class in gov.sandia.cognition.framework.learning.converter
-
The CogxelVectorConverter implements a converter to convert Cogxels to and
from Vector objects.
- CogxelVectorConverter() - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelVectorConverter
-
Creates a new, empty instance of VectorCogxelMap.
- CogxelVectorConverter(SemanticLabel...) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelVectorConverter
-
Creates a new CogxelVectorConverter from the given labels.
- CogxelVectorConverter(Iterable<SemanticLabel>) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelVectorConverter
-
Creates a new CogxelVectorConverter from the given labels.
- CogxelVectorConverter(SemanticLabel[], SemanticIdentifierMap) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelVectorConverter
-
Creates a new CogxelVectorConverter from the given SemanticIdentifierMap
and SemanticLabels.
- CogxelVectorConverter(Iterable<SemanticLabel>, SemanticIdentifierMap) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelVectorConverter
-
Creates a new CogxelVectorConverter from the given SemanticIdentifierMap
and SemanticLabels.
- CogxelVectorConverter(SemanticLabel[], SemanticIdentifierMap, VectorFactory<?>, CogxelFactory) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelVectorConverter
-
Creates a new CogxelVectorConverter
- CogxelVectorConverter(Iterable<SemanticLabel>, SemanticIdentifierMap, VectorFactory<?>, CogxelFactory) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelVectorConverter
-
Creates a new CogxelVectorConverter.
- CogxelVectorConverter(CogxelVectorConverter) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelVectorConverter
-
Creates a new copy of the given CogxelVectorConverter.
- CogxelWeightedInputOutputPairConverter<InputType,OutputType> - Class in gov.sandia.cognition.framework.learning.converter
-
A CogxelConverter for creating WeightedInputOutputPairs
- CogxelWeightedInputOutputPairConverter() - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelWeightedInputOutputPairConverter
-
Creates a new instance of CogxelWeightedInputOutputPairConverter
- CogxelWeightedInputOutputPairConverter(CogxelConverter<InputType>, CogxelConverter<OutputType>, CogxelConverter<Double>) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelWeightedInputOutputPairConverter
-
Creates a new instance of CogxelWeightedInputOutputPairConverter
- CogxelWeightedInputOutputPairConverter(CogxelWeightedInputOutputPairConverter<InputType, OutputType>) - Constructor for class gov.sandia.cognition.framework.learning.converter.CogxelWeightedInputOutputPairConverter
-
Copy constructor
- CollectionUtil - Class in gov.sandia.cognition.collection
-
The CollectionUtil
class implements static methods for dealing with
Collection
and Iterable
objects.
- CollectionUtil() - Constructor for class gov.sandia.cognition.collection.CollectionUtil
-
- COLLINEAR_TOLERANCE - Static variable in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Linear
-
Tolerance below which to consider something zero, 0.0
- columnIndices - Variable in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
Part of the compressed Yale format.
- Combinations - Class in gov.sandia.cognition.math
-
Enumerates all the combinations on a given number of items sampled from a
larger set without considering order, that is, (1,2) is the same as (2,1).
- Combinations(int, int) - Constructor for class gov.sandia.cognition.math.Combinations
-
Creates a new instance of Combinations
- Combinations.AbstractCombinationsIterator<IteratorType extends Combinations.AbstractCombinationsIterator<IteratorType,ClassType>,ClassType> - Class in gov.sandia.cognition.math
-
Partial implementation of a CombinationsIterator.
- Combinations.IndexIterator - Class in gov.sandia.cognition.math
-
Iterator that returns the index into a set: 0, 1, 2, ...
- Combinations.SubsetIterator<ClassType> - Class in gov.sandia.cognition.math
-
Creates a new instance of SubsetIterator, one that returns the elements
from a given set
- combineHash(HashFunction, boolean, byte[]...) - Static method in class gov.sandia.cognition.hash.HashFunctionUtil
-
Cascades the hash codes
- CombineSummarizer() - Constructor for class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrix.CombineSummarizer
-
Creates a new CombineSummarizer
.
- CombineSummarizer() - Constructor for class gov.sandia.cognition.learning.performance.categorization.DefaultConfusionMatrix.CombineSummarizer
-
Creates a new CombineSummarizer
.
- COMMENT_LINE_PREFIX - Static variable in class gov.sandia.cognition.math.matrix.VectorReader
-
The start of a comment line has the "#" string at the beginning.
- CommonDocumentTextualConverterFactory - Class in gov.sandia.cognition.text.convert
-
A utility class for creating common document-text converters.
- CommonDocumentTextualConverterFactory() - Constructor for class gov.sandia.cognition.text.convert.CommonDocumentTextualConverterFactory
-
- CommonTermWeighterFactory - Class in gov.sandia.cognition.text.term.vector.weighter
-
A factory for well-known weighting schemes.
- CommunityComparisons<NodeNameType> - Class in gov.sandia.cognition.graph.community
-
This class implements various comparisons of partitionings of a graph (or the
resulting communities)
- CommunityComparisons(NodePartitioning<NodeNameType>, NodePartitioning<NodeNameType>) - Constructor for class gov.sandia.cognition.graph.community.CommunityComparisons
-
Initializes this with the input partitionings of the same underlying set
- CommunityMetrics - Class in gov.sandia.cognition.graph.community
-
This class stores several static methods for computing metrics specific to a
graph and a set of communities.
- CommunityMetrics() - Constructor for class gov.sandia.cognition.graph.community.CommunityMetrics
-
- compact() - Method in class gov.sandia.cognition.collection.AbstractMutableDoubleMap
-
Removes entries from the map with value of 0.0
- compact() - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
-
- compact() - Method in interface gov.sandia.cognition.math.matrix.InfiniteVector
-
Removes the zero elements from the vector.
- compact() - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractSparseMatrix
-
Compact the memory used by the matrix, getting rid of any zero elements
- compact() - Method in class gov.sandia.cognition.math.matrix.mtj.SparseColumnMatrix
-
- compact() - Method in class gov.sandia.cognition.math.matrix.mtj.SparseRowMatrix
-
- compact() - Method in class gov.sandia.cognition.math.matrix.mtj.SparseVector
-
Compacts the SparseVector, getting rid of any zero'ed elements.
- comparator - Variable in class gov.sandia.cognition.math.geometry.KDTree
-
Comparator of this node to determine less than, greater than, or
equality.
- comparator - Variable in class gov.sandia.cognition.math.geometry.KDTree.PairFirstVectorizableIndexComparator
-
Embedded comparator for the Vectorizable argument.
- compare(T, T) - Method in class gov.sandia.cognition.collection.DefaultComparator
-
- compare(Number, Number) - Method in class gov.sandia.cognition.collection.NumberComparator
-
- compare(Pair<? extends Vectorizable, ?>, Pair<? extends Vectorizable, ?>) - Method in class gov.sandia.cognition.math.geometry.KDTree.PairFirstVectorizableIndexComparator
-
- compare(Vectorizable, Vectorizable) - Method in class gov.sandia.cognition.math.matrix.VectorizableIndexComparator
-
- compare(ReceiverOperatingCharacteristic.DataPoint, ReceiverOperatingCharacteristic.DataPoint) - Method in class gov.sandia.cognition.statistics.method.ReceiverOperatingCharacteristic.DataPoint.Sorter
-
Sorts ROCDataPoints in ascending order according to their
falsePositiveRate (x-axis), used in Arrays.sort() method
- compare(WeightedValue<?>, WeightedValue<?>) - Method in class gov.sandia.cognition.util.DefaultWeightedValue.WeightComparator
-
- compareTimes(Collection<? extends Callable<ResultType>>) - Static method in class gov.sandia.cognition.algorithm.ParallelUtil
-
Compares the times needed by running the tasks sequentially versus
parallel.
- compareTimes(Collection<? extends Callable<ResultType>>, ThreadPoolExecutor) - Static method in class gov.sandia.cognition.algorithm.ParallelUtil
-
Compares the times needed by running the tasks sequentially versus
parallel.
- compareTo(SemanticIdentifier) - Method in class gov.sandia.cognition.framework.AbstractSemanticIdentifier
- compareTo(DefaultSemanticLabel) - Method in class gov.sandia.cognition.framework.DefaultSemanticLabel
-
Takes a label and compares that label to this one.
- compareTo(SemanticIdentifier) - Method in interface gov.sandia.cognition.framework.SemanticIdentifier
- compareTo(KNearestNeighborExhaustive<InputType, OutputType>.Neighbor) - Method in class gov.sandia.cognition.learning.algorithm.nearest.KNearestNeighborExhaustive.Neighbor
-
- compareTo(SuccessiveOverrelaxation<InputType>.Entry) - Method in class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation.Entry
-
Compares this entry to another one by comparing the weights.
- compareTo(KDTree.Neighborhood<VectorType, DataType, PairType>.Neighbor<VectorType, DataType, PairType>) - Method in class gov.sandia.cognition.math.geometry.KDTree.Neighborhood.Neighbor
-
- compareTo(LogNumber) - Method in class gov.sandia.cognition.math.LogNumber
-
- compareTo(MutableDouble) - Method in class gov.sandia.cognition.math.MutableDouble
-
- compareTo(MutableInteger) - Method in class gov.sandia.cognition.math.MutableInteger
-
- compareTo(MutableLong) - Method in class gov.sandia.cognition.math.MutableLong
-
- compareTo(UnsignedLogNumber) - Method in class gov.sandia.cognition.math.UnsignedLogNumber
-
- compareTo(Double) - Method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.LineSegment
-
- compareTo(AdaptiveRejectionSampling.Point) - Method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.Point
-
- compareTo(Duration) - Method in class gov.sandia.cognition.time.DefaultDuration
-
- compareTo(Temporal) - Method in class gov.sandia.cognition.util.AbstractTemporal
-
- completeSolver() - Method in class gov.sandia.cognition.learning.algorithm.minimization.matrix.ConjugateGradientMatrixSolver
-
- completeSolver() - Method in class gov.sandia.cognition.learning.algorithm.minimization.matrix.ConjugateGradientWithPreconditionerMatrixSolver
-
- completeSolver() - Method in class gov.sandia.cognition.learning.algorithm.minimization.matrix.IterativeMatrixSolver
-
Called after the final iteration.
- completeSolver() - Method in class gov.sandia.cognition.learning.algorithm.minimization.matrix.OverconstrainedConjugateGradientMatrixMinimizer
-
- completeSolver() - Method in class gov.sandia.cognition.learning.algorithm.minimization.matrix.SteepestDescentMatrixSolver
-
- ComplexNumber - Class in gov.sandia.cognition.math
-
Represents a complex number in a rectangular manner, explicitly storing
the real and imaginary portions: real + j*imaginary
- ComplexNumber() - Constructor for class gov.sandia.cognition.math.ComplexNumber
-
Creates a new instance of ComplexNumber with zero magnitude.
- ComplexNumber(double, double) - Constructor for class gov.sandia.cognition.math.ComplexNumber
-
Creates a new instance of ComplexNumber using the specified complex parts
- ComplexNumber(ComplexNumber) - Constructor for class gov.sandia.cognition.math.ComplexNumber
-
Copy constructor
- componentCount - Variable in class gov.sandia.cognition.learning.algorithm.pca.KernelPrincipalComponentsAnalysis
-
The number of components to create from the analysis.
- components - Variable in class gov.sandia.cognition.learning.algorithm.pca.KernelPrincipalComponentsAnalysis.Function
-
The matrix of components for the function.
- compose(Quaternion) - Method in interface gov.sandia.cognition.math.matrix.Quaternion
-
Multiplies this * other
and returns the result.
- composeEquals(Quaternion) - Method in interface gov.sandia.cognition.math.matrix.Quaternion
-
Multiplies this = this * other
, thus modifying this object.
- CompositeBatchLearnerPair<InputType,IntermediateType,OutputType> - Class in gov.sandia.cognition.learning.algorithm
-
Composes together a pair of batch (typically unsupervised) learners.
- CompositeBatchLearnerPair() - Constructor for class gov.sandia.cognition.learning.algorithm.CompositeBatchLearnerPair
-
- CompositeBatchLearnerPair(BatchLearner<? super Collection<? extends InputType>, ? extends Evaluator<? super InputType, ? extends IntermediateType>>, BatchLearner<? super Collection<? extends IntermediateType>, ? extends Evaluator<? super IntermediateType, ? extends OutputType>>) - Constructor for class gov.sandia.cognition.learning.algorithm.CompositeBatchLearnerPair
-
- CompositeCategorizer<InputType,IntermediateType,CategoryType> - Class in gov.sandia.cognition.learning.function.categorization
-
Composes a preprocessor function with a categorizer.
- CompositeCategorizer() - Constructor for class gov.sandia.cognition.learning.function.categorization.CompositeCategorizer
-
Creates a new CompositeCategorizer with the preprocessor and categorizer
set to null.
- CompositeCategorizer(Evaluator<? super InputType, ? extends IntermediateType>, Categorizer<? super IntermediateType, ? extends CategoryType>) - Constructor for class gov.sandia.cognition.learning.function.categorization.CompositeCategorizer
-
Creates a new CompositeCategorizer
.
- CompositeEvaluatorList<InputType,OutputType> - Class in gov.sandia.cognition.evaluator
-
Implements the composition of a list of evaluators.
- CompositeEvaluatorList() - Constructor for class gov.sandia.cognition.evaluator.CompositeEvaluatorList
-
Creates a new CompositeEvaluatorList
with an empty list of
evaluators.
- CompositeEvaluatorList(Evaluator<?, ?>...) - Constructor for class gov.sandia.cognition.evaluator.CompositeEvaluatorList
-
Creates a new CompositeEvaluatorList
from the given array of
evaluators.
- CompositeEvaluatorList(Collection<? extends Evaluator<?, ?>>) - Constructor for class gov.sandia.cognition.evaluator.CompositeEvaluatorList
-
Creates a new CompositeEvaluatorList
from the given collection
of evaluators.
- CompositeEvaluatorPair<InputType,IntermediateType,OutputType> - Class in gov.sandia.cognition.evaluator
-
Implements a composition of two evaluators.
- CompositeEvaluatorPair() - Constructor for class gov.sandia.cognition.evaluator.CompositeEvaluatorPair
-
Creates a new CompositeEvalutor
.
- CompositeEvaluatorPair(Evaluator<? super InputType, ? extends IntermediateType>, Evaluator<? super IntermediateType, ? extends OutputType>) - Constructor for class gov.sandia.cognition.evaluator.CompositeEvaluatorPair
-
Creates a new CompositeEvaluatorPair
from the two given evaluators.
- CompositeEvaluatorTriple<InputType,FirstIntermediateType,SecondIntermediateType,OutputType> - Class in gov.sandia.cognition.evaluator
-
Implements a composition of three evaluators.
- CompositeEvaluatorTriple() - Constructor for class gov.sandia.cognition.evaluator.CompositeEvaluatorTriple
-
Creates a new CompositeEvalutorTriple
.
- CompositeEvaluatorTriple(Evaluator<? super InputType, ? extends FirstIntermediateType>, Evaluator<? super FirstIntermediateType, ? extends SecondIntermediateType>, Evaluator<? super SecondIntermediateType, ? extends OutputType>) - Constructor for class gov.sandia.cognition.evaluator.CompositeEvaluatorTriple
-
Creates a new CompositeEvaluatorTriple
from the three given
evaluators.
- CompositeLocalGlobalTermWeighter - Class in gov.sandia.cognition.text.term.vector.weighter
-
Composes together local and global term weighters along with a normalizer.
- CompositeLocalGlobalTermWeighter() - Constructor for class gov.sandia.cognition.text.term.vector.weighter.CompositeLocalGlobalTermWeighter
-
Creates a new CompositeLocalGlobalTermWeighter
.
- CompositeLocalGlobalTermWeighter(LocalTermWeighter, GlobalTermWeighter, TermWeightNormalizer) - Constructor for class gov.sandia.cognition.text.term.vector.weighter.CompositeLocalGlobalTermWeighter
-
Creates a new CompositeLocalGlobalTermWeighter
with the given
weighting schemes.
- compress() - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
This method is provided so that the calling programmer can explicitly
declare when a matrix should be compressed to the compressed Yale format.
- compress() - Method in class gov.sandia.cognition.math.matrix.custom.SparseVector
-
The compressed representation should allow for quicker mathematical
operations, but does not permit editing the values in the vector.
- ComputableDistribution<DomainType> - Interface in gov.sandia.cognition.statistics
-
A type of Distribution that has an associated distribution function,
either a PDF or PMF.
- compute(GradientDescendable, Collection<? extends InputOutputPair<? extends Vector, Vector>>) - Static method in class gov.sandia.cognition.learning.function.cost.SumSquaredErrorCostFunction.Cache
-
Computes often-used parameters of a sum-squared error term
- compute(Collection<? extends DefaultBinaryConfusionMatrix>, double) - Static method in class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrixConfidenceInterval
-
Computes the ConfidenceIntervals for the given Collection of
ConfusionMatrices
- compute(Collection<? extends TargetEstimatePair<? extends Double, ? extends Double>>) - Static method in class gov.sandia.cognition.learning.performance.MeanAbsoluteErrorEvaluator
-
Computes the mean absolute error for the given pairs of values.
- compute(Collection<? extends TargetEstimatePair<? extends Double, ? extends Double>>) - Static method in class gov.sandia.cognition.learning.performance.MeanSquaredErrorEvaluator
-
Computes the mean squared error for the given pairs of values.
- compute(Collection<? extends TargetEstimatePair<? extends DataType, ? extends DataType>>) - Static method in class gov.sandia.cognition.learning.performance.MeanZeroOneErrorEvaluator
-
Computes the mean zero-one loss for the given pairs of values.
- compute(Collection<? extends TargetEstimatePair<? extends Double, ? extends Double>>) - Static method in class gov.sandia.cognition.learning.performance.RootMeanSquaredErrorEvaluator
-
Computes the mean squared error for the given pairs of values.
- compute(UnivariateDistribution<NumberType>, double) - Static method in class gov.sandia.cognition.statistics.bayesian.BayesianCredibleInterval
-
Creates a Bayesian credible interval by inverting the given CDF.
- compute() - Method in class gov.sandia.cognition.statistics.ChiSquaredSimilarity
-
Computes the chi-squared statistic of the two vectors.
- compute() - Method in class gov.sandia.cognition.statistics.KullbackLeiblerDivergence
-
Computes the Kullback--Leibler Divergence.
- compute(Vector, Distribution<Vector>, Random, double) - Static method in class gov.sandia.cognition.statistics.montecarlo.MultivariateCumulativeDistributionFunction
-
Computes a multi-variate cumulative distribution for a given input
according to the given distribution.
- compute() - Method in class gov.sandia.cognition.statistics.TransferEntropy
-
Computes the transfer entropy value.
- computeAcceptanceProbability(ParameterType, Iterable<? extends ObservationType>) - Method in class gov.sandia.cognition.statistics.bayesian.RejectionSampling.DefaultUpdater
-
- computeAcceptanceProbability(ParameterType, Iterable<? extends ObservationType>) - Method in interface gov.sandia.cognition.statistics.bayesian.RejectionSampling.Updater
-
Computes the probability of accepting the parameter for the given
data.
- computeAllDistancesForNode(int) - Method in class gov.sandia.cognition.graph.GraphMetrics
-
Helper which computes Dijkstra's Algorithm for the input node and returns
all of the distances to all other nodes from this node.
- computeAreaUnderConvexHull() - Method in class gov.sandia.cognition.statistics.method.ConvexReceiverOperatingCharacteristic
-
Computes the area under the convex hull
- computeAreaUnderCurve(ReceiverOperatingCharacteristic) - Static method in class gov.sandia.cognition.statistics.method.ReceiverOperatingCharacteristic.Statistic
-
Computes the "pessimistic" area under the ROC curve using the
top-left rectangle method for numerical integration.
