- safeFirstNext() - Method in class gov.sandia.cognition.math.matrix.MatrixUnionIterator
-
Try to advance the first entry...
- safeFirstNext() - Method in class gov.sandia.cognition.math.matrix.VectorUnionIterator
-
Try to advance the first entry...
- safeGetDimensionality(Vectorizable) - Static method in class gov.sandia.cognition.math.matrix.VectorUtil
-
Gets the dimensionality of the given vector, if it is not null.
- safeGetDimensionality(Vector) - Static method in class gov.sandia.cognition.