- computeAreaUnderCurveTopLeft(Collection<ReceiverOperatingCharacteristic.DataPoint>) - Static method in class gov.sandia.cognition.statistics.method.ReceiverOperatingCharacteristic.Statistic
-
Computes the Area Under Curve for an x-axis sorted Collection
of ROC points using the top-left rectangle method for numerical
integration.
- computeAreaUnderCurveTrapezoid(Collection<ReceiverOperatingCharacteristic.DataPoint>) - Static method in class gov.sandia.cognition.statistics.method.ReceiverOperatingCharacteristic.Statistic
-
Computes the Area Under Curve for an x-axis sorted Collection
of ROC points using the top-left rectangle method for numerical
integration.
- computeAscendingArray(Collection<? extends Number>) - Static method in class gov.sandia.cognition.statistics.method.KolmogorovSmirnovConfidence
-
Returns an array of ascending sorted values from the given Collection
- computeBackwardProbabilities(Vector, Vector, double) - Method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
Computes the backward probability recursion.
- computeBackwardProbabilities(ArrayList<Vector>, ArrayList<WeightedValue<Vector>>) - Method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
Computes the backward-probabilities for the given observation likelihoods
and the weights from the alphas.
- computeBestGainAndThreshold(Collection<? extends InputOutputPair<? extends Vectorizable, OutputType>>, int, DefaultDataDistribution<OutputType>) - Method in class gov.sandia.cognition.learning.algorithm.tree.AbstractVectorThresholdMaximumGainLearner
-
Computes the best gain and threshold for a given dimension using the
computeSplitGain method for each potential split point of values for the
given dimension.
- computeBestGainAndThreshold(Collection<? extends InputOutputPair<? extends Vectorizable, OutputType>>, int, DefaultDataDistribution<OutputType>, ArrayList<DefaultWeightedValue<OutputType>>) - Method in class gov.sandia.cognition.learning.algorithm.tree.AbstractVectorThresholdMaximumGainLearner
-
Computes the best gain and threshold for a given dimension using the
computeSplitGain method for each potential split point of values for the
given dimension.
- computeBestGainThreshold(Collection<? extends InputOutputPair<? extends Vectorizable, Double>>, int, double) - Method in class gov.sandia.cognition.learning.algorithm.tree.VectorThresholdVarianceLearner
-
Computes the best information gain-threshold pair for the given
dimension on the given data.
- computeBounds(Collection<? extends DataType>) - Method in class gov.sandia.cognition.math.geometry.Quadtree
-
Computes the bounding rectangle of a given collection of points.
- computeCentralMoment(Iterable<? extends Number>, double, int) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Computes the desired biased estimate central moment of the given dataset.
- computeChiSquare(int, int, ArrayList<Double>) - Static method in class gov.sandia.cognition.statistics.method.FriedmanConfidence.Statistic
-
Computes the chi-square error for the rank means
- computeClusterDistances() - Method in class gov.sandia.cognition.learning.algorithm.clustering.OptimizedKMeansClusterer
-
Computes the distances between the clusters.
- computeConditionalProbability(Collection<InputType>, CategoryType) - Method in class gov.sandia.cognition.learning.algorithm.bayes.DiscreteNaiveBayesCategorizer
-
Computes the class conditional for the given inputs at the given
category assuming that each input feature is conditionally independent
of all other features.
- computeConditionalProbability(Collection<DataType>, DataType, ComputableDistribution<Collection<DataType>>, ComputableDistribution<Collection<DataType>>) - Method in class gov.sandia.cognition.statistics.bayesian.ConditionalProbability
-
Computes the conditional probability between a collection of objects and a new object.
- computeConditionalProbability(DataType, DataType, ComputableDistribution<DataType>, ComputableDistribution<Collection<DataType>>) - Method in class gov.sandia.cognition.statistics.bayesian.ConditionalProbability
-
Computes the conditional probability between two objects.
- computeConditionalProbabilityWhenDataTypeHasHistoricalData(DataType, DataType, ComputableDistribution<DataType>, ComputableDistribution<DataType>) - Method in class gov.sandia.cognition.statistics.bayesian.ConditionalProbability
-
Computes the conditional probability between two objects.
- computeConductance(DirectedNodeEdgeGraph<NodeNameType>, Set<NodeNameType>) - Static method in class gov.sandia.cognition.graph.community.CommunityMetrics
-
- computeConfidenceInterval(Collection<Boolean>, double) - Method in class gov.sandia.cognition.statistics.method.BernoulliConfidence
-
Computes the ConfidenceInterval for the Bernoulli parameter based on
the given data and the desired level of confidence.
- computeConfidenceInterval(double, int, double) - Static method in class gov.sandia.cognition.statistics.method.BernoulliConfidence
-
Computes the ConfidenceInterval for the Bernoulli parameter based on
the given data and the desired level of confidence.
- computeConfidenceInterval(double, double, int, double) - Method in class gov.sandia.cognition.statistics.method.BernoulliConfidence
-
- computeConfidenceInterval(Collection<Double>, double) - Method in class gov.sandia.cognition.statistics.method.ChebyshevInequality
-
Computes the Chebyshev Inequality for the given level of confidence.
- computeConfidenceInterval(double, double, int, double) - Method in class gov.sandia.cognition.statistics.method.ChebyshevInequality
-
Computes the Chebyshev Inequality for the given level of confidence.
- computeConfidenceInterval(DataType, double) - Method in interface gov.sandia.cognition.statistics.method.ConfidenceIntervalEvaluator
-
Computes a confidence interval for a given dataset and confidence (power)
level
- computeConfidenceInterval(double, double, int, double) - Method in interface gov.sandia.cognition.statistics.method.ConfidenceIntervalEvaluator
-
Computes the confidence interval given the mean and variance of
the samples, number of samples, and corresponding confidence interval
- computeConfidenceInterval(Collection<DataType>, ConfidenceIntervalEvaluator<Collection<? extends Number>>, double) - Static method in class gov.sandia.cognition.statistics.method.FieldConfidenceInterval
-
Computes a FieldConfidenceInterval for each Double/double Field
in the given data.
- computeConfidenceInterval(Collection<DataType>, ArrayList<Field>, ConfidenceIntervalEvaluator<Collection<? extends Number>>, double) - Static method in class gov.sandia.cognition.statistics.method.FieldConfidenceInterval
-
Computes a FieldConfidenceInterval for the given Fields in the given data
- computeConfidenceInterval(Collection<? extends Number>, double) - Method in class gov.sandia.cognition.statistics.method.GaussianConfidence
-
- computeConfidenceInterval(UnivariateDistribution<?>, int, double) - Static method in class gov.sandia.cognition.statistics.method.GaussianConfidence
-
Computes the Gaussian confidence interval given a distribution of
data, number of samples, and corresponding confidence interval
- computeConfidenceInterval(double, double, int, double) - Method in class gov.sandia.cognition.statistics.method.GaussianConfidence
-
- computeConfidenceInterval(Collection<Double>, double) - Method in class gov.sandia.cognition.statistics.method.MarkovInequality
-
Computes the Markov Inequality Bound for the given data at the
given confidence level.
- computeConfidenceInterval(double, int, double) - Static method in class gov.sandia.cognition.statistics.method.MarkovInequality
-
Computes the Markov Inequality Bound for the given data at the
given confidence level.
- computeConfidenceInterval(double, double, int, double) - Method in class gov.sandia.cognition.statistics.method.MarkovInequality
-
- computeConfidenceInterval(Collection<? extends Number>, double) - Method in class gov.sandia.cognition.statistics.method.StudentTConfidence
-
- computeConfidenceInterval(double, double, int, double) - Method in class gov.sandia.cognition.statistics.method.StudentTConfidence
-
- computeConjuctiveProbability(Collection<InputType>, CategoryType) - Method in class gov.sandia.cognition.learning.algorithm.bayes.DiscreteNaiveBayesCategorizer
-
Computes the conjunctive probability of the inputs and the category.
- computeConvexNull(ReceiverOperatingCharacteristic) - Static method in class gov.sandia.cognition.statistics.method.ConvexReceiverOperatingCharacteristic
-
Computes the convex hull of a ROC curve
- computeCorrelation(Collection<? extends Number>, Collection<? extends Number>) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Computes the correlation coefficient in a single pass.
- computeCumulativeProbabilityValue() - Method in class gov.sandia.cognition.statistics.ChiSquaredSimilarity
-
Computes the chi-squared similarity statistic, then uses that to compute
a cumulative probability.
- computeCumulativeValue(int, ClosedFormDiscreteUnivariateDistribution<? super Integer>) - Static method in class gov.sandia.cognition.statistics.ProbabilityMassFunctionUtil
-
Computes the CDF value for the given PMF for the input.
- computeDecay(LinearBinaryCategorizer, Vector, boolean, double, double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.AbstractLinearCombinationOnlineLearner
-
Computes the decay scalar for the existing weight vector.
- computeDecay(DefaultKernelBinaryCategorizer<InputType>, InputType, boolean, double, double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.AbstractLinearCombinationOnlineLearner
-
Computes the decay scalar for the existing weights.
- computeDecay(LinearBinaryCategorizer, Vector, boolean, double, double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineShiftingPerceptron
-
- computeDecay(DefaultKernelBinaryCategorizer<InputType>, InputType, boolean, double, double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineShiftingPerceptron
-
- computeDPrime(ReceiverOperatingCharacteristic.DataPoint) - Static method in class gov.sandia.cognition.statistics.method.ReceiverOperatingCharacteristic.Statistic
-
Computes the value of d-prime given a datapoint
- computeEffectiveParticles(DataDistribution<ParameterType>) - Method in class gov.sandia.cognition.statistics.bayesian.AbstractParticleFilter
-
- computeEffectiveParticles(DataDistribution<ParameterType>) - Method in interface gov.sandia.cognition.statistics.bayesian.ParticleFilter
-
Computes the effective number of particles.
- computeEntropy(Iterable<? extends Number>) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Computes the information-theoretic entropy of the PMF in bits (base 2).
- computeEquivalentSampleSize(BetaDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.BernoulliBayesianEstimator
-
- computeEquivalentSampleSize(BetaDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.BinomialBayesianEstimator
-
- computeEquivalentSampleSize(BeliefType) - Method in interface gov.sandia.cognition.statistics.bayesian.conjugate.ConjugatePriorBayesianEstimator
-
Computes the equivalent sample size of using the given prior.
- computeEquivalentSampleSize(GammaDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.ExponentialBayesianEstimator
-
- computeEquivalentSampleSize(GammaDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.GammaInverseScaleBayesianEstimator
-
- computeEquivalentSampleSize(DirichletDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.MultinomialBayesianEstimator
-
- computeEquivalentSampleSize(MultivariateGaussian) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanBayesianEstimator
-
- computeEquivalentSampleSize(NormalInverseWishartDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanCovarianceBayesianEstimator
-
- computeEquivalentSampleSize(GammaDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.PoissonBayesianEstimator
-
- computeEquivalentSampleSize(ParetoDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.UniformDistributionBayesianEstimator
-
- computeEquivalentSampleSize(UnivariateGaussian) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanBayesianEstimator
-
- computeEquivalentSampleSize(NormalInverseGammaDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanVarianceBayesianEstimator
-
- computeEvidenceProbabilty(Collection<InputType>) - Method in class gov.sandia.cognition.learning.algorithm.bayes.DiscreteNaiveBayesCategorizer
-
Computes the probability of the given inputs.
- computeExponent() - Method in class gov.sandia.cognition.math.ComplexNumber
-
Computes the natural-base exponent of the complex number, such that
this = log(exp(this)) = exp(log(this))
- computeForwardProbabilities(Vector, Vector, boolean) - Method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
Computes the recursive solution to the forward probabilities of the
HMM.
- computeForwardProbabilities(ArrayList<Vector>, boolean) - Method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
Computes the forward probabilities for the given observation likelihood
sequence.
- computeGaussianSampler(Iterable<? extends ObservationType>, Random, int) - Method in class gov.sandia.cognition.statistics.bayesian.RejectionSampling.DefaultUpdater
-
Computes a Gaussian sample for the parameter, assuming it has is
a Double, using importance sampling.
- computeGraphPermanance(DirectedNodeEdgeGraph<NodeNameType>, GraphMetrics<NodeNameType>, NodePartitioning<NodeNameType>) - Static method in class gov.sandia.cognition.graph.community.CommunityMetrics
-
Computes the average permanence for the partitioning of the entire graph
- computeKurtosis(Collection<? extends Number>) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Computes the biased excess kurtosis of the given dataset.
- computeLines() - Method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.AbstractEnvelope
-
Computes the line segments comprising this Envelope
- computeLines() - Method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.LowerEnvelope
-
Recomputes the line segments that comprise the upper envelope
- computeLines() - Method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.UpperEnvelope
-
Recomputes the line segments that comprise the upper envelope
- computeLocalWeights(Vectorizable) - Method in class gov.sandia.cognition.text.term.vector.weighter.local.AbstractLocalTermWeighter
-
- computeLocalWeights(Vector) - Method in class gov.sandia.cognition.text.term.vector.weighter.local.BinaryLocalTermWeighter
-
- computeLocalWeights(Vectorizable) - Method in interface gov.sandia.cognition.text.term.vector.weighter.local.LocalTermWeighter
-
Computes the new local weights for a given document.
- computeLocalWeights(Vector) - Method in interface gov.sandia.cognition.text.term.vector.weighter.local.LocalTermWeighter
-
Computes the new local weights for a given document.
- computeLocalWeights(Vector) - Method in class gov.sandia.cognition.text.term.vector.weighter.local.LogLocalTermWeighter
-
- computeLocalWeights(Vector) - Method in class gov.sandia.cognition.text.term.vector.weighter.local.NormalizedLogLocalTermWeighter
-
- computeLocalWeights(Vector) - Method in class gov.sandia.cognition.text.term.vector.weighter.local.TermFrequencyLocalTermWeighter
-
- computeLogImportanceValue(ParameterType) - Method in class gov.sandia.cognition.statistics.bayesian.ImportanceSampling.DefaultUpdater
-
- computeLogImportanceValue(ParameterType) - Method in interface gov.sandia.cognition.statistics.bayesian.ImportanceSampling.Updater
-
Computes the parameter's importance weight.
- computeLogLikelihood(ParameterType, Iterable<? extends ObservationType>) - Method in class gov.sandia.cognition.statistics.bayesian.ImportanceSampling.DefaultUpdater
-
- computeLogLikelihood(ParameterType, Iterable<? extends ObservationType>) - Method in interface gov.sandia.cognition.statistics.bayesian.ImportanceSampling.Updater
-
Computes the log likelihood of the data given the parameter
- computeLogLikelihood(ParameterType, Iterable<? extends ObservationType>) - Method in interface gov.sandia.cognition.statistics.bayesian.MetropolisHastingsAlgorithm.Updater
-
Computes the log likelihood of the data given the parameter
- computeLogLikelihood(ParameterType, ObservationType) - Method in interface gov.sandia.cognition.statistics.bayesian.ParticleFilter.Updater
-
Computes the log likelihood of the parameter and the observation.
- computeLogPosterior(Vector, CategoryType) - Method in class gov.sandia.cognition.learning.algorithm.bayes.VectorNaiveBayesCategorizer
-
Computes the log-posterior probability that the input belongs to the
given category.
- computeMaximum(Iterable<? extends Number>) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Finds the maximum value of a data set.
- computeMean(Iterable<? extends RingType>) - Static method in class gov.sandia.cognition.math.MultivariateStatisticsUtil
-
Computes the arithmetic mean (average, expectation, first central moment)
of a dataset
- computeMean(Iterable<? extends Number>) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Computes the arithmetic mean (average, expectation, first central moment)
of a dataset
- computeMeanAndCovariance(Iterable<? extends Vectorizable>) - Static method in class gov.sandia.cognition.math.MultivariateStatisticsUtil
-
Computes the mean and unbiased covariance Matrix of a multivariate
data set.
- computeMeanAndVariance(Iterable<? extends Number>) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Computes the mean and unbiased variance of a Collection of data using
the one-pass approach.
- computeMeasurementBelief(MultivariateGaussian, Vector, Matrix) - Method in class gov.sandia.cognition.statistics.bayesian.AbstractKalmanFilter
-
Updates the measurement belief by computing the Kalman gain and
incorporating the innovation into the estimate
- computeMedian(Collection<? extends Number>) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Computes the median of the given data.
- computeMinAndMax(Iterable<? extends Number>) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Computes the minimum and maximum of a set of data in a single pass.
- computeMinimum(Iterable<? extends Number>) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Finds the minimum value of a data set.
- computeMinimumDifference(VectorType) - Method in class gov.sandia.cognition.math.geometry.KDTree
-
Computes the minimum absolute difference between the given key and the
"first" value stored in this subtree for the index given by the embedded
comparator.
- computeModularity(DirectedNodeEdgeGraph<NodeNameType>, Set<Set<NodeNameType>>) - Static method in class gov.sandia.cognition.graph.community.CommunityMetrics
-
Computes the modularity of the input graph into the input set of
communities.
- computeModularity(Set<Set<NodeNameType>>, GraphMetrics<NodeNameType>) - Static method in class gov.sandia.cognition.graph.community.CommunityMetrics
-
Computes the modularity of the graph (whose metrics were passed in) into
the input set of communities.
- computeModularity(DirectedNodeEdgeGraph<NodeNameType>, NodePartitioning<NodeNameType>) - Static method in class gov.sandia.cognition.graph.community.CommunityMetrics
-
Computes the modularity of the input graph into the input set of
communities.
- computeModularity(NodePartitioning<NodeNameType>, GraphMetrics<NodeNameType>) - Static method in class gov.sandia.cognition.graph.community.CommunityMetrics
-
- computeMultipleObservationLogLikelihood(Collection<? extends Collection<? extends ObservationType>>) - Method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
Computes the log-likelihood of the observation sequences, given the
current HMM's parameterization.
- computeMultipleObservationLogLikelihood(Collection<? extends Collection<? extends ObservationType>>) - Method in class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel
-
- computeNaturalLogarithm() - Method in class gov.sandia.cognition.math.ComplexNumber
-
Computes the natural-base logarithm of the complex number, such that
this = log(exp(this)) = exp(log(this))
- computeNeighborhood(InputType) - Method in class gov.sandia.cognition.learning.algorithm.nearest.AbstractKNearestNeighbor
-
Computes the neighbors to the input key.
- computeNeighborhood(InputType) - Method in class gov.sandia.cognition.learning.algorithm.nearest.KNearestNeighborExhaustive
-
- computeNeighborhood(InputType) - Method in class gov.sandia.cognition.learning.algorithm.nearest.KNearestNeighborKDTree
-
- computeNullHypothesisProbabilities(int, Matrix) - Method in class gov.sandia.cognition.statistics.method.NemenyiConfidence.Statistic
-
Computes null-hypothesis probability for the (i,j) treatment comparison
- computeNullHypothesisProbabilities(ArrayList<Integer>, Matrix) - Method in class gov.sandia.cognition.statistics.method.TukeyKramerConfidence.Statistic
-
Computes null-hypothesis probability for the (i,j) treatment comparison
- computeNullHypothesisProbability(double) - Static method in class gov.sandia.cognition.statistics.method.MannWhitneyUConfidence.Statistic
-
Computes the p-value for the test, given the z-value
- computeNullHypothesisProbability(double) - Static method in class gov.sandia.cognition.statistics.method.WilcoxonSignedRankConfidence.Statistic
-
Computes the p-value given the z-value
- computeObjective() - Method in class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachineAlternatingLeastSquares
-
Gets the total objective, which is the squared error plus the
regularization terms.
- computeObservationLikelihoods(ObservationType) - Method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
Computes the conditionally independent likelihoods
for each state given the observation.
- computeObservationLikelihoods(ObservationType, Vector) - Method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
Computes the conditionally independent likelihoods
for each state given the observation.
- computeObservationLikelihoods(Collection<? extends ObservationType>) - Method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
Computes the conditionally independent likelihoods
for each state given the observation sequence.
- computeObservationLogLikelihood(Collection<? extends ObservationType>) - Method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
Computes the log-likelihood of the observation sequence, given the
current HMM's parameterization.
- computeObservationLogLikelihood(Collection<? extends ObservationType>, Collection<Integer>) - Method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
Computes the log-likelihood that the given observation sequence
was generated by the given sequence of state indices.
- computeOneNodePermanence(GraphMetrics<NodeNameType>, NodePartitioning<NodeNameType>, NodeNameType, DirectedNodeEdgeGraph<NodeNameType>) - Static method in class gov.sandia.cognition.graph.community.CommunityMetrics
-
- computeOneNodePermanenceById(GraphMetrics<NodeNameType>, NodePartitioning<NodeNameType>, int, DirectedNodeEdgeGraph<NodeNameType>) - Static method in class gov.sandia.cognition.graph.community.CommunityMetrics
-
Computes the permanence for one node in the graph.
- computeOptimalScale(Iterable<? extends ObservationType>) - Method in class gov.sandia.cognition.statistics.bayesian.RejectionSampling.DefaultUpdater
-
Computes the optimal scale factor for enveloping the conjunctive
distribution with the sampler function given the data
- computeOptimalThreshold(ReceiverOperatingCharacteristic) - Static method in class gov.sandia.cognition.statistics.method.ReceiverOperatingCharacteristic.Statistic
-
Determines the DataPoint, and associated threshold, that
simultaneously maximizes the value of
Area=TruePositiveRate+TrueNegativeRate, usually the
upper-left "knee" on the ROC curve.
- computeOptimalThreshold(ReceiverOperatingCharacteristic, double, double) - Static method in class gov.sandia.cognition.statistics.method.ReceiverOperatingCharacteristic.Statistic
-
Determines the DataPoint, and associated threshold, that
simultaneously maximizes the value of
Area=TruePositiveRate+TrueNegativeRate, usually the
upper-left "knee" on the ROC curve.
- computeOuterProductDataMatrix(ArrayList<? extends Vector>) - Static method in class gov.sandia.cognition.learning.data.DatasetUtil
-
Computes the outer-product Matrix of the given set of data:
XXt = [ x1 x2 ...
- computeOutputMean(Collection<? extends InputOutputPair<?, ? extends Number>>) - Static method in class gov.sandia.cognition.learning.data.DatasetUtil
-
Computes the mean of the output data.
- computeOutputVariance(Collection<? extends InputOutputPair<?, ? extends Number>>) - Static method in class gov.sandia.cognition.learning.data.DatasetUtil
-
Computes the variance of the output of a given set of input-output pairs.
- computePairwiseTestResults(Collection<? extends Collection<? extends Number>>, NullHypothesisEvaluator<Collection<? extends Number>>) - Method in class gov.sandia.cognition.statistics.method.AbstractPairwiseMultipleHypothesisComparison.Statistic
-
Computes the pair-wise confidence test results
- computeParameterGradient(Vector) - Method in class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachine
-
- computeParameterGradient(Vector) - Method in interface gov.sandia.cognition.learning.algorithm.gradient.GradientDescendable
-
Computes the derivative of the function about the input with respect
to the parameters of the function.
- computeParameterGradient(VectorizableVectorFunction, Vector, double) - Static method in class gov.sandia.cognition.learning.algorithm.gradient.GradientDescendableApproximator
-
Computes a forward-differences approximation to the parameter Jacobian
- computeParameterGradient(Vector) - Method in class gov.sandia.cognition.learning.algorithm.gradient.GradientDescendableApproximator
-
Computes a forward-differences approximation to the parameter Jacobian
- computeParameterGradient(InputType) - Method in interface gov.sandia.cognition.learning.algorithm.gradient.ParameterGradientEvaluator
-
Computes the derivative of the output with respect to the parameters for
a particular input.
- computeParameterGradient(GradientDescendable) - Method in class gov.sandia.cognition.learning.function.cost.AbstractParallelizableCostFunction
-
- computeParameterGradient(GradientDescendable) - Method in interface gov.sandia.cognition.learning.function.cost.DifferentiableCostFunction
-
Differentiates function with respect to its parameters.
- computeParameterGradient(GradientDescendable) - Method in class gov.sandia.cognition.learning.function.cost.MeanSquaredErrorCostFunction
-
- computeParameterGradient(GradientDescendable) - Method in class gov.sandia.cognition.learning.function.cost.ParallelizedCostFunctionContainer
-
- computeParameterGradient(Double) - Method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction
-
- computeParameterGradient(Vector) - Method in class gov.sandia.cognition.learning.function.vector.DifferentiableFeedforwardNeuralNetwork
-
- computeParameterGradient(Vector) - Method in class gov.sandia.cognition.learning.function.vector.DifferentiableGeneralizedLinearModel
-
- computeParameterGradient(Vector) - Method in class gov.sandia.cognition.learning.function.vector.MultivariateDiscriminant
-
- computeParameterGradient(Matrix, Vector) - Static method in class gov.sandia.cognition.learning.function.vector.MultivariateDiscriminant
-
Computes the parameter gradient of the given matrix post-multiplied
by the input Vector
- computeParameterGradient(Vector) - Method in class gov.sandia.cognition.learning.function.vector.MultivariateDiscriminantWithBias
-
- computeParameterGradient(Vector) - Method in class gov.sandia.cognition.learning.function.vector.ThreeLayerFeedforwardNeuralNetwork
-
- computeParameterGradientAmalgamate(Collection<Object>) - Method in interface gov.sandia.cognition.learning.function.cost.ParallelizableCostFunction
-
Amalgamates the linear components of the cost gradient function into a
single Vector.
- computeParameterGradientAmalgamate(Collection<Object>) - Method in class gov.sandia.cognition.learning.function.cost.SumSquaredErrorCostFunction
-
- computeParameterGradientPartial(GradientDescendable) - Method in interface gov.sandia.cognition.learning.function.cost.ParallelizableCostFunction
-
Computes the partial (linear) component of the cost function gradient.
- computeParameterGradientPartial(GradientDescendable) - Method in class gov.sandia.cognition.learning.function.cost.SumSquaredErrorCostFunction
-
- computePercentile(Collection<? extends Number>, double) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Computes the percentile value of the given data.
- computePercentiles(Collection<? extends Number>, double...) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Computes the given percentiles of the given data.
- computePolynomial(LineBracket, EvaluatorType) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.interpolator.AbstractLineBracketInterpolatorPolynomial
-
Fits the interpolating polynomial to the given LineBracket
- computePolynomial(LineBracket, DifferentiableUnivariateScalarFunction) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.interpolator.LineBracketInterpolatorHermiteCubic
-
- computePolynomial(LineBracket, DifferentiableUnivariateScalarFunction) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.interpolator.LineBracketInterpolatorHermiteParabola
-
- computePolynomial(LineBracket, Evaluator<Double, Double>) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.interpolator.LineBracketInterpolatorLinear
-
- computePolynomial(LineBracket, Evaluator<Double, Double>) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.interpolator.LineBracketInterpolatorParabola
-
- computePosterior(Collection<InputType>, CategoryType) - Method in class gov.sandia.cognition.learning.algorithm.bayes.DiscreteNaiveBayesCategorizer
-
Computes the posterior probability of the inputs for the given category.
- computePosterior(Vector, CategoryType) - Method in class gov.sandia.cognition.learning.algorithm.bayes.VectorNaiveBayesCategorizer
-
Computes the posterior probability that the input belongs to the
given category.
- computePosterior(ObservationType, CategoryType) - Method in class gov.sandia.cognition.learning.function.categorization.MaximumAPosterioriCategorizer
-
Computes the posterior of the observation given the category.
- computePosteriorLogLikelihood(Iterable<? extends ObservationType>) - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.Sample
-
Computes the posterior log likelihood of the data given the clusters
and the prior probability of the clustering from a
Chinese Restaurant Process
- computePosteriorLogLikelihood(int, double) - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.Sample
-
Computes the posterior log likelihood of the Sample
- computePredictionCovariance(Matrix, Matrix) - Method in class gov.sandia.cognition.statistics.bayesian.AbstractKalmanFilter
-
Computes the prediction covariance from the Jacobian and believe
covariance
- computeRandomVariableLikelihoods(Vector) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateMixtureDensityModel.PDF
-
Computes the likelihoods of the underlying distributions
- computeRandomVariableProbabilities(Vector) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateMixtureDensityModel.PDF
-
Computes the probability distribution that the input was generated by
the underlying distributions
- computeRescaling(LinearBinaryCategorizer, Vector, boolean, double, double, double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.AbstractLinearCombinationOnlineLearner
-
Computes the rescaling for the new weight vector.
- computeRescaling(DefaultKernelBinaryCategorizer<InputType>, InputType, boolean, double, double, double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.AbstractLinearCombinationOnlineLearner
-
Computes the rescaling for the new weights.
- computeRootMeanSquaredError(Collection<? extends Number>) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Computes the Root mean-squared (RMS) error between the data and its mean.
- computeRootMeanSquaredError(Collection<? extends Number>, double) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Computes the Root mean-squared (RMS) error between the data and its mean
- computeSampleSize(double, double) - Static method in class gov.sandia.cognition.statistics.method.BernoulliConfidence
-
Computes the number of samples needed to estimate the Bernoulli parameter
"p" (mean) within "accuracy" with probability at least "confidence".
- computeScaleFactor(Vector, Vector) - Method in class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerConjugateGradient
-
Computes the conjugate gradient parameter for the particular update
scheme.
- computeScaleFactor(Vector, Vector) - Method in class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerFletcherReeves
-
- computeScaleFactor(Vector, Vector) - Method in class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerLiuStorey
-
- computeScaleFactor(Vector, Vector) - Method in class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerPolakRibiere
-
- computeSequenceParameters() - Method in class gov.sandia.cognition.learning.algorithm.hmm.BaumWelchAlgorithm
-
Computes the gammas and A matrices for each sequence.
- computeSimplexInputSum() - Method in class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerNelderMead
-
Computes the sum of input values in the simplex
- computeSkewness(Collection<? extends Number>) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Computes the unbiased skewness of the dataset.
- computeSplitGain(DefaultDataDistribution<OutputType>, DefaultDataDistribution<OutputType>, DefaultDataDistribution<OutputType>) - Method in class gov.sandia.cognition.learning.algorithm.tree.AbstractVectorThresholdMaximumGainLearner
-
Computes the gain of a given split.
- computeSplitGain(DefaultDataDistribution<OutputType>, DefaultDataDistribution<OutputType>, DefaultDataDistribution<OutputType>) - Method in class gov.sandia.cognition.learning.algorithm.tree.VectorThresholdGiniImpurityLearner
-
Computes the split gain by computing the Gini impurity for the
given split.
- computeSplitGain(DefaultDataDistribution<OutputType>, DefaultDataDistribution<OutputType>, DefaultDataDistribution<OutputType>) - Method in class gov.sandia.cognition.learning.algorithm.tree.VectorThresholdHellingerDistanceLearner
-
Computes the split gain by computing the mean Hellinger distance for the
given split.
- computeSplitGain(DefaultDataDistribution<OutputType>, DefaultDataDistribution<OutputType>, DefaultDataDistribution<OutputType>) - Method in class gov.sandia.cognition.learning.algorithm.tree.VectorThresholdInformationGainLearner
-
- computeStandardDeviation(Collection<? extends Number>) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Computes the standard deviation of a dataset, which is the square root
of the unbiased variance.
- computeStandardDeviation(Collection<? extends Number>, double) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Computes the standard deviation of a dataset, which is the square root
of the unbiased variance.
- computeStateObservationLikelihood(Vector, Vector, double) - Static method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
Computes the probability of the various states at a time instance given
the observation sequence.
- computeStateObservationLikelihood(ArrayList<WeightedValue<Vector>>, ArrayList<WeightedValue<Vector>>, double) - Method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
Computes the probabilities of the various states over time given the
observation sequence.
- computeStateObservationLikelihood(ArrayList<WeightedValue<Vector>>, ArrayList<WeightedValue<Vector>>, double) - Method in class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel
-
- computeStatistics() - Method in class gov.sandia.cognition.statistics.method.ReceiverOperatingCharacteristic
-
Computes useful statistical information associated with the ROC curve
- computeSum(Iterable<? extends RingType>) - Static method in class gov.sandia.cognition.math.MultivariateStatisticsUtil
-
Computes the arithmetic sum of the dataset
- computeSum(Iterable<? extends Number>) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Computes the arithmetic sum of the dataset
- computeSumSquaredDifference(Iterable<? extends Number>, double) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Computes the sum-squared difference between the data and a target
- computeTemporaryMessage(int) - Method in class gov.sandia.cognition.graph.inference.SumProductBeliefPropagation
-
- computeTemporaryMessage(int) - Method in class gov.sandia.cognition.graph.inference.SumProductDirectedPropagation
-
Private helper that computes the temporary message for the specified edge
for the current iteration going in the specified direction
- computeTemporaryMessage(int) - Method in class gov.sandia.cognition.graph.inference.SumProductInferencingAlgorithm
-
Private helper that computes the temporary message for the specified edge
for the current iteration going in the specified direction (a different
message for each direction)
- computeTestStatistics(int, ArrayList<Double>, double) - Method in class gov.sandia.cognition.statistics.method.NemenyiConfidence.Statistic
-
Computes the test statistic for all treatments
- computeTestStatistics(ArrayList<Integer>, ArrayList<Double>, double) - Method in class gov.sandia.cognition.statistics.method.TukeyKramerConfidence.Statistic
-
Computes the test statistic for all treatments
- computeTransitions(Vector, Vector, Vector) - Static method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
Computes the stochastic transition-probability matrix from the
given probabilities.
- computeTransitions(ArrayList<WeightedValue<Vector>>, ArrayList<WeightedValue<Vector>>, ArrayList<Vector>) - Method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
Computes the stochastic transition-probability matrix from the
given probabilities.
- computeTransitions(ArrayList<WeightedValue<Vector>>, ArrayList<WeightedValue<Vector>>, ArrayList<Vector>) - Method in class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel
-
- ComputeTransitionsTask() - Constructor for class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel.ComputeTransitionsTask
-
Default constructor.
- computeTransitionTasks - Variable in class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel
-
ComputeTransitionsTasks.
- computeTreatmentRankMeans(Collection<? extends Collection<? extends Number>>) - Static method in class gov.sandia.cognition.statistics.method.FriedmanConfidence
-
Computes the mean rank of the treatments
- computeU(double, int, double, int) - Static method in class gov.sandia.cognition.statistics.method.MannWhitneyUConfidence.Statistic
-
Computes the U-statistic, the minimum rank sum above "chance"
- computeUpdate(LinearBinaryCategorizer, Vector, boolean, double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.AbstractLinearCombinationOnlineLearner
-
Compute the update weight in the linear case.
- computeUpdate(DefaultKernelBinaryCategorizer<InputType>, InputType, boolean, double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.AbstractLinearCombinationOnlineLearner
-
Compute the update weight in the linear case.
- computeUpdate(LinearBinaryCategorizer, Vector, boolean, double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineBinaryMarginInfusedRelaxedAlgorithm
-
- computeUpdate(DefaultKernelBinaryCategorizer<InputType>, InputType, boolean, double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineBinaryMarginInfusedRelaxedAlgorithm
-
- computeUpdate(double, double, double, double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlinePassiveAggressivePerceptron
-
Compute the update value (tau) for the algorithm.
- computeUpdate(LinearBinaryCategorizer, Vector, boolean, double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlinePassiveAggressivePerceptron
-
- computeUpdate(DefaultKernelBinaryCategorizer<InputType>, InputType, boolean, double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlinePassiveAggressivePerceptron
-
- computeUpdate(double, double, double, double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlinePassiveAggressivePerceptron.LinearSoftMargin
-
- computeUpdate(double, double, double, double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlinePassiveAggressivePerceptron.QuadraticSoftMargin
-
- computeUpdate(LinearBinaryCategorizer, Vector, boolean, double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlinePerceptron
-
- computeUpdate(DefaultKernelBinaryCategorizer<InputType>, InputType, boolean, double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlinePerceptron
-
- computeUpdate(boolean, double) - Static method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlinePerceptron
-
Computes the update weight for the given actual category and predicted
value according to the Perceptron update rule.
- computeUpdate(LinearBinaryCategorizer, Vector, boolean, double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineRampPassiveAggressivePerceptron
-
- computeUpdate(DefaultKernelBinaryCategorizer<InputType>, InputType, boolean, double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineRampPassiveAggressivePerceptron
-
- computeUpdate(LinearBinaryCategorizer, Vector, boolean, double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineShiftingPerceptron
-
- computeUpdate(DefaultKernelBinaryCategorizer<InputType>, InputType, boolean, double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineShiftingPerceptron
-
- computeVariance(Collection<? extends Vector>) - Static method in class gov.sandia.cognition.math.MultivariateStatisticsUtil
-
Computes the variance (second central moment, squared standard deviation)
of a dataset.
- computeVariance(Collection<? extends Vector>, Vector) - Static method in class gov.sandia.cognition.math.MultivariateStatisticsUtil
-
Computes the variance (second central moment, squared standard deviation)
of a dataset
- computeVariance(Collection<? extends Number>) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Computes the unbiased variance (second central moment,
squared standard deviation) of a dataset.
- computeVariance(Collection<? extends Number>, double) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Computes the unbiased variance (second central moment,
squared standard deviation) of a dataset
- computeVector(double) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.DirectionalVectorToScalarFunction
-
Transforms the scaleFactor into a multidimensional Vector using the
direction
- computeViterbiRecursion(Vector, Vector) - Method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
Computes the Viterbi recursion for a given "delta" and "b"
- computeViterbiRecursion(Vector, Vector) - Method in class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel
-
- computeWeightedCentralMoment(Iterable<? extends WeightedValue<? extends Number>>, double, int) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Computes the desired biased estimate central moment of the given dataset.
- computeWeightedKurtosis(Collection<? extends WeightedValue<? extends Number>>) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Computes the biased excess kurtosis of the given dataset.
- computeWeightedMean(Iterable<? extends WeightedValue<? extends Number>>) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Computes the arithmetic mean (average, expectation, first central moment)
of a dataset.
- computeWeightedMeanAndCovariance(Iterable<? extends WeightedValue<? extends Vectorizable>>) - Static method in class gov.sandia.cognition.math.MultivariateStatisticsUtil
-
Computes the mean and biased covariance Matrix of a multivariate
weighted data set.
- computeWeightedMeanAndVariance(Iterable<? extends WeightedValue<? extends Number>>) - Static method in class gov.sandia.cognition.math.UnivariateStatisticsUtil
-
Computes the mean and unbiased variance of a Collection of data using
the one-pass approach.
- computeWeightedOutputMean(Collection<? extends InputOutputPair<?, ? extends Number>>) - Static method in class gov.sandia.cognition.learning.data.DatasetUtil
-
Computes the mean of the output data.
- computeWeightedZSquared(Vector) - Method in class gov.sandia.cognition.statistics.distribution.MixtureOfGaussians.PDF
-
Computes the weighted z-value (deviate) of the given input.
- computeWithPartialSums() - Method in class gov.sandia.cognition.statistics.TransferEntropy
-
Computes the transfer entropy value and returns a map of the states with their corresponding partial sums.
- computeZ(double, int, int) - Static method in class gov.sandia.cognition.statistics.method.MannWhitneyUConfidence.Statistic
-
Computes the z-value, used in the UnivariateGaussian CDF
- computeZ(double, int) - Static method in class gov.sandia.cognition.statistics.method.WilcoxonSignedRankConfidence.Statistic
-
Computes the z-value from the T-statistic and numNonZero value
- computeZSquared(Vector) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian
-
Computes the z value squared, such that p(x) = coefficient *
exp{-0.5*z^2}
- ConcurrentCognitiveModule - Interface in gov.sandia.cognition.framework.concurrent
-
The ConcurrentCognitiveModule interface extends the functionality of
CognitiveModule to support concurrent module evaluation within a
CognitiveModel.
- conditionalDistribution - Variable in class gov.sandia.cognition.statistics.bayesian.AbstractBayesianParameter
-
Distribution from which to pull the parameters.
- conditionalDistribution - Variable in class gov.sandia.cognition.statistics.DefaultDistributionParameter
-
Distribution from which to pull the parameters.
- conditionalPriorPredictive - Variable in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel
-
Base predictive distribution that determines the value of the
new cluster weighting during the Gibbs sampling.
- ConditionalProbability<DataType> - Class in gov.sandia.cognition.statistics.bayesian
-
A class for finding the conditional probability of two elements, or one element and a collection of other elements.
- ConditionalProbability() - Constructor for class gov.sandia.cognition.statistics.bayesian.ConditionalProbability
-
Constructor for new Conditional Probability object.
- conditionals - Variable in class gov.sandia.cognition.learning.algorithm.bayes.VectorNaiveBayesCategorizer
-
The mapping of category to the conditional distribution for the category
with one probability density function for each dimension.
- conditionNumber() - Method in class gov.sandia.cognition.math.matrix.decomposition.AbstractSingularValueDecomposition
-
- conditionNumber() - Method in interface gov.sandia.cognition.math.matrix.decomposition.SingularValueDecomposition
-
Returns the condition number of the underlying matrix, which is simply
the ratio of the largest to smallest singular value
- confidence - Variable in class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalDeviation
-
The confidence to use for updating.
- confidence - Variable in class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalVariance
-
The confidence to use for updating.
- confidence - Variable in class gov.sandia.cognition.learning.experiment.LearnerComparisonExperiment
-
The confidence statistic generated from the underlying performance
statistics.
- CONFIDENCE_REGION - Static variable in class gov.sandia.cognition.math.UnivariateSummaryStatistics
-
Region of the confidence interval, 0.95.
- ConfidenceInterval - Class in gov.sandia.cognition.statistics.method
-
Contains a specification for a confidence interval, that is, the solution of
Pr{ lowerBound <= x(centralValue) <= upperBound } >= confidence
- ConfidenceInterval(double, double, double, double, int) - Constructor for class gov.sandia.cognition.statistics.method.ConfidenceInterval
-
Creates a new instance of ConfidenceInterval
- ConfidenceInterval(ConfidenceInterval) - Constructor for class gov.sandia.cognition.statistics.method.ConfidenceInterval
-
Copy constructor
- ConfidenceIntervalEvaluator<DataType> - Interface in gov.sandia.cognition.statistics.method
-
Computes a confidence interval for a given dataset and confidence (power)
level
- ConfidenceStatistic - Interface in gov.sandia.cognition.statistics.method
-
An interface that describes the result of a statistical confidence test.
- ConfidenceTestAssumptions - Annotation Type in gov.sandia.cognition.statistics.method
-
Describes the assumptions and other information of a statistical confidence
test.
- ConfidenceWeightedBinaryCategorizer - Interface in gov.sandia.cognition.learning.function.categorization
-
Interface for a confidence-weighted binary categorizer, which defines a
distribution over linear binary categorizers.
- ConfidenceWeightedDiagonalDeviation - Class in gov.sandia.cognition.learning.algorithm.confidence
-
An implementation of the Standard Deviation (Stdev) algorithm for learning
a confidence-weighted categorizer.
- ConfidenceWeightedDiagonalDeviation() - Constructor for class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalDeviation
-
Creates a new ConfidenceWeightedDiagonalVariance
with default
parameters.
- ConfidenceWeightedDiagonalDeviation(double, double) - Constructor for class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalDeviation
-
Creates a new ConfidenceWeightedDiagonalVariance
with the given
parameters.
- ConfidenceWeightedDiagonalDeviationProject - Class in gov.sandia.cognition.learning.algorithm.confidence
-
An implementation of the Standard Deviation (Stdev) algorithm for learning
a confidence-weighted categorizer.
- ConfidenceWeightedDiagonalDeviationProject() - Constructor for class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalDeviationProject
-
Creates a new ConfidenceWeightedDiagonalDeviationProject
with
default parameters.
- ConfidenceWeightedDiagonalDeviationProject(double, double) - Constructor for class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalDeviationProject
-
Creates a new ConfidenceWeightedDiagonalDeviationProject
with the given
parameters.
- ConfidenceWeightedDiagonalVariance - Class in gov.sandia.cognition.learning.algorithm.confidence
-
An implementation of the Variance algorithm for learning a confidence-weighted
linear categorizer.
- ConfidenceWeightedDiagonalVariance() - Constructor for class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalVariance
-
Creates a new ConfidenceWeightedDiagonalVariance
with default
parameters.
- ConfidenceWeightedDiagonalVariance(double, double) - Constructor for class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalVariance
-
Creates a new ConfidenceWeightedDiagonalVariance
with the given
parameters.
- ConfidenceWeightedDiagonalVarianceProject - Class in gov.sandia.cognition.learning.algorithm.confidence
-
An implementation of the Variance algorithm for learning a confidence-weighted
linear categorizer.
- ConfidenceWeightedDiagonalVarianceProject() - Constructor for class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalVarianceProject
-
Creates a new ConfidenceWeightedDiagonalVarianceProject
with default
parameters.
- ConfidenceWeightedDiagonalVarianceProject(double, double) - Constructor for class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalVarianceProject
-
Creates a new ConfidenceWeightedDiagonalVarianceProject
with the given
parameters.
- configure(Map<OutputType, Double>, Map<OutputType, Integer>) - Method in interface gov.sandia.cognition.learning.algorithm.tree.PriorWeightedNodeLearner
-
Configure the node learner with prior weights and training counts.
- configure(Map<OutputType, Double>, Map<OutputType, Integer>) - Method in class gov.sandia.cognition.learning.algorithm.tree.VectorThresholdInformationGainLearner
-
- ConfusionMatrix<CategoryType> - Interface in gov.sandia.cognition.learning.performance.categorization
-
An interface for a general confusion matrix, which is used to tabulate
a set of actual category values against the values predicted for those
categories.
- ConfusionMatrixPerformanceEvaluator<InputType,CategoryType> - Class in gov.sandia.cognition.learning.performance.categorization
-
A performance evaluator that builds a confusion matrix.
- ConfusionMatrixPerformanceEvaluator() - Constructor for class gov.sandia.cognition.learning.performance.categorization.ConfusionMatrixPerformanceEvaluator
-
Creates a new ConfusionMatrixPerformanceEvaluator
with a
default factory behind it.
- ConfusionMatrixPerformanceEvaluator(Factory<? extends ConfusionMatrix<CategoryType>>) - Constructor for class gov.sandia.cognition.learning.performance.categorization.ConfusionMatrixPerformanceEvaluator
-
Creates a new ConfusionMatrixPerformanceEvaluator
using the given
factory.
- confusions - Variable in class gov.sandia.cognition.learning.performance.categorization.DefaultConfusionMatrix
-
The backing map of confusion matrix entries.
- conjuctive - Variable in class gov.sandia.cognition.statistics.bayesian.ImportanceSampling.DefaultUpdater
-
Defines the parameter that connects the conditional and prior
distributions.
- conjuctive - Variable in class gov.sandia.cognition.statistics.bayesian.RejectionSampling.DefaultUpdater
-
Defines the parameter that connects the conditional and prior
distributions.
- conjugate() - Method in class gov.sandia.cognition.math.ComplexNumber
-
Switches the sign of the imaginary part of this complex number.
- conjugateEquals() - Method in class gov.sandia.cognition.math.ComplexNumber
-
Switches the sign of the imaginary part of this complex number.
- ConjugateGradientMatrixSolver - Class in gov.sandia.cognition.learning.algorithm.minimization.matrix
-
Implements a matrix solver using Conjugate Gradient.
- ConjugateGradientMatrixSolver(Vector, Vector) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.matrix.ConjugateGradientMatrixSolver
-
Initializes a conjugate gradient solver with the minimum values
- ConjugateGradientMatrixSolver(Vector, Vector, double) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.matrix.ConjugateGradientMatrixSolver
-
Initializes a conjugate gradient solver with some additional parameters
- ConjugateGradientMatrixSolver(Vector, Vector, double, int) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.matrix.ConjugateGradientMatrixSolver
-
Initializes a conjugate gradient solver with all user-definable parameters
- ConjugateGradientWithPreconditionerMatrixSolver - Class in gov.sandia.cognition.learning.algorithm.minimization.matrix
-
Implements a matrix solver using Conjugate Gradient with a preconditioner.
- ConjugateGradientWithPreconditionerMatrixSolver(Vector, Vector) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.matrix.ConjugateGradientWithPreconditionerMatrixSolver
-
Initializes a steepest-descent solver with the minimum values
- ConjugateGradientWithPreconditionerMatrixSolver(Vector, Vector, double) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.matrix.ConjugateGradientWithPreconditionerMatrixSolver
-
Initializes a steepest-descent solver with some additional parameters
- ConjugateGradientWithPreconditionerMatrixSolver(Vector, Vector, double, int) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.matrix.ConjugateGradientWithPreconditionerMatrixSolver
-
Initializes a steepest-descent solver with all user-definable parameters
- ConjugatePriorBayesianEstimator<ObservationType,ParameterType,ConditionalType extends ClosedFormDistribution<ObservationType>,BeliefType extends ClosedFormDistribution<ParameterType>> - Interface in gov.sandia.cognition.statistics.bayesian.conjugate
-
A Bayesian Estimator that makes use of conjugate priors, which is a
mathematical trick when the conditional and the prior result a posterior
that is the same type as the prior.
- ConjugatePriorBayesianEstimatorPredictor<ObservationType,ParameterType,ConditionalType extends ClosedFormDistribution<ObservationType>,BeliefType extends ClosedFormDistribution<ParameterType>> - Interface in gov.sandia.cognition.statistics.bayesian.conjugate
-
A conjugate prior estimator that also has a closed-form predictive posterior.
- constant - Variable in class gov.sandia.cognition.learning.function.kernel.PolynomialKernel
-
The constant for the polynomial.
- constant - Variable in class gov.sandia.cognition.learning.function.kernel.SigmoidKernel
-
The constant used in the sigmoid.
- ConstantEvaluator<OutputType> - Class in gov.sandia.cognition.learning.function
-
The ConstantEvaluator
class implements an Evaluator
that
always returns the same output value.
- ConstantEvaluator() - Constructor for class gov.sandia.cognition.learning.function.ConstantEvaluator
-
Creates a new ConstantEvaluator
.
- ConstantEvaluator(OutputType) - Constructor for class gov.sandia.cognition.learning.function.ConstantEvaluator
-
Creates a new ConstantEvaluator
.
- ConstantLearner<ValueType> - Class in gov.sandia.cognition.learning.algorithm.baseline
-
A learner that always returns the same value as the result.
- ConstantLearner() - Constructor for class gov.sandia.cognition.learning.algorithm.baseline.ConstantLearner
-
Creates a new ConstantLearner
with a null value.
- ConstantLearner(ValueType) - Constructor for class gov.sandia.cognition.learning.algorithm.baseline.ConstantLearner
-
Creates a new ConstantLearner
with the given value;
- constantValue - Variable in class gov.sandia.cognition.learning.function.scalar.LocallyWeightedKernelScalarFunction
-
The constant value is what the constant weight biases the function
toward when there is near zero weight.
- constantWeight - Variable in class gov.sandia.cognition.learning.function.scalar.LocallyWeightedKernelScalarFunction
-
The constant weight is used as a weight for the constant value that is
added to the result to bias the function to the constant value.
- constructor - Variable in class gov.sandia.cognition.factory.ConstructorBasedFactory
-
The constructor to use to create new objects.
- ConstructorBasedFactory<CreatedType> - Class in gov.sandia.cognition.factory
-
The ConstructorBasedFactory
class implements a Factory
that takes a constructor and parameters to that constructor used to create
new objects.
- ConstructorBasedFactory(Constructor<? extends CreatedType>, Object...) - Constructor for class gov.sandia.cognition.factory.ConstructorBasedFactory
-
Creates a new ConstructorBasedFactory
from the given constructor
and parameters.
- consume(KeyType, double) - Method in interface gov.sandia.cognition.math.matrix.InfiniteVector.KeyValueConsumer
-
Consumes one entry in the infinite vector.
- consume(int, double) - Method in interface gov.sandia.cognition.math.matrix.Vector.IndexValueConsumer
-
Consumes one entry in the vector.
- consumeClusters(Collection<GaussianCluster>) - Method in class gov.sandia.cognition.learning.function.vector.GaussianContextRecognizer
-
Uses the given clusters to populate the internal clusters of this
- contains(Object) - Method in class gov.sandia.cognition.collection.DefaultMultiCollection
-
- contains(int) - Method in class gov.sandia.cognition.collection.IntegerSpan
-
Determines if the given value is within the inclusive bounds
- contains(Object) - Method in class gov.sandia.cognition.collection.IntegerSpan
-
- contains(Termable) - Method in class gov.sandia.cognition.text.term.filter.DefaultStopList
-
- contains(Term) - Method in class gov.sandia.cognition.text.term.filter.DefaultStopList
-
Returns true if the given term is in the stop list.
- contains(String) - Method in class gov.sandia.cognition.text.term.filter.DefaultStopList
-
Returns true if the given word is in the stop list.
- contains(Termable) - Method in interface gov.sandia.cognition.text.term.filter.StopList
-
Determines if the given term is contained in this stop list.
- containsKey(KeyType) - Method in class gov.sandia.cognition.collection.AbstractScalarMap
-
- containsKey(Object) - Method in class gov.sandia.cognition.collection.DynamicArrayMap
-
Runs in O(1).
- containsKey(int) - Method in class gov.sandia.cognition.collection.DynamicArrayMap
-
Returns true if this is a valid key in the mapping.
- containsKey(KeyType) - Method in interface gov.sandia.cognition.collection.NumericMap
-
Determines if this map contains the given key.
- containsNode(NodeNameType) - Method in class gov.sandia.cognition.graph.DenseMemoryGraph
-
- containsNode(NodeNameType) - Method in interface gov.sandia.cognition.graph.DirectedNodeEdgeGraph
-
Returns whether or not the graph contains the specified vertex.
- containsValue(Object) - Method in class gov.sandia.cognition.collection.DynamicArrayMap
-
Runs in O(n).
- CONTENT_TYPE - Static variable in class gov.sandia.cognition.text.document.extractor.TextDocumentExtractor
-
The content type is "text/plain".
- convergence(Vector, Double, Vector, Vector, double) - Static method in class gov.sandia.cognition.learning.algorithm.minimization.MinimizationStoppingCriterion
-
Tests for convergence on approximately zero slope and nonmovement along
the x-axis
- convert(int) - Method in class gov.sandia.cognition.collection.FiniteCapacityBuffer
-
Converts the given index from zero-based world to circular world
- convert(InputType) - Method in class gov.sandia.cognition.text.convert.AbstractMultiTextualConverter
-
- convert(InputType) - Method in class gov.sandia.cognition.text.convert.AbstractSingleTextualConverter
-
- convert(InputType) - Method in interface gov.sandia.cognition.text.convert.MultiTextualConverter
-
Convert the input object into zero or more textual objects.
- convert(InputType) - Method in interface gov.sandia.cognition.text.convert.SingleTextualConverter
-
Convert an input into its single textual form.
- convertAll(Iterable<? extends InputType>) - Method in class gov.sandia.cognition.text.convert.AbstractMultiTextualConverter
-
- convertAll(Iterable<? extends InputType>) - Method in class gov.sandia.cognition.text.convert.AbstractSingleTextualConverter
-
- convertAll(Iterable<? extends InputType>) - Method in interface gov.sandia.cognition.text.convert.TextualConverter
-
Convert the given input objects into zero or more textual objects.
- converter - Variable in class gov.sandia.cognition.data.convert.vector.NumberConverterToVectorAdapter
-
The converter to adapt for use with Vector
s.
- converter - Variable in class gov.sandia.cognition.text.convert.SingleToMultiTextualConverterAdapter
-
The single text converter being wrapped.
- convertFromBytes(byte[]) - Static method in class gov.sandia.cognition.io.ObjectSerializationHandler
-
Takes a byte array produced by convertToBytes and returns the Object from
the serialized byte array.
- convertFromBytes(byte[]) - Method in class gov.sandia.cognition.io.serialization.AbstractStreamSerializationHandler
-
- convertFromBytes(byte[]) - Method in interface gov.sandia.cognition.io.serialization.StreamSerializationHandler
-
Converts the first given object in the given byte array.
- convertFromRotationMatrix(Matrix) - Method in interface gov.sandia.cognition.math.matrix.Quaternion
-
Sets the quaternion to be equivalent to the given a 3-by-3 rotation
matrix.
- convertFromString(String) - Method in class gov.sandia.cognition.io.serialization.AbstractTextSerializationHandler
-
- convertFromString(String) - Method in interface gov.sandia.cognition.io.serialization.TextSerializationHandler
-
Converts an object from its serialized string representation.
- convertFromString(String) - Static method in class gov.sandia.cognition.io.XStreamSerializationHandler
-
Attempts to read an Object from the given string.
- convertFromVector(Vector) - Method in class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachine
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.learning.algorithm.gradient.GradientDescendableApproximator
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.learning.algorithm.regression.LogisticRegression.Function
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.learning.function.categorization.ScalarThresholdBinaryCategorizer
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.learning.function.LinearCombinationFunction
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.learning.function.scalar.AtanFunction
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.learning.function.scalar.CosineFunction
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.learning.function.scalar.LinearDiscriminant
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.learning.function.scalar.LinearDiscriminantWithBias
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction
-
Sets the value of the exponent
- convertFromVector(Vector) - Method in class gov.sandia.cognition.learning.function.scalar.ThresholdFunction
-
Converts this function from its parameters, which consists of the
threshold value
- convertFromVector(Vector) - Method in class gov.sandia.cognition.learning.function.scalar.VectorEntryFunction
-
Converts a vector into the index to select from the vector.
- convertFromVector(Vector) - Method in class gov.sandia.cognition.learning.function.scalar.VectorFunctionLinearDiscriminant
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.learning.function.vector.FeedforwardNeuralNetwork
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.learning.function.vector.GeneralizedLinearModel
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.learning.function.vector.MultivariateDiscriminant
-
Uploads a matrix from a row-stacked vector of parameters.
- convertFromVector(Vector) - Method in class gov.sandia.cognition.learning.function.vector.MultivariateDiscriminantWithBias
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.learning.function.vector.ThreeLayerFeedforwardNeuralNetwork
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.math.matrix.AbstractVector
-
Assigns the values in the provided vector into this.
- convertFromVector(Vector) - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.math.matrix.custom.DiagonalMatrix
-
uploads a matrix from a column-stacked vector of parameters, so that
v(k) = A(i,j) = A( k%M, k/M )
- convertFromVector(Vector) - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
uploads a matrix from a column-stacked vector of parameters, so that
v(k) = A(i,j) = A( k%M, k/M )
- convertFromVector(Vector) - Method in interface gov.sandia.cognition.math.matrix.Matrix
-
uploads a matrix from a column-stacked vector of parameters, so that
v(k) = A(i,j) = A( k%M, k/M )
- convertFromVector(Vector) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJMatrix
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseMatrix
-
- convertFromVector(DenseVector) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseMatrix
-
Incorporates the parameters in the given vector back into the object.
- convertFromVector(Vector) - Method in class gov.sandia.cognition.math.matrix.mtj.DiagonalMatrixMTJ
-
- convertFromVector(Vector) - Method in interface gov.sandia.cognition.math.matrix.Vectorizable
-
Converts the object from a Vector of parameters.
- convertFromVector(Vector) - Method in class gov.sandia.cognition.math.MutableDouble
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.math.MutableInteger
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.math.MutableLong
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.math.signals.AutoRegressiveMovingAverageFilter
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.math.signals.LinearDynamicalSystem
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.math.signals.MovingAverageFilter
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.BernoulliDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.BetaBinomialDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.BetaDistribution
-
Sets the parameters of the distribution
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.BinomialDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.CategoricalDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.CauchyDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.ChineseRestaurantProcess
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.ChiSquareDistribution
-
Sets the parameter of the chi-square PDF
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.DeterministicDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.DirichletDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.ExponentialDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.GammaDistribution
-
Sets the parameters of the distribution
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.GeometricDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.InverseGammaDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.InverseWishartDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.KolmogorovDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.LaplaceDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.LogisticDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.LogNormalDistribution
-
Sets the parameters of the distribution from a
2-dimensional Vector with ( logNormalMean logNormalVariance )
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.MultinomialDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussianInverseGammaDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateMixtureDensityModel
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.MultivariatePolyaDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateStudentTDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.NegativeBinomialDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.NormalInverseGammaDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.NormalInverseWishartDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.ParetoDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.PoissonDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.SnedecorFDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.StudentizedRangeDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.StudentTDistribution
-
Sets the parameters of this PDF, which must be a
1-dimensional Vector containing the degrees of freedom
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.UniformDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.UniformIntegerDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.WeibullDistribution
-
- convertFromVector(Vector) - Method in class gov.sandia.cognition.statistics.distribution.YuleSimonDistribution
-
- convertInputFromInternal(double) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizerDerivativeBased.InternalFunction
-
Converts the internal x-axis value to real-world x-axis value
- convertInputFromInternal(InputOutputSlopeTriplet) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizerDerivativeBased.InternalFunction
-
Converts an InternalFunction InputOutputSlopeTriplet to a real-world
InputOutputSlopeTriplet by unreflection and flipping the sign of the
slope (if the direction of search was backward).
- convertInputToInternal(double) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizerDerivativeBased.InternalFunction
-
Converts a real-world "x" value to the internal values used inside
the search algorithm.
- convertTo2D(DataType) - Method in class gov.sandia.cognition.math.geometry.Quadtree
-
Converts the given item into a two-dimensional vector.
- convertToBoolean(Number) - Method in class gov.sandia.cognition.data.convert.number.DefaultBooleanToNumberConverter
-
Converts the given number to a boolean value by determining if it is
closer to the number representing true or the number representing false.
- convertToBytes(Serializable) - Static method in class gov.sandia.cognition.io.ObjectSerializationHandler
-
Converts the given Object into an array of bytes.
- convertToBytes(SerializedType) - Method in class gov.sandia.cognition.io.serialization.AbstractStreamSerializationHandler
-
- convertToBytes(SerializedType) - Method in interface gov.sandia.cognition.io.serialization.StreamSerializationHandler
-
Converts the given object to bytes.
- convertToComplex(Collection<Double>) - Static method in class gov.sandia.cognition.math.signals.FourierTransform
-
Converts the Collection of real data to complex numbers
- convertToNumber(Boolean) - Method in class gov.sandia.cognition.data.convert.number.DefaultBooleanToNumberConverter
-
Converts the given boolean to a number using the
- convertToRotationMatrix() - Method in interface gov.sandia.cognition.math.matrix.Quaternion
-
Converts the quaternion to a 3-by-3 rotation matrix.
- convertToString(SerializedType) - Method in class gov.sandia.cognition.io.serialization.AbstractTextSerializationHandler
-
- convertToString(SerializedType) - Method in interface gov.sandia.cognition.io.serialization.TextSerializationHandler
-
Converts a given object to its serialized string representation.
- convertToString(Serializable) - Static method in class gov.sandia.cognition.io.XStreamSerializationHandler
-
Writes the given object to a String.
- convertToVector() - Method in class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachine
-
- convertToVector() - Method in class gov.sandia.cognition.learning.algorithm.gradient.GradientDescendableApproximator
-
- convertToVector() - Method in class gov.sandia.cognition.learning.algorithm.regression.LogisticRegression.Function
-
- convertToVector() - Method in class gov.sandia.cognition.learning.function.categorization.ScalarThresholdBinaryCategorizer
-
- convertToVector() - Method in class gov.sandia.cognition.learning.function.LinearCombinationFunction
-
- convertToVector() - Method in class gov.sandia.cognition.learning.function.scalar.AtanFunction
-
- convertToVector() - Method in class gov.sandia.cognition.learning.function.scalar.CosineFunction
-
- convertToVector() - Method in class gov.sandia.cognition.learning.function.scalar.LinearDiscriminant
-
- convertToVector() - Method in class gov.sandia.cognition.learning.function.scalar.LinearDiscriminantWithBias
-
- convertToVector() - Method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction
-
Returns the value of the exponent
- convertToVector() - Method in class gov.sandia.cognition.learning.function.scalar.ThresholdFunction
-
Converts this function into its parameters, which consists of the
threshold value
- convertToVector() - Method in class gov.sandia.cognition.learning.function.scalar.VectorEntryFunction
-
Converts the index to select into a vector (of length 1).
- convertToVector() - Method in class gov.sandia.cognition.learning.function.scalar.VectorFunctionLinearDiscriminant
-
- convertToVector() - Method in class gov.sandia.cognition.learning.function.vector.FeedforwardNeuralNetwork
-
- convertToVector() - Method in class gov.sandia.cognition.learning.function.vector.GeneralizedLinearModel
-
- convertToVector() - Method in class gov.sandia.cognition.learning.function.vector.MultivariateDiscriminant
-
Creates a row-stacked version of the discriminant.
- convertToVector() - Method in class gov.sandia.cognition.learning.function.vector.MultivariateDiscriminantWithBias
-
- convertToVector() - Method in class gov.sandia.cognition.learning.function.vector.ThreeLayerFeedforwardNeuralNetwork
-
- convertToVector() - Method in class gov.sandia.cognition.math.matrix.AbstractVector
-
Returns this.
- convertToVector() - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
-
- convertToVector() - Method in class gov.sandia.cognition.math.matrix.custom.DiagonalMatrix
-
- convertToVector() - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
Creates a column-stacked version of this, so that
v(k) = A(i,j) = v(j*M+i)
- convertToVector() - Method in interface gov.sandia.cognition.math.matrix.Matrix
-
Creates a column-stacked version of this, so that
v(k) = A(i,j) = v(j*M+i)
- convertToVector() - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJMatrix
-
- convertToVector() - Method in class gov.sandia.cognition.math.matrix.mtj.DenseMatrix
-
- convertToVector() - Method in class gov.sandia.cognition.math.matrix.mtj.DiagonalMatrixMTJ
-
- convertToVector() - Method in interface gov.sandia.cognition.math.matrix.Vectorizable
-
Converts the object to a vector.
- convertToVector() - Method in class gov.sandia.cognition.math.MutableDouble
-
- convertToVector() - Method in class gov.sandia.cognition.math.MutableInteger
-
- convertToVector() - Method in class gov.sandia.cognition.math.MutableLong
-
- convertToVector() - Method in class gov.sandia.cognition.math.signals.AutoRegressiveMovingAverageFilter
-
- convertToVector() - Method in class gov.sandia.cognition.math.signals.LinearDynamicalSystem
-
- convertToVector() - Method in class gov.sandia.cognition.math.signals.MovingAverageFilter
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.BernoulliDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.BetaBinomialDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.BetaDistribution
-
Gets the parameters of the distribution
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.BinomialDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.CategoricalDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.CauchyDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.ChineseRestaurantProcess
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.ChiSquareDistribution
-
Returns the parameter of the chi-square PDF
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.DeterministicDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.DirichletDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.ExponentialDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.GammaDistribution
-
Gets the parameters of the distribution
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.GeometricDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.InverseGammaDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.InverseWishartDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.KolmogorovDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.LaplaceDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.LogisticDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.LogNormalDistribution
-
Returns a 2-dimensional Vector with ( logNormalMean logNormalVariance )
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.MultinomialDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussianInverseGammaDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.MultivariateMixtureDensityModel
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.MultivariatePolyaDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.MultivariateStudentTDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.NegativeBinomialDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.NormalInverseGammaDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.NormalInverseWishartDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.ParetoDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.PoissonDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.SnedecorFDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.StudentizedRangeDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.StudentTDistribution
-
Returns the parameters of this PDF, which is a
1-dimensional Vector containing the degrees of freedom
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.UniformDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.UniformIntegerDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.WeibullDistribution
-
- convertToVector() - Method in class gov.sandia.cognition.statistics.distribution.YuleSimonDistribution
-
- convertToVector(Iterable<? extends Termable>) - Method in class gov.sandia.cognition.text.term.vector.BagOfWordsTransform
-
Converts a given list of terms to a vector by counting the occurrence of
each term.
- convertToVector(Iterable<? extends Termable>, VectorFactory<?>) - Method in class gov.sandia.cognition.text.term.vector.BagOfWordsTransform
-
Converts a given list of terms to a vector by counting the occurrence of
each term.
- convertToVector(Iterable<? extends Termable>, TermIndex, VectorFactory<?>) - Static method in class gov.sandia.cognition.text.term.vector.BagOfWordsTransform
-
Converts a given list of terms to a vector by counting the occurrence of
each term.
- ConvexReceiverOperatingCharacteristic - Class in gov.sandia.cognition.statistics.method
-
Computes the convex hull of the Receiver Operating Characteristic (ROC),
which a mathematician might call a "concave down" function.
- convolve(MultivariateGaussian) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian
-
Convolves this Gaussian with the other Gaussian.
- convolve(UnivariateGaussian) - Method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian
-
Convolves this Gaussian with the other Gaussian.
- cooleyTukeyFFT(ArrayList<ComplexNumber>) - Static method in class gov.sandia.cognition.math.signals.FourierTransform
-
Computes the Cooley-Tukey Radix-2 Fast Fourier Transform (FFT).
- copy(boolean[]) - Static method in class gov.sandia.cognition.collection.ArrayUtil
-
Creates a new copy of the given array.
- copy(int[]) - Static method in class gov.sandia.cognition.collection.ArrayUtil
-
Creates a new copy of the given array.
- copy(long[]) - Static method in class gov.sandia.cognition.collection.ArrayUtil
-
Creates a new copy of the given array.
- copy(double[]) - Static method in class gov.sandia.cognition.collection.ArrayUtil
-
Creates a new copy of the given array.
- copy(T[]) - Static method in class gov.sandia.cognition.collection.ArrayUtil
-
Creates a new copy of the given array.
- copyArray(double[][]) - Method in class gov.sandia.cognition.math.matrix.MatrixFactory
-
Copies the values from the array into the Matrix
- copyArray(double[]) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseVectorFactoryMTJ
-
Creates a DenseVector based on the given array values.
- copyArray(double[]) - Method in class gov.sandia.cognition.math.matrix.VectorFactory
-
Copies the values from the array into the Vector
- copyArray(int, int[], double[]) - Method in class gov.sandia.cognition.math.matrix.VectorFactory
-
Creates a new vector of the given dimensionality by setting the values
at the given indices.
- copyColumnVectors(Collection<? extends Vectorizable>) - Method in class gov.sandia.cognition.math.matrix.MatrixFactory
-
Creates a new matrix by copying the given set of column vectors.
- copyColumnVectors(Vectorizable...) - Method in class gov.sandia.cognition.math.matrix.MatrixFactory
-
Creates a new matrix by copying the given set of column vectors.
- copyMap(int, Map<Integer, ? extends Number>) - Method in class gov.sandia.cognition.math.matrix.VectorFactory
-
Creates a vector from the given map of indices to values.
- copyMatrix(Matrix) - Method in class gov.sandia.cognition.math.matrix.custom.CustomDenseMatrixFactory
-
Creates a deep copy of m into a DenseMatrix and returns it.
- copyMatrix(Matrix) - Method in class gov.sandia.cognition.math.matrix.custom.CustomDiagonalMatrixFactory
-
Creates a deep copy new Matrix given another, argument is unchanged
- copyMatrix(Matrix) - Method in class gov.sandia.cognition.math.matrix.custom.CustomSparseMatrixFactory
-
Creates a deep copy new Matrix given another, argument is unchanged
- copyMatrix(Matrix) - Method in class gov.sandia.cognition.math.matrix.MatrixFactory
-
Creates a deep copy new Matrix given another, argument is unchanged
- copyMatrix(Matrix) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseMatrixFactoryMTJ
-
- copyMatrix(Matrix) - Method in class gov.sandia.cognition.math.matrix.mtj.DiagonalMatrixFactoryMTJ
-
- copyMatrix(Matrix) - Method in class gov.sandia.cognition.math.matrix.mtj.SparseMatrixFactoryMTJ
-
- copyRowVectors(Collection<? extends Vectorizable>) - Method in class gov.sandia.cognition.math.matrix.MatrixFactory
-
Creates a new matrix by copying the given set of row vectors.
- copyRowVectors(Vectorizable...) - Method in class gov.sandia.cognition.math.matrix.MatrixFactory
-
Creates a new matrix by copying the given set of row vectors.
- copyValues(double...) - Method in class gov.sandia.cognition.math.matrix.VectorFactory
-
Copies the values from the given doubles into a Vector
- copyValues(Collection<? extends Number>) - Method in class gov.sandia.cognition.math.matrix.VectorFactory
-
Copies the values from the given Collection.
- copyVector(Vector) - Method in class gov.sandia.cognition.math.matrix.custom.CustomDenseVectorFactory
-
- copyVector(Vector) - Method in class gov.sandia.cognition.math.matrix.custom.CustomSparseVectorFactory
-
- copyVector(Vector) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseVectorFactoryMTJ
-
- copyVector(Vector) - Method in class gov.sandia.cognition.math.matrix.mtj.SparseVectorFactoryMTJ
-
- copyVector(Vector) - Method in class gov.sandia.cognition.math.matrix.VectorFactory
-
Creates a deep copy new Vector given another, argument is unchanged
- cosine(VectorType) - Method in class gov.sandia.cognition.math.matrix.AbstractVectorSpace
-
- cosine(InfiniteVector<KeyType>) - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
-
- cosine(VectorType) - Method in interface gov.sandia.cognition.math.matrix.VectorSpace
-
Computes the cosine between two Vectors
- CosineDeltaCategorizer<CategoryType> - Class in gov.sandia.cognition.learning.algorithm.delta
-
The Cosine Delta algorithm implementation.
- CosineDeltaCategorizer(CosineDeltaCategorizer.Learner<CategoryType>, ArrayList<Double>, ArrayList<Double>) - Constructor for class gov.sandia.cognition.learning.algorithm.delta.CosineDeltaCategorizer
-
Constructor that takes learner, featureStddev, and featureMeans.
- CosineDeltaCategorizer.Learner<CategoryType> - Class in gov.sandia.cognition.learning.algorithm.delta
-
Learner for a CosineDeltaCategorizer.
- CosineDistanceMetric - Class in gov.sandia.cognition.learning.function.distance
-
The CosineDistanceMetric
class implements a semimetric between
two vectors based on the cosine between the vectors.
- CosineDistanceMetric() - Constructor for class gov.sandia.cognition.learning.function.distance.CosineDistanceMetric
-
Creates a new instance of CosineDistanceMetric
.
- CosineFunction - Class in gov.sandia.cognition.learning.function.scalar
-
A closed-form cosine function.
- CosineFunction() - Constructor for class gov.sandia.cognition.learning.function.scalar.CosineFunction
-
Creates a new instance of CosineFunction
- CosineFunction(double, double) - Constructor for class gov.sandia.cognition.learning.function.scalar.CosineFunction
-
Creates a new instance of CosineFunction
- CosineFunction(double, double, double) - Constructor for class gov.sandia.cognition.learning.function.scalar.CosineFunction
-
Creates a new instance of CosineFunction
- CosineSimilarityFunction - Class in gov.sandia.cognition.text.term.vector
-
A vector cosine similarity function.
- CosineSimilarityFunction() - Constructor for class gov.sandia.cognition.text.term.vector.CosineSimilarityFunction
-
Creates a new CosineSimilarityFunction
.
- CostFunction<EvaluatedType,CostParametersType> - Interface in gov.sandia.cognition.learning.function.cost
-
The CostFunction interface defines the interface to evaluate some object to
determine its cost.
- costFunction - Variable in class gov.sandia.cognition.statistics.method.DistributionParameterEstimator.DistributionWrapper
-
Cost function to use in the minimization procedure
- costParameters - Variable in class gov.sandia.cognition.learning.function.cost.AbstractCostFunction
-
The parameters of the cost function.
- CostSpeedupEnergyFunction<LabelType,NodeNameType> - Class in gov.sandia.cognition.graph.inference
-
This class trades memory usage (to store all of the costs) for compute time.
- CostSpeedupEnergyFunction(NodeNameAwareEnergyFunction<LabelType, NodeNameType>) - Constructor for class gov.sandia.cognition.graph.inference.CostSpeedupEnergyFunction
-
Initializes this with the wrapped function and empty values for the
pairwise costs (which are only computed and stored as needed).
- couldWrite(File) - Static method in class gov.sandia.cognition.io.FileUtil
-
Attempts to determine if the application might be able to write to the
given file, which may or may not already exists.
- count - Variable in class gov.sandia.cognition.statistics.AbstractSufficientStatistic
-
Number of data points used to create this SufficientStatistic
- counterFactory - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner
-
Factory for counting votes.
- countNonZeros() - Method in class gov.sandia.cognition.math.matrix.custom.DenseVector
-
Computes the number of non-zero entries in this
- countNonZeros() - Method in class gov.sandia.cognition.math.matrix.custom.SparseVector
-
- countNonZeros() - Method in class gov.sandia.cognition.math.matrix.mtj.DenseVector
-
- countNonZeros() - Method in class gov.sandia.cognition.math.matrix.mtj.SparseVector
-
- countNonZeros() - Method in interface gov.sandia.cognition.math.matrix.Vector
-
Counts the number of non-zero entries in the vector.
- countOutputValues(Iterable<? extends InputOutputPair<?, ? extends OutputType>>) - Static method in class gov.sandia.cognition.learning.data.DatasetUtil
-
Creates a data histogram over the output values from the given data.
- covariance - Variable in class gov.sandia.cognition.learning.function.categorization.DefaultConfidenceWeightedBinaryCategorizer
-
The covariance matrix.
- covarianceDivisor - Variable in class gov.sandia.cognition.statistics.distribution.NormalInverseWishartDistribution
-
Term that divides the covariance sampled from the inverseWishart,
must be greater than zero.
- create() - Static method in class gov.sandia.cognition.data.convert.IdentityDataConverter
-
Convenience method to create a new IdentityDataConverter
.
- create(Evaluator<? super InputType, ? extends IntermediateType>, Evaluator<? super IntermediateType, ? extends OutputType>) - Static method in class gov.sandia.cognition.evaluator.CompositeEvaluatorPair
-
A convenience method for creating composite evaluators.
- create(Evaluator<? super InputType, ? extends FirstIntermediateType>, Evaluator<? super FirstIntermediateType, ? extends SecondIntermediateType>, Evaluator<? super SecondIntermediateType, ? extends OutputType>) - Static method in class gov.sandia.cognition.evaluator.CompositeEvaluatorTriple
-
A convenience method for creating composite evaluators.
- create(ForwardType, ReverseType) - Static method in class gov.sandia.cognition.evaluator.ForwardReverseEvaluatorPair
-
Convenience method for creating a new forward-reverse evaluator pair.
- create() - Static method in class gov.sandia.cognition.evaluator.IdentityEvaluator
-
Convenience method for creating an identity evaluator.
- create(Map<InputType, OutputType>) - Static method in class gov.sandia.cognition.evaluator.ValueMapper
-
Creates an evaluator who is backed by the given map.
- create() - Method in class gov.sandia.cognition.factory.ConstructorBasedFactory
-
Creates a new object by calling the constructor inside the factory with
the parameters it is configured to take.
- create() - Method in class gov.sandia.cognition.factory.DefaultFactory
-
Creates a new object using the default constructor of the class that
the factory contains.
- create() - Method in interface gov.sandia.cognition.factory.Factory
-
Creates a new instance of an object.
- create() - Method in class gov.sandia.cognition.factory.PrototypeFactory
-
Creates a new object by calling the clone method on the prototype in the
factory.
- create(ValueType) - Static method in class gov.sandia.cognition.learning.algorithm.baseline.ConstantLearner
-
Creates a new ConstantLearner
.
- create() - Static method in class gov.sandia.cognition.learning.algorithm.baseline.IdentityLearner
-
A convenience method for creating a IdentityLearner
.
- create(int, Random) - Static method in class gov.sandia.cognition.learning.algorithm.clustering.KMeansFactory
-
Creates a new parallelized k-means clustering algorithm for vector data
with the given number of clusters (k) and random number generator.
- create(int, Semimetric<? super Vector>, Random) - Static method in class gov.sandia.cognition.learning.algorithm.clustering.KMeansFactory
-
Creates a new parallelized k-means clustering algorithm for vector data
with the given number of clusters (k), distance metric, and random
number generator.
- create() - Method in class gov.sandia.cognition.learning.algorithm.clustering.KMeansFactory
-
- create(int) - Static method in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
-
Create a partitional clusterer, using Euclidean distance and a vector
mean centroid cluster creator.
- create(BatchLearner<? super Collection<? extends InputType>, ? extends Evaluator<? super InputType, ? extends IntermediateType>>, BatchLearner<? super Collection<? extends IntermediateType>, ? extends Evaluator<? super IntermediateType, ? extends OutputType>>) - Static method in class gov.sandia.cognition.learning.algorithm.CompositeBatchLearnerPair
-
- create(IncrementalLearner<? super InputOutputPair<? extends InputType, CategoryType>, MemberType>, int, double, Random) - Static method in class gov.sandia.cognition.learning.algorithm.ensemble.OnlineBaggingCategorizerLearner
-
Convenience method for creating an
OnlineBaggingCategorizerLearner
.
- create(BatchLearner<? super Collection<? extends InputType>, ? extends Evaluator<? super InputType, ? extends TransformedInputType>>, BatchLearner<? super Collection<? extends InputOutputPair<? extends TransformedInputType, TransformedOutputType>>, ? extends Evaluator<? super TransformedInputType, ? extends TransformedOutputType>>, BatchLearner<? super Collection<? extends OutputType>, ? extends ReversibleEvaluator<OutputType, TransformedOutputType, ?>>) - Static method in class gov.sandia.cognition.learning.algorithm.InputOutputTransformedBatchLearner
-
Creates a new InputOutputTransformedBatchLearner
from the
three learners.
- create(Evaluator<? super InputType, ? extends TransformedInputType>, BatchLearner<? super Collection<? extends InputOutputPair<? extends TransformedInputType, TransformedOutputType>>, ? extends Evaluator<? super TransformedInputType, ? extends TransformedOutputType>>, ReversibleEvaluator<OutputType, TransformedOutputType, ?>) - Static method in class gov.sandia.cognition.learning.algorithm.InputOutputTransformedBatchLearner
-
Creates a new InputOutputTransformedBatchLearner
from the
predefined input and output transforms and the supervised learner.
- create(BatchLearner<? super Collection<? extends InputType>, ? extends Evaluator<? super InputType, ? extends TransformedInputType>>, BatchLearner<? super Collection<? extends InputOutputPair<? extends TransformedInputType, TransformedOutputType>>, ? extends Evaluator<? super TransformedInputType, ? extends TransformedOutputType>>, ReversibleEvaluator<OutputType, TransformedOutputType, ?>) - Static method in class gov.sandia.cognition.learning.algorithm.InputOutputTransformedBatchLearner
-
Creates a new InputOutputTransformedBatchLearner
from the
unsupervised input transform learner, supervised learners, and output
transform.
- create(Evaluator<? super InputType, ? extends TransformedInputType>, BatchLearner<? super Collection<? extends InputOutputPair<? extends TransformedInputType, TransformedOutputType>>, ? extends Evaluator<? super TransformedInputType, ? extends TransformedOutputType>>, BatchLearner<? super Collection<? extends OutputType>, ? extends ReversibleEvaluator<OutputType, TransformedOutputType, ?>>) - Static method in class gov.sandia.cognition.learning.algorithm.InputOutputTransformedBatchLearner
-
Creates a new InputOutputTransformedBatchLearner
from the
input transform, supervised learner, and unsupervised output transform
learner.
- create() - Static method in class gov.sandia.cognition.learning.data.DefaultInputOutputPair
-
Convenience method to create a new DefaultInputOutputPair
.
- create(InputType, OutputType) - Static method in class gov.sandia.cognition.learning.data.DefaultInputOutputPair
-
Convenience method to create a new DefaultInputOutputPair
.
- create(Collection<DataType>, Collection<DataType>) - Static method in class gov.sandia.cognition.learning.data.DefaultPartitionedDataset
-
Convenience method to create a new DefaultPartitionedDataset
from the two given collections.
- create() - Static method in class gov.sandia.cognition.learning.data.DefaultTargetEstimatePair
-
Convenience method for creating a new DefaultTargetEstimatePair
.
- create(TargetType, EstimateType) - Static method in class gov.sandia.cognition.learning.data.DefaultTargetEstimatePair
-
Convenience method for creating a new DefaultTargetEstimatePair
.
- create(ValueType, DiscriminantType) - Static method in class gov.sandia.cognition.learning.data.DefaultValueDiscriminantPair
-
Convenience method for creating a new
DefaultValueDiscriminantPair
with the given value and
discriminant.
- create() - Static method in class gov.sandia.cognition.learning.data.DefaultWeightedInputOutputPair
-
Convenience method to create a new, empty
DefaultWeightedInputOutputPair
.
- create(InputType, OutputType, double) - Static method in class gov.sandia.cognition.learning.data.DefaultWeightedInputOutputPair
-
Convenience method to create a new
DefaultWeightedInputOutputPair
.
- create() - Static method in class gov.sandia.cognition.learning.data.DefaultWeightedTargetEstimatePair
-
Convenience method for creating a new DefaultWeightedTargetEstimatePair
.
- create(TargetType, EstimateType) - Static method in class gov.sandia.cognition.learning.data.DefaultWeightedTargetEstimatePair
-
Convenience method for creating a new DefaultWeightedTargetEstimatePair
.
- create(TargetType, EstimateType, double) - Static method in class gov.sandia.cognition.learning.data.DefaultWeightedTargetEstimatePair
-
Convenience method for creating a new DefaultWeightedTargetEstimatePair
.
- create(ValueType, double) - Static method in class gov.sandia.cognition.learning.data.DefaultWeightedValueDiscriminant
-
Convenience method for creating a new
DefaultWeightedValueDiscriminant
with the given value and weight.
- create(WeightedValue<? extends ValueType>) - Static method in class gov.sandia.cognition.learning.data.DefaultWeightedValueDiscriminant
-
Convenience method for creating a new
DefaultWeightedValueDiscriminant
with a shallow copy of the given
the given value and weight.
- create(Collection<? extends DataType>, int) - Static method in class gov.sandia.cognition.learning.data.SequentialDataMultiPartitioner
-
Creates a partition of the given data into "numPartition" roughly equal
sets, preserving their pre-existing sequential ordering, with the
nonzero remainder elements going into the final partition.
- create(OutputType) - Static method in class gov.sandia.cognition.learning.function.ConstantEvaluator
-
Creates a new ConstantEvaluator
for the given value.
- create(DivergenceFunction<? super ValueType, ? super InputType>, Collection<ValueType>) - Static method in class gov.sandia.cognition.learning.function.distance.DivergencesEvaluator
-
Convenience method for creation a DivergeceEvaluator
.
- create(BatchLearner<DataType, ? extends Collection<ValueType>>, DivergenceFunction<? super ValueType, ? super InputType>) - Static method in class gov.sandia.cognition.learning.function.distance.DivergencesEvaluator.Learner
-
Convenience method for creating a
DivergencesEvaluator.Learner
.
- create(LearnerType) - Static method in class gov.sandia.cognition.learning.parameter.ParameterAdaptableBatchLearnerWrapper
-
A convenience method for creating the wrapper for a learner.
- create(Iterable<? extends TargetEstimatePair<? extends Boolean, ? extends Boolean>>) - Static method in class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrix
-
Creates a new DefaultBinaryConfusionMatrix
from the given
target-estimate pairs.
- create(Iterable<? extends TargetEstimatePair<? extends Boolean, ? extends Boolean>>, boolean) - Static method in class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrix
-
Creates a new DefaultBinaryConfusionMatrix
from the given
target-estimate pairs.
- create() - Method in class gov.sandia.cognition.learning.performance.categorization.DefaultConfusionMatrix.Factory
-
- create(DenseMatrix) - Static method in class gov.sandia.cognition.math.matrix.mtj.decomposition.CholeskyDecompositionMTJ
-
Creates a Cholesky decomposition of the symmetric positive definite
matrix A.
- create(DenseMatrix) - Static method in class gov.sandia.cognition.math.matrix.mtj.decomposition.EigenDecompositionRightMTJ
-
Creates a new instance of EigenDecompositionRightMTJ.
- create(Matrix) - Static method in class gov.sandia.cognition.math.matrix.mtj.decomposition.SingularValueDecompositionMTJ
-
Creates a new instance of SingularValueDecompositionMTJ
- create(Collection<? extends Number>) - Static method in class gov.sandia.cognition.math.UnivariateSummaryStatistics
-
Creates a new instance of UnivariateSummaryStatistics from a Collection
of scalar values.
- create() - Method in class gov.sandia.cognition.statistics.bayesian.BayesianLinearRegression.IncrementalEstimator.SufficientStatistic
-
- create(MultivariateGaussian) - Method in class gov.sandia.cognition.statistics.bayesian.BayesianLinearRegression.IncrementalEstimator.SufficientStatistic
-
- create() - Method in class gov.sandia.cognition.statistics.bayesian.BayesianRobustLinearRegression.IncrementalEstimator.SufficientStatistic
-
- create(MultivariateGaussianInverseGammaDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.BayesianRobustLinearRegression.IncrementalEstimator.SufficientStatistic
-
- create(ConditionalType, String, PriorType) - Static method in class gov.sandia.cognition.statistics.bayesian.DefaultBayesianParameter
-
Creates a new instance of DefaultBayesianParameter
- create() - Method in class gov.sandia.cognition.statistics.distribution.DefaultDataDistribution.DefaultFactory
-
- create() - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.SufficientStatistic
-
- create(MultivariateGaussian) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.SufficientStatistic
-
- create() - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.SufficientStatisticCovarianceInverse
-
- create(MultivariateGaussian) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.SufficientStatisticCovarianceInverse
-
- create() - Method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.SufficientStatistic
-
- create(UnivariateGaussian) - Method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.SufficientStatistic
-
- create(Collection<? extends InputOutputPair<Double, Boolean>>) - Static method in class gov.sandia.cognition.statistics.method.ReceiverOperatingCharacteristic
-
Creates an ROC curve based on the scored data with target information
- create(DistributionType) - Method in interface gov.sandia.cognition.statistics.SufficientStatistic
-
Modifies the given distribution with the parameters indicated by the
sufficient statistics
- create(Collection<? extends Vectorizable>, TermIndex) - Method in class gov.sandia.cognition.text.term.relation.TermVectorSimilarityNetworkCreator
-
Creates a new similarity network between the terms in the given
documents.
- create() - Static method in class gov.sandia.cognition.util.DefaultIdentifiedValue
-
Convenience method to create a new, empty DefaultIdentifiedValue
.
- create(IdentifierType, ValueType) - Static method in class gov.sandia.cognition.util.DefaultIdentifiedValue
-
Creates a new DefaultIdentifiedValue
with the given identifier
and value.
- create() - Static method in class gov.sandia.cognition.util.DefaultKeyValuePair
-
Convenience method to create a new, empty DefaultKeyValuePair
.
- create(KeyType, ValueType) - Static method in class gov.sandia.cognition.util.DefaultKeyValuePair
-
Convenience method to create a new DefaultKeyValuePair
from the
given key and value.
- create(String, T) - Static method in class gov.sandia.cognition.util.DefaultNamedValue
-
Convenience method for creating an new DefaultNamedValue
.
- create() - Static method in class gov.sandia.cognition.util.DefaultPair
-
Creates a new, empty DefaultPair
with both values being null.
- create(FirstType, SecondType) - Static method in class gov.sandia.cognition.util.DefaultPair
-
Creates a new DefaultPair
from the given values.
- create(ValueType, double) - Static method in class gov.sandia.cognition.util.DefaultWeightedValue
-
Convenience method to create a new WeightedValue
.
- createArrayList(DataType, DataType) - Static method in class gov.sandia.cognition.collection.CollectionUtil
-
Creates a new ArrayList from the given pair of values.
- createAssignmentTasks() - Method in class gov.sandia.cognition.learning.algorithm.clustering.ParallelizedKMeansClusterer
-
Creates the assignment tasks given the number of threads requested
- createBag(ArrayList<Integer>, ArrayList<Integer>) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.CategoryBalancedIVotingLearner
-
- createBag(ArrayList<Integer>, ArrayList<Integer>) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner
-
Create the next sample (bag) of examples to learn the next ensemble
member from.
- createBalanced(Collection<? extends PairType>) - Static method in class gov.sandia.cognition.math.geometry.KDTree
-
Creates a balanced KDTree based on the given collection of Pairs.
- createBodyConverter() - Static method in class gov.sandia.cognition.text.convert.CommonDocumentTextualConverterFactory
-
Creates a document text converter that extracts the body field.
- createCategorizationLearner(int, double, double, int, int, Random) - Static method in class gov.sandia.cognition.learning.algorithm.tree.RandomForestFactory
-
Creates a random forest learner for categorization outputs.
- createCluster(Collection<? extends DataType>) - Method in interface gov.sandia.cognition.learning.algorithm.clustering.cluster.ClusterCreator
-
Create a new cluster from the given members of that cluster.
- createCluster(Collection<? extends DataType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.cluster.DefaultClusterCreator
-
Creates a new DefaultCluster
from the given list of members.
- createCluster() - Method in class gov.sandia.cognition.learning.algorithm.clustering.cluster.DefaultIncrementalClusterCreator
-
- createCluster(Collection<? extends Vector>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.cluster.GaussianClusterCreator
-
Creates a GaussianCluster from a given set of vectors by fitting a
Gaussian to those vectors.
- createCluster() - Method in interface gov.sandia.cognition.learning.algorithm.clustering.cluster.IncrementalClusterCreator
-
Creates a new, empty cluster.
- createCluster(Collection<? extends DataType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.cluster.MedoidClusterCreator
-
Creates a CentroidCluster at the member that minimizes the sum of
divergence between all members
- createCluster() - Method in class gov.sandia.cognition.learning.algorithm.clustering.cluster.NormalizedCentroidClusterCreator
-
- createCluster(Collection<? extends Vectorizable>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.cluster.NormalizedCentroidClusterCreator
-
- createCluster() - Method in class gov.sandia.cognition.learning.algorithm.clustering.cluster.VectorMeanCentroidClusterCreator
-
- createCluster(Collection<? extends Vector>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.cluster.VectorMeanCentroidClusterCreator
-
- createCluster(Collection<? extends Vector>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.cluster.VectorMeanMiniBatchCentroidClusterCreator
-
- createCluster(Collection<ObservationType>, DirichletProcessMixtureModel.Updater<ObservationType>) - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel
-
Creates a cluster from the given cluster assignment
- createClusterPosterior(Iterable<? extends Vector>, Random) - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.MultivariateMeanCovarianceUpdater
-
- createClusterPosterior(Iterable<? extends Vector>, Random) - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.MultivariateMeanUpdater
-
- createClusterPosterior(Iterable<? extends ObservationType>, Random) - Method in interface gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.Updater
-
Updates the cluster from the values assigned to it
- createClustersFromAssignments() - Method in class gov.sandia.cognition.learning.algorithm.clustering.KMeansClusterer
-
Creates the set of clusters using the current cluster assignments.
- createClustersFromAssignments() - Method in class gov.sandia.cognition.learning.algorithm.clustering.ParallelizedKMeansClusterer
-
- CreateClustersFromAssignments() - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.ParallelizedKMeansClusterer.CreateClustersFromAssignments
-
Creates a new instance of CreateClustersFromAssignments
- createCogxel(SemanticIdentifier) - Method in interface gov.sandia.cognition.framework.CogxelFactory
-
Creates a new Cogxel for the given CogxelFactory from the given
SemanticIdentifier.
- createCogxel(SemanticIdentifier) - Method in class gov.sandia.cognition.framework.DefaultCogxelFactory
-
Creates a new Cogxel for the given CogxelFactory from the given
SemanticIdentifier.
- createCogxel(SemanticIdentifier) - Method in class gov.sandia.cognition.framework.lite.BooleanActivatableCogxelFactory
-
Creates a new Cogxel for the given CogxelFactory from the given
SemanticIdentifier.
- createConditionalDistribution(Vectorizable, Vector) - Method in class gov.sandia.cognition.statistics.bayesian.BayesianLinearRegression
-
Creates the distribution from which the outputs are generated, given
the weights and the input to consider.
- createConditionalDistribution(Vectorizable, Vector) - Method in interface gov.sandia.cognition.statistics.bayesian.BayesianRegression
-
Creates the distribution from which the outputs are generated, given
the weights and the input to consider.
- createConditionalDistribution(Vectorizable, Vector) - Method in class gov.sandia.cognition.statistics.bayesian.BayesianRobustLinearRegression
-
Creates the distribution from which the outputs are generated, given
the weights and the input to consider.
- createConditionalDistribution(ParameterType) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.AbstractConjugatePriorBayesianEstimator
-
- createConditionalDistribution(ParameterType) - Method in interface gov.sandia.cognition.statistics.bayesian.conjugate.ConjugatePriorBayesianEstimator
-
Creates an instance of the class conditional distribution,
parameterized by the given parameter value.
- createConditionalDistribution(Vector) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.MultinomialBayesianEstimator
-
- createConditionalDistribution(Vector) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanBayesianEstimator
-
- createdClass - Variable in class gov.sandia.cognition.factory.DefaultFactory
-
The class whose default constructor is used to create new objects.
- createDefaultAlphabet() - Static method in class gov.sandia.cognition.text.spelling.SimpleStatisticalSpellingCorrector
-
Creates the default alphabet, which are the lower-case English letters.
- createDefaultState() - Method in interface gov.sandia.cognition.evaluator.StatefulEvaluator
-
Creates a new default state object.
- createDefaultState() - Method in class gov.sandia.cognition.learning.data.feature.DelayFunction
-
- createDefaultState() - Method in class gov.sandia.cognition.learning.data.feature.LinearRegressionCoefficientExtractor
-
- createDefaultState() - Method in class gov.sandia.cognition.learning.function.scalar.KolmogorovSmirnovEvaluator
-
- createDefaultState() - Method in class gov.sandia.cognition.math.signals.AutoRegressiveMovingAverageFilter
-
- createDefaultState() - Method in class gov.sandia.cognition.math.signals.LinearDynamicalSystem
-
- createDefaultState() - Method in class gov.sandia.cognition.math.signals.MovingAverageFilter
-
- createDefaultState() - Method in class gov.sandia.cognition.math.signals.PIDController
-
- createDiagonal(Vectorizable) - Method in class gov.sandia.cognition.math.matrix.MatrixFactory
-
Creates a new square matrix whose number of rows and columns match the
dimensionality of the given vector.
- createDistributionEstimatorTasks() - Method in class gov.sandia.cognition.learning.algorithm.hmm.ParallelBaumWelchAlgorithm
-
Creates the DistributionEstimatorTask
- createEmptyInputVector() - Method in interface gov.sandia.cognition.framework.lite.PatternRecognizerLite
-
Creates an empty vector to use for input.
- createEmptyInputVector() - Method in class gov.sandia.cognition.framework.lite.SimplePatternRecognizer
-
Creates an empty vector to use for input.
- createEmptyVector() - Method in class gov.sandia.cognition.framework.learning.converter.CogxelVectorConverter
-
Creates an empty Vector for the converter, of the proper dimensionality.
- createEvaluationTasks(Collection<GenomeType>) - Method in class gov.sandia.cognition.learning.algorithm.genetic.ParallelizedGeneticAlgorithm
-
Creates the evaluation tasks to execute in parallel.
- createFactory(T) - Static method in class gov.sandia.cognition.factory.PrototypeFactory
-
A convenience method for creating prototype factories.
- createFolds(Collection<? extends DataType>) - Method in class gov.sandia.cognition.learning.experiment.CrossFoldCreator
-
Creates the requested number of cross-validation folds from the given
data.
- createFolds(Collection<? extends DataType>, int, Random) - Static method in class gov.sandia.cognition.learning.experiment.CrossFoldCreator
-
Creates the requested number of cross-validation folds from the given
data.
- createFolds(Collection<? extends DataType>) - Method in class gov.sandia.cognition.learning.experiment.LeaveOneOutFoldCreator
-
Creates a list of folds that is the same size as the given data.
- createFolds(Collection<? extends DataType>) - Method in class gov.sandia.cognition.learning.experiment.RandomByTwoFoldCreator
-
- createFolds(Collection<? extends DataType>) - Method in class gov.sandia.cognition.learning.experiment.RandomFoldCreator
-
Creates the folds from the given data by passing the data into the
set data partitioner multiple times.
- createFolds(Collection<? extends InputDataType>) - Method in interface gov.sandia.cognition.learning.experiment.ValidationFoldCreator
-
Creates a list of partitioned (training and testing) datasets from the
given single dataset.
- createFromActualPredictedPairs(Collection<? extends Pair<? extends Boolean, ? extends Boolean>>) - Static method in class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrix
-
Creates a new DefaultConfusionMatrix
from the given
actual-predicted pairs.
- createFromActualPredictedPairs(Collection<? extends Pair<? extends CategoryType, ? extends CategoryType>>) - Static method in class gov.sandia.cognition.learning.performance.categorization.DefaultConfusionMatrix
-
Creates a new DefaultConfusionMatrix
from the given
actual-predicted pairs.
- createFromLogValue(double) - Static method in class gov.sandia.cognition.math.LogNumber
-
Creates a new LogNumber
from the given value that is
already in log-space.
- createFromLogValue(boolean, double) - Static method in class gov.sandia.cognition.math.LogNumber
-
Creates a new LogNumber
from the given value that is
already in log-space.
- createFromLogValue(double) - Static method in class gov.sandia.cognition.math.UnsignedLogNumber
-
Creates a new LogNumber
from the given value that is already in
log-space.
- createFromTargetEstimatePairs(Collection<? extends Pair<Boolean, ? extends Number>>) - Static method in class gov.sandia.cognition.statistics.method.ReceiverOperatingCharacteristic
-
Creates an ROC curve based on the scored data with target information.
- createFromValue(double) - Static method in class gov.sandia.cognition.math.LogNumber
-
Creates a new LogNumber
from the given value.
- createFromValue(double) - Static method in class gov.sandia.cognition.math.UnsignedLogNumber
-
Creates a new LogNumber
from the given value.
- createGaussianRandom(int, int, Random) - Method in class gov.sandia.cognition.math.matrix.MatrixFactory
-
Creates a new Matrix filled with values sampled from a Gaussian
distribution with mean 0 and variance 1.
- createGaussianRandom(int, int, Random) - Method in class gov.sandia.cognition.math.matrix.mtj.DiagonalMatrixFactoryMTJ
-
- createGaussianRandom(int, Random) - Method in class gov.sandia.cognition.math.matrix.mtj.DiagonalMatrixFactoryMTJ
-
Creates a new square Matrix of the given size with random values for the
entries, Gaussian distributed with mean 0 and variance 1.
- createGaussianRandom(int, Random) - Method in class gov.sandia.cognition.math.matrix.VectorFactory
-
Creates a vector with random values sampled from a Gaussian distribution
with mean 0 and variance 1.
- createHashMapWithSize(int) - Static method in class gov.sandia.cognition.collection.CollectionUtil
-
Creates a new HashMap
with the given expected size.
- createHashSetWithSize(int) - Static method in class gov.sandia.cognition.collection.CollectionUtil
-
Creates a new HashSet
with the given expected size.
- createIdentity(int) - Method in class gov.sandia.cognition.math.matrix.MatrixFactory
-
Creates a Matrix with ones (1) on the diagonal, and zeros (0) elsewhere
- createIdentity(int, int) - Method in class gov.sandia.cognition.math.matrix.MatrixFactory
-
Creates a Matrix with ones (1) on the diagonal, and zeros (0) elsewhere
- createInitialEnsemble() - Method in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractBaggingLearner
-
Create the initial, empty ensemble for the algorithm to use.
- createInitialEnsemble() - Method in class gov.sandia.cognition.learning.algorithm.ensemble.BaggingCategorizerLearner
-
- createInitialEnsemble() - Method in class gov.sandia.cognition.learning.algorithm.ensemble.BaggingRegressionLearner
-
- createInitialEnsemble() - Method in class gov.sandia.cognition.learning.algorithm.ensemble.BinaryBaggingLearner
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.learning.algorithm.bayes.VectorNaiveBayesCategorizer.OnlineLearner
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.learning.algorithm.confidence.AdaptiveRegularizationOfWeights
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalDeviation
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalVariance
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.learning.algorithm.ensemble.OnlineBaggingCategorizerLearner
-
- createInitialLearnedObject() - Method in interface gov.sandia.cognition.learning.algorithm.IncrementalLearner
-
Creates a new initial learned object, before any data is given.
- createInitialLearnedObject(Kernel<? super InputType>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.AbstractKernelizableBinaryCategorizerOnlineLearner
-
- createInitialLearnedObject(Kernel<? super InputType>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.AbstractLinearCombinationOnlineLearner
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.learning.algorithm.perceptron.AbstractOnlineLinearBinaryCategorizerLearner
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.AbstractOnlineKernelBinaryCategorizerLearner
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Forgetron.Basic
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Forgetron
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelBinaryCategorizerOnlineLearnerAdapter
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.RemoveOldestKernelPerceptron
-
- createInitialLearnedObject(Kernel<? super InputType>) - Method in interface gov.sandia.cognition.learning.algorithm.perceptron.KernelizableBinaryCategorizerOnlineLearner
-
Creates the initial learned object with a given kernel.
- createInitialLearnedObject() - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineMultiPerceptron
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineShiftingPerceptron
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineVotedPerceptron
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.learning.algorithm.perceptron.Winnow
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.statistics.bayesian.AbstractMarkovChainMonteCarlo
-
Creates the initial parameters from which to start the Markov chain.
- createInitialLearnedObject() - Method in class gov.sandia.cognition.statistics.bayesian.AbstractParticleFilter
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.statistics.bayesian.BayesianLinearRegression.IncrementalEstimator
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.statistics.bayesian.BayesianRobustLinearRegression.IncrementalEstimator
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.AbstractConjugatePriorBayesianEstimator
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.statistics.bayesian.ExtendedKalmanFilter
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.statistics.bayesian.KalmanFilter
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.statistics.bayesian.MetropolisHastingsAlgorithm
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.statistics.distribution.DefaultDataDistribution.Estimator
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.statistics.distribution.DefaultDataDistribution.WeightedEstimator
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.IncrementalEstimator
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.IncrementalEstimatorCovarianceInverse
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.statistics.distribution.ScalarDataDistribution.Estimator
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.IncrementalEstimator
-
- createInitialLearnedObject() - Method in class gov.sandia.cognition.text.spelling.SimpleStatisticalSpellingCorrector.Learner
-
- createInitialLinearLearnedObject(VectorFactory<?>) - Method in interface gov.sandia.cognition.learning.algorithm.perceptron.LinearizableBinaryCategorizerOnlineLearner
-
Creates the initial learned object.
- createInitialParameter() - Method in interface gov.sandia.cognition.statistics.bayesian.MetropolisHastingsAlgorithm.Updater
-
Creates the initial parameterization
- createInitialParticles(int) - Method in interface gov.sandia.cognition.statistics.bayesian.ParticleFilter.Updater
-
Creates the initial particles.
- createInputTransformed(Evaluator<? super InputType, ? extends IntermediateType>, BatchLearner<? super Collection<? extends IntermediateType>, ? extends Evaluator<? super IntermediateType, ? extends OutputType>>) - Static method in class gov.sandia.cognition.learning.algorithm.CompositeBatchLearnerPair
-
- createInputTransformed(BatchLearner<? super Collection<? extends InputType>, ? extends Evaluator<? super InputType, ? extends TransformedInputType>>, BatchLearner<? super Collection<? extends InputOutputPair<? extends TransformedInputType, OutputType>>, ? extends Evaluator<? super TransformedInputType, ? extends OutputType>>) - Static method in class gov.sandia.cognition.learning.algorithm.InputOutputTransformedBatchLearner
-
Creates a new InputOutputTransformedBatchLearner
from the
input and supervised learners, performing no transformation on the
output type.
- createInputTransformed(Evaluator<? super InputType, ? extends TransformedInputType>, BatchLearner<? super Collection<? extends InputOutputPair<? extends TransformedInputType, OutputType>>, ? extends Evaluator<? super TransformedInputType, ? extends OutputType>>) - Static method in class gov.sandia.cognition.learning.algorithm.InputOutputTransformedBatchLearner
-
Creates a new InputOutputTransformedBatchLearner
from the
predefined input transform and the supervised learner.
- createInternalFunction() - Method in class gov.sandia.cognition.learning.algorithm.regression.AbstractMinimizerBasedParameterCostMinimizer
-
Creates the internal function that maps the parameter set of
result as the input to the function, so that the minimization
algorithms can perturb this input in their minimization schemes.
- createInternalFunction() - Method in class gov.sandia.cognition.learning.algorithm.regression.ParameterDerivativeFreeCostMinimizer
-
- createInternalFunction() - Method in class gov.sandia.cognition.learning.algorithm.regression.ParameterDifferentiableCostMinimizer
-
- createKernelLearner(Kernel<? super InputType>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.AbstractKernelizableBinaryCategorizerOnlineLearner
-
- createKernelLearner(Kernel<? super InputType>) - Method in interface gov.sandia.cognition.learning.algorithm.perceptron.KernelizableBinaryCategorizerOnlineLearner
-
Creates a new kernel-based learner using the standard learning interfaces
based on this learner and its parameters.
- createLinearLearner(VectorFactory<?>) - Method in interface gov.sandia.cognition.learning.algorithm.perceptron.LinearizableBinaryCategorizerOnlineLearner
-
Creates a new linear learner using the standard learning interfaces
based on this learner and its parameters.
- createLinkedHashMapWithSize(int) - Static method in class gov.sandia.cognition.collection.CollectionUtil
-
Creates a new LinkedHashMap
with the given expected size.
- createLinkedHashSetWithSize(int) - Static method in class gov.sandia.cognition.collection.CollectionUtil
-
Creates a new LinkedHashSet
with the given expected size.
- createLogDominanceWeighter() - Static method in class gov.sandia.cognition.text.term.vector.weighter.CommonTermWeighterFactory
-
Creates a log-dominance weighting scheme.
- createLogEntropyWeighter() - Static method in class gov.sandia.cognition.text.term.vector.weighter.CommonTermWeighterFactory
-
Creates a log-entropy weighting scheme.
- createMatrix(int, int) - Method in class gov.sandia.cognition.math.matrix.custom.CustomDenseMatrixFactory
-
Creates a new all-zero DenseMatrix of the specified dimensions.
- createMatrix(int, int) - Method in class gov.sandia.cognition.math.matrix.custom.CustomDiagonalMatrixFactory
-
Creates an empty Matrix of the specified dimensions, all elements
must be all zeros!
- createMatrix(int, int) - Method in class gov.sandia.cognition.math.matrix.custom.CustomSparseMatrixFactory
-
Creates an empty Matrix of the specified dimensions, all elements
must be all zeros!
- createMatrix(int, int) - Method in class gov.sandia.cognition.math.matrix.MatrixFactory
-
Creates an empty Matrix of the specified dimensions, all elements
must be all zeros!
- createMatrix(int, int, double) - Method in class gov.sandia.cognition.math.matrix.MatrixFactory
-
Creates a matrix with the given initial value.
- createMatrix(int, int) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseMatrixFactoryMTJ
-
- createMatrix(int, int) - Method in class gov.sandia.cognition.math.matrix.mtj.DiagonalMatrixFactoryMTJ
-
- createMatrix(int) - Method in class gov.sandia.cognition.math.matrix.mtj.DiagonalMatrixFactoryMTJ
-
Creates a square diagonal matrix of dimensionality "dim" with zeros
along the diagonal
- createMatrix(int, int, double) - Method in class gov.sandia.cognition.math.matrix.mtj.DiagonalMatrixFactoryMTJ
-
Creates a matrix with the given initial value on all of the elements of
the diagonal.
- createMatrix(int, int) - Method in class gov.sandia.cognition.math.matrix.mtj.SparseMatrixFactoryMTJ
-
- createModel() - Method in interface gov.sandia.cognition.framework.CognitiveModelFactory
-
Creates a CognitiveModel from the factory.
- createModel() - Method in class gov.sandia.cognition.framework.concurrent.MultithreadedCognitiveModelFactory
-
Creates a MultithreadedCognitiveModel using the CognitiveModuleFactories
that are part of the model factory.
- createModel() - Method in class gov.sandia.cognition.framework.lite.CognitiveModelLiteFactory
-
Creates a CognitiveModelLite using the CognitiveModuleFactories
that are part of the model factory.
- createModule(CognitiveModel) - Method in interface gov.sandia.cognition.framework.CognitiveModuleFactory
-
Creates a new CognitiveModule for the given CognitiveModel.
- createModule(CognitiveModel) - Method in class gov.sandia.cognition.framework.learning.EvaluatorBasedCognitiveModuleFactory
-
Creates a new CognitiveModule for the given CognitiveModel.
- createModule(CognitiveModel) - Method in class gov.sandia.cognition.framework.lite.ArrayBasedPerceptionModuleFactory
-
Creates a new CognitiveModule for the given CognitiveModel.
- createModule(CognitiveModel) - Method in class gov.sandia.cognition.framework.lite.MutableSemanticMemoryLiteFactory
-
Creates a new MutableSemanticMemoryLite module for the given model.
- createModule(CognitiveModel) - Method in class gov.sandia.cognition.framework.lite.SharedSemanticMemoryLiteFactory
-
Creates a new SharedSemanticMemoryLite module for the given model.
- createModule(CognitiveModel) - Method in class gov.sandia.cognition.framework.lite.VectorBasedPerceptionModuleFactory
-
Creates a new CognitiveModule for the given CognitiveModel.
- createNamedValuesList(Collection<T>) - Static method in class gov.sandia.cognition.util.DefaultNamedValue
-
Creates a list of named values from a collection of named objects.
- createOutputTransformed(BatchLearner<? super Collection<? extends InputType>, ? extends Evaluator<? super InputType, ? extends IntermediateType>>, Evaluator<? super IntermediateType, ? extends OutputType>) - Static method in class gov.sandia.cognition.learning.algorithm.CompositeBatchLearnerPair
-
- createOutputTransformed(BatchLearner<? super Collection<? extends InputOutputPair<? extends InputType, TransformedOutputType>>, ? extends Evaluator<? super InputType, ? extends TransformedOutputType>>, BatchLearner<? super Collection<? extends OutputType>, ? extends ReversibleEvaluator<OutputType, TransformedOutputType, ?>>) - Static method in class gov.sandia.cognition.learning.algorithm.InputOutputTransformedBatchLearner
-
Creates a new InputOutputTransformedBatchLearner
from the
supervised and output learners, performing no transformation on the
input type.
- createOutputTransformed(BatchLearner<? super Collection<? extends InputOutputPair<? extends InputType, TransformedOutputType>>, ? extends Evaluator<? super InputType, ? extends TransformedOutputType>>, ReversibleEvaluator<OutputType, TransformedOutputType, ?>) - Static method in class gov.sandia.cognition.learning.algorithm.InputOutputTransformedBatchLearner
-
Creates a new InputOutputTransformedBatchLearner
from the
predefined output transforms and the supervised learner.
- createPair(FirstType, SecondType) - Method in class gov.sandia.cognition.framework.learning.converter.AbstractCogxelPairConverter
-
Creates a Pair from the needed data
- createPair(InputType, OutputType) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelInputOutputPairConverter
-
- createPair(TargetType, EstimateType) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelTargetEstimatePairConverter
-
- createParameter(BernoulliDistribution, BetaDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.BernoulliBayesianEstimator
-
- createParameter(BinomialDistribution, BetaDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.BinomialBayesianEstimator
-
- createParameter(ConditionalType, BeliefType) - Method in interface gov.sandia.cognition.statistics.bayesian.conjugate.ConjugatePriorBayesianEstimator
-
Creates a parameter linking the conditional and prior distributions
- createParameter(ExponentialDistribution, GammaDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.ExponentialBayesianEstimator
-
- createParameter(GammaDistribution, GammaDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.GammaInverseScaleBayesianEstimator
-
- createParameter(MultinomialDistribution, DirichletDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.MultinomialBayesianEstimator
-
- createParameter(MultivariateGaussian, MultivariateGaussian) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanBayesianEstimator
-
- createParameter(MultivariateGaussian, NormalInverseWishartDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanCovarianceBayesianEstimator
-
- createParameter(PoissonDistribution, GammaDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.PoissonBayesianEstimator
-
- createParameter(UniformDistribution, ParetoDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.UniformDistributionBayesianEstimator
-
- createParameter(UnivariateGaussian, UnivariateGaussian) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanBayesianEstimator
-
- createParameter(UnivariateGaussian, NormalInverseGammaDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanVarianceBayesianEstimator
-
- createPartialPermutation(int, int, Random) - Static method in class gov.sandia.cognition.math.Permutation
-
Creates a random partial permutation of size k of the numbers 0
(inclusive) through n (exclusive).
- createPartition(Collection<? extends DataType>) - Method in interface gov.sandia.cognition.learning.data.DataPartitioner
-
Partitions the given collection of data into a training set and a
testing set.
- createPartition(Collection<? extends DataType>) - Method in class gov.sandia.cognition.learning.data.RandomDataPartitioner
-
Randomly partitions the given data into a training and testing set.
- createPartition(Collection<? extends DataType>, double, Random) - Static method in class gov.sandia.cognition.learning.data.RandomDataPartitioner
-
Randomly partitions the given data into a training and testing set.
- createPartitions() - Method in class gov.sandia.cognition.learning.function.cost.ParallelizedCostFunctionContainer
-
Splits the data across the numComponents cost functions
- createPermutation(int, Random) - Static method in class gov.sandia.cognition.math.Permutation
-
Creates a random permutation of the numbers 0 (inclusive) through n
(exclusive).
- createPolynomials(double...) - Static method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction
-
Creates an array of PolynomialFunctions from the array of their exponents
- createPredictionDataset(Collection<? extends DataType>, int) - Static method in class gov.sandia.cognition.learning.algorithm.SequencePredictionLearner
-
Takes a collection and creates a multi-collection of sequences of
input-output pairs that are from the given sequence with the given
prediction horizon.
- createPredictionDataset(MultiCollection<? extends DataType>, int) - Static method in class gov.sandia.cognition.learning.algorithm.SequencePredictionLearner
-
Takes a multi-collection and creates a multi-collection of sequences of
input-output pairs that are from the given sequence with the given
prediction horizon.
- createPredictionDataset(int, Collection<? extends InputOutputPair<? extends InputType, OutputType>>) - Static method in class gov.sandia.cognition.learning.algorithm.TimeSeriesPredictionLearner
-
Creates a dataset that can be used to predict the future by
"predictionHorizon" samples.
- createPredictiveDistribution(PosteriorType) - Method in interface gov.sandia.cognition.statistics.bayesian.BayesianEstimatorPredictor
-
Creates the predictive distribution of new data given the posterior.
- createPredictiveDistribution(MultivariateGaussian) - Method in class gov.sandia.cognition.statistics.bayesian.BayesianLinearRegression
-
Creates the predictive distribution of outputs given the weight posterior
- createPredictiveDistribution(PosteriorType) - Method in interface gov.sandia.cognition.statistics.bayesian.BayesianRegression
-
Creates the predictive distribution of outputs given the weight posterior
- createPredictiveDistribution(MultivariateGaussianInverseGammaDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.BayesianRobustLinearRegression
-
- createPredictiveDistribution(BetaDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.BinomialBayesianEstimator
-
- createPredictiveDistribution(GammaDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.ExponentialBayesianEstimator
-
- createPredictiveDistribution(DirichletDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.MultinomialBayesianEstimator
-
- createPredictiveDistribution(MultivariateGaussian) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanBayesianEstimator
-
- createPredictiveDistribution(NormalInverseWishartDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanCovarianceBayesianEstimator
-
- createPredictiveDistribution(GammaDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.PoissonBayesianEstimator
-
- createPredictiveDistribution(UnivariateGaussian) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanBayesianEstimator
-
Creates the predictive distribution from the given posterior.
- createPredictiveDistribution(NormalInverseGammaDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanVarianceBayesianEstimator
-
- createPredictiveDistribution(MultivariateGaussian, ArrayList<InputType>) - Method in class gov.sandia.cognition.statistics.bayesian.GaussianProcessRegression
-
Creates the predictive distribution for future points.
- createPriorPredictive(Iterable<? extends Vector>) - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.MultivariateMeanCovarianceUpdater
-
- createPriorPredictive(Iterable<? extends Vector>) - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.MultivariateMeanUpdater
-
- createPriorPredictive(Iterable<? extends ObservationType>) - Method in interface gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.Updater
-
Creates the prior predictive distribution from the data.
- createRandom(int, BatchLearner<Collection<? extends WeightedValue<? extends ObservationType>>, ? extends ComputableDistribution<ObservationType>>, Collection<? extends ObservationType>, Random) - Static method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
Creates a Hidden Markov Model with the same PMF/PDF for each state,
but sampling the columns of the transition matrix and the initial
probability distributions from a diffuse Dirichlet.
- createRandom(int, ComputableDistribution<ObservationType>, Random) - Static method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
Creates a Hidden Markov Model with the same PMF/PDF for each state,
but sampling the columns of the transition matrix and the initial
probability distributions from a diffuse Dirichlet.
- createRandom(Collection<? extends ProbabilityFunction<ObservationType>>, Random) - Static method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
Creates a Hidden Markov Model with the given probability function for
each state, but sampling the columns of the transition matrix and the
initial probability distributions from a diffuse Dirichlet.
- createRandom(Random) - Static method in class gov.sandia.cognition.math.matrix.mtj.Vector3
-
Creates a new random Vector3 from the given Random object.
- createRegressionLearner(int, double, double, int, int, Random) - Static method in class gov.sandia.cognition.learning.algorithm.tree.RandomForestFactory
-
Creates a random forest learner for categorization outputs.
- createReordering(Collection<? extends DataType>, Random) - Static method in class gov.sandia.cognition.math.Permutation
-
Takes a collection and returns an array list that contains a permutation
of the elements of that collection.
- createReverse() - Method in class gov.sandia.cognition.data.convert.AbstractReverseCachedDataConverter
-
Creates a new reverse converter.
- createReverse() - Method in class gov.sandia.cognition.data.convert.number.DefaultBooleanToNumberConverter
-
- createReverse() - Method in class gov.sandia.cognition.data.convert.number.StringToDoubleConverter
-
- createReverse() - Method in class gov.sandia.cognition.data.convert.number.StringToIntegerConverter
-
- createSequentialPartitions(Iterable<? extends DataType>, int) - Static method in class gov.sandia.cognition.collection.CollectionUtil
-
Creates a partition of the given data into "numPartition" roughly equal
sets, preserving their pre-existing sequential ordering, with the nonzero
remainder elements going into the final partition.
- createSequentialPartitions(List<? extends DataType>, int) - Static method in class gov.sandia.cognition.collection.CollectionUtil
-
Creates a partition of the given data into "numPartition" roughly equal
sets, preserving their pre-existing sequential ordering, with the nonzero
remainder elements going into the final partition.
- createSpherical(int) - Static method in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
-
Create a spherical partitional clusterer, using Cosine distance and a
vector mean centroid cluster creator.
- createTerm(Token) - Method in interface gov.sandia.cognition.text.term.TermFactory
-
Creates a new term from the given token.
- createTerm(String) - Method in interface gov.sandia.cognition.text.term.TermFactory
-
Creates a new term from the given string.
- createTFIDFWeighter() - Static method in class gov.sandia.cognition.text.term.vector.weighter.CommonTermWeighterFactory
-
Creates a term-frequency inverse-document-frequency (TF-IDF) weighting
scheme but without any normalization.
- createTFIDFWeighterWithUnitNormalization() - Static method in class gov.sandia.cognition.text.term.vector.weighter.CommonTermWeighterFactory
-
Creates a term-frequency inverse-document-frequency (TF-IDF) weighting
scheme with unit vector normalization (2-norm).
- createTFWeighter() - Static method in class gov.sandia.cognition.text.term.vector.weighter.CommonTermWeighterFactory
-
Creates a term-frequency (TF) weighting scheme.
- createThreadPool() - Static method in class gov.sandia.cognition.algorithm.ParallelUtil
-
Creates a thread pool with the "optimal" number of threads.
- createThreadPool(int) - Static method in class gov.sandia.cognition.algorithm.ParallelUtil
-
Creates a thread pool with the given number of threads.
- createThreadPool() - Method in class gov.sandia.cognition.learning.function.cost.ParallelizedCostFunctionContainer
-
Creates the thread pool using the Foundry's global thread pool.
- createTitleAuthorBodyConverter() - Static method in class gov.sandia.cognition.text.convert.CommonDocumentTextualConverterFactory
-
Creates a document text converter that puts the title, author, and body
fields together.
- createTitleBodyConverter() - Static method in class gov.sandia.cognition.text.convert.CommonDocumentTextualConverterFactory
-
Creates a document text converter that puts the title and body fields
together.
- createUniformInitialProbability(int) - Static method in class gov.sandia.cognition.learning.algorithm.hmm.MarkovChain
-
Creates a uniform initial-probability Vector
- createUniformRandom(int, int, Random) - Method in class gov.sandia.cognition.math.matrix.MatrixFactory
-
Creates a new Matrix filled with values sampled uniformly between 0 and
1.
- createUniformRandom(int, int, double, double, Random) - Method in class gov.sandia.cognition.math.matrix.MatrixFactory
-
Creates a new Matrix of the given size with random values for the
entries, uniformly distributed between the given minimum and maximum
values.
- createUniformRandom(int, int, Random) - Method in class gov.sandia.cognition.math.matrix.mtj.DiagonalMatrixFactoryMTJ
-
- createUniformRandom(int, int, double, double, Random) - Method in class gov.sandia.cognition.math.matrix.mtj.DiagonalMatrixFactoryMTJ
-
- createUniformRandom(int, double, double, Random) - Method in class gov.sandia.cognition.math.matrix.mtj.DiagonalMatrixFactoryMTJ
-
Creates a new square Matrix of the given size with random values for the
entries, uniformly distributed between the given minimum and maximum
values.
- createUniformRandom(int, Random) - Method in class gov.sandia.cognition.math.matrix.VectorFactory
-
Creates a vector with random values for the entries uniformly sampled
between 0 and 1.
- createUniformRandom(int, double, double, Random) - Method in class gov.sandia.cognition.math.matrix.VectorFactory
-
Creates a Vector with random values for the entries, uniformly
distributed between "min" and "max"
- createUniformTransitionProbability(int) - Static method in class gov.sandia.cognition.learning.algorithm.hmm.MarkovChain
-
Creates a uniform transition-probability Matrix
- createUnweighted(Collection<? extends TargetEstimatePair<? extends CategoryType, ? extends CategoryType>>) - Static method in class gov.sandia.cognition.learning.performance.categorization.DefaultConfusionMatrix
-
Creates a new DefaultConfusionMatrix
from the given
actual-predicted pairs.
- createVector(int) - Method in class gov.sandia.cognition.math.matrix.custom.CustomDenseVectorFactory
-
- createVector(int) - Method in class gov.sandia.cognition.math.matrix.custom.CustomSparseVectorFactory
-
- createVector(int) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseVectorFactoryMTJ
-
- createVector(int, double) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseVectorFactoryMTJ
-
- createVector(int) - Method in class gov.sandia.cognition.math.matrix.mtj.SparseVectorFactoryMTJ
-
- createVector(int) - Method in class gov.sandia.cognition.math.matrix.VectorFactory
-
Creates an empty Vector of the specified dimension, all elements
must be all zeros!
- createVector(int, double) - Method in class gov.sandia.cognition.math.matrix.VectorFactory
-
Creates a Vector with the given initial value for all elements.
- createVector1D(double) - Method in class gov.sandia.cognition.math.matrix.custom.CustomDenseVectorFactory
-
- createVector1D(double) - Method in class gov.sandia.cognition.math.matrix.custom.CustomSparseVectorFactory
-
Creates a one-dimensional vector with the given x coordinate: (x).
- createVector1D(double) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseVectorFactoryMTJ
-
- createVector1D(double) - Method in class gov.sandia.cognition.math.matrix.mtj.SparseVectorFactoryMTJ
-
- createVector1D() - Method in class gov.sandia.cognition.math.matrix.VectorFactory
-
Creates a one-dimensional zero vector: (0.0).
- createVector1D(double) - Method in class gov.sandia.cognition.math.matrix.VectorFactory
-
Creates a one-dimensional vector with the given x coordinate: (x).
- createVector2D(double, double) - Method in class gov.sandia.cognition.math.matrix.custom.CustomDenseVectorFactory
-
- createVector2D(double, double) - Method in class gov.sandia.cognition.math.matrix.custom.CustomSparseVectorFactory
-
Creates a two-dimensional vector with the given x and y coordinates:
(x, y).
- createVector2D(double, double) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseVectorFactoryMTJ
-
- createVector2D(double, double) - Method in class gov.sandia.cognition.math.matrix.mtj.SparseVectorFactoryMTJ
-
- createVector2D() - Method in class gov.sandia.cognition.math.matrix.VectorFactory
-
Creates a two-dimensional zero vector: (0.0, 0.0).
- createVector2D(double, double) - Method in class gov.sandia.cognition.math.matrix.VectorFactory
-
Creates a two-dimensional vector with the given x and y coordinates:
(x, y).
- createVector3D(double, double, double) - Method in class gov.sandia.cognition.math.matrix.custom.CustomDenseVectorFactory
-
- createVector3D(double, double, double) - Method in class gov.sandia.cognition.math.matrix.custom.CustomSparseVectorFactory
-
Creates a three-dimensional vector with the given x, y, and z
coordinates: (x, y, z).
- createVector3D(double, double, double) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseVectorFactoryMTJ
-
- createVector3D(double, double, double) - Method in class gov.sandia.cognition.math.matrix.mtj.SparseVectorFactoryMTJ
-
- createVector3D() - Method in class gov.sandia.cognition.math.matrix.VectorFactory
-
Creates a three-dimensional zero vector: (0.0, 0.0, 0.0).
- createVector3D(double, double, double) - Method in class gov.sandia.cognition.math.matrix.VectorFactory
-
Creates a three-dimensional vector with the given x, y, and z
coordinates: (x, y, z).
- createVectorCapacity(int, int) - Method in class gov.sandia.cognition.math.matrix.custom.CustomDenseVectorFactory
-
- createVectorCapacity(int, int) - Method in class gov.sandia.cognition.math.matrix.custom.CustomSparseVectorFactory
-
- createVectorCapacity(int, int) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseVectorFactoryMTJ
-
- createVectorCapacity(int, int) - Method in class gov.sandia.cognition.math.matrix.mtj.SparseVectorFactoryMTJ
-
- createVectorCapacity(int, int) - Method in class gov.sandia.cognition.math.matrix.VectorFactory
-
Creates a new, empty vector with the given dimensionality and expected
number of nonzero elements.
- createWeightDistribution() - Method in class gov.sandia.cognition.learning.function.categorization.AbstractConfidenceWeightedBinaryCategorizer
-
- createWeightDistribution() - Method in interface gov.sandia.cognition.learning.function.categorization.ConfidenceWeightedBinaryCategorizer
-
Creates a multivariate Gaussian distribution that represents the
distribution of weight vectors that the algorithm has learned.
- createWrapper(DenseMatrix) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseMatrixFactoryMTJ
-
Creates a new wrapper for a dense MTJ matrix.
- createWrapper(DenseVector) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseVectorFactoryMTJ
-
Creates a new wrapper for a dense MTJ vector.
- createWrapper(FlexCompColMatrix) - Method in class gov.sandia.cognition.math.matrix.mtj.SparseMatrixFactoryMTJ
-
Creates a new wrapper for a sparse column MTJ matrix.
- createWrapper(FlexCompRowMatrix) - Method in class gov.sandia.cognition.math.matrix.mtj.SparseMatrixFactoryMTJ
-
Creates a new wrapper for a sparse row MTJ matrix.
- createWrapper(SparseVector) - Method in class gov.sandia.cognition.math.matrix.mtj.SparseVectorFactoryMTJ
-
Creates a new wrapper for a sparse MTJ vector.
- creator - Variable in class gov.sandia.cognition.learning.algorithm.clustering.AgglomerativeClusterer
-
The merger used to merge two clusters into one element.
- creator - Variable in class gov.sandia.cognition.learning.algorithm.clustering.initializer.AbstractMinDistanceFixedClusterInitializer
-
The ClusterCreator to create the initial clusters from.
- creator - Variable in class gov.sandia.cognition.learning.algorithm.clustering.initializer.RandomClusterInitializer
-
The creator for new clusters.
- creator - Variable in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
-
The merger used to merge two clusters into one cluster.
- CrossFoldCreator<DataType> - Class in gov.sandia.cognition.learning.experiment
-
The CrossFoldCreator
implements a validation fold creator that
creates folds for a typical k-fold cross-validation experiment.
- CrossFoldCreator() - Constructor for class gov.sandia.cognition.learning.experiment.CrossFoldCreator
-
Creates a new instance of CrossFoldCreator with a default number of folds
(10) and a default Random number generator.
- CrossFoldCreator(int) - Constructor for class gov.sandia.cognition.learning.experiment.CrossFoldCreator
-
Creates a new CrossFoldCreator.
- CrossFoldCreator(int, Random) - Constructor for class gov.sandia.cognition.learning.experiment.CrossFoldCreator
-
Creates a new CrossFoldCreator.
- crossover(GenomeType, GenomeType) - Method in interface gov.sandia.cognition.learning.algorithm.genetic.reproducer.CrossoverFunction
-
Crosses over the provided genomes to produce a new genome.
- crossover(Vectorizable, Vectorizable) - Method in class gov.sandia.cognition.learning.algorithm.genetic.reproducer.VectorizableCrossoverFunction
-
Crosses over each element of the parent vectors.
- CrossoverFunction<GenomeType> - Interface in gov.sandia.cognition.learning.algorithm.genetic.reproducer
-
The CrossoverFunction interface implements standard functionality for
implementing crossover for genetic algorithms.
- CrossoverReproducer<GenomeType> - Class in gov.sandia.cognition.learning.algorithm.genetic.reproducer
-
The CrossoverReproducer takes a population of genomes, and applies the
supplied CrossoverFunction to produce a new population.
- CrossoverReproducer(Selector<GenomeType>, CrossoverFunction<GenomeType>) - Constructor for class gov.sandia.cognition.learning.algorithm.genetic.reproducer.CrossoverReproducer
-
Creates a new instance of CrossoverReproducer
- CSV_EXTENSION - Static variable in class gov.sandia.cognition.framework.io.ModelFileHandler
-
The extension for comma-separated-value models.
- CSVDefaultCognitiveModelLiteHandler - Class in gov.sandia.cognition.framework.io
-
The CSVDefaultCognitiveModelLiteHandler class implements a format handler for
CSV files that specify a default setup for a CognitiveModelLite.
- CSVDefaultCognitiveModelLiteHandler() - Constructor for class gov.sandia.cognition.framework.io.CSVDefaultCognitiveModelLiteHandler
-
Creates a new instance of CommaSeparatedValueHandler.
- CSVParseException - Exception in gov.sandia.cognition.io
-
The CSVParseException
class implements an exception that is
thrown while parsing a CSV file.
- CSVParseException() - Constructor for exception gov.sandia.cognition.io.CSVParseException
-
Creates a new instance of CSVParseException
without
detail message.
- CSVParseException(String) - Constructor for exception gov.sandia.cognition.io.CSVParseException
-
Constructs an instance of CSVParseException
with the
specified detail message.
- CSVParseException(Throwable) - Constructor for exception gov.sandia.cognition.io.CSVParseException
-
Constructs an instance of CSVParseException
with the
given cause of the exception.
- CSVParseException(String, Throwable) - Constructor for exception gov.sandia.cognition.io.CSVParseException
-
Constructs an instance of CSVParseException
with the
given message and cause of the exception.
- CSVUtility - Class in gov.sandia.cognition.io
-
The CSVUtility
class implements some utility functions for
dealing with comma-separated value (CSV) file types.
- CSVUtility() - Constructor for class gov.sandia.cognition.io.CSVUtility
-
- Cubic(double, double, double, double) - Constructor for class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Cubic
-
Creates a new instance of Quadratic
- Cubic(PolynomialFunction.Cubic) - Constructor for class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Cubic
-
Copy constructor
- CumulativeDistributionFunction<NumberType extends java.lang.Number> - Interface in gov.sandia.cognition.statistics
-
Functionality of a cumulative distribution function.
- currentBag - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner
-
The current bag used to train the current ensemble member.
- currentCorrectIndices - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner
-
The indices of examples that the ensemble currently gets correct.
- currentEnsembleCorrect - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner
-
A boolean for each example indicating if the ensemble currently gets the
example correct or incorrect.
- currentIncorrectIndices - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner
-
The indices of examples that the ensemble currently gets incorrect.
- currentInput - Variable in class gov.sandia.cognition.statistics.bayesian.AbstractKalmanFilter
-
Current input to the model.
- currentMember - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner
-
The currently learned member of the ensemble.
- currentMemberEstimates - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner
-
The estimates of the current member for each example.
- currentParameter - Variable in class gov.sandia.cognition.statistics.bayesian.AbstractMarkovChainMonteCarlo
-
The current parameters in the random walk.
- CustomDenseMatrixFactory - Class in gov.sandia.cognition.math.matrix.custom
-
Factory that creates DenseMatrix instances.
- CustomDenseMatrixFactory() - Constructor for class gov.sandia.cognition.math.matrix.custom.CustomDenseMatrixFactory
-
- CustomDenseVectorFactory - Class in gov.sandia.cognition.math.matrix.custom
-
Dense vector factory.
- CustomDenseVectorFactory() - Constructor for class gov.sandia.cognition.math.matrix.custom.CustomDenseVectorFactory
-
- CustomDiagonalMatrixFactory - Class in gov.sandia.cognition.math.matrix.custom
-
Factory for diagonal matrices.
- CustomDiagonalMatrixFactory() - Constructor for class gov.sandia.cognition.math.matrix.custom.CustomDiagonalMatrixFactory
-
- CustomSparseMatrixFactory - Class in gov.sandia.cognition.math.matrix.custom
-
Factory for Sparse Matrices.
- CustomSparseMatrixFactory() - Constructor for class gov.sandia.cognition.math.matrix.custom.CustomSparseMatrixFactory
-
- CustomSparseVectorFactory - Class in gov.sandia.cognition.math.matrix.custom
-
Generates Sparse Vectors with all settings initialized properly
- CustomSparseVectorFactory() - Constructor for class gov.sandia.cognition.math.matrix.custom.CustomSparseVectorFactory
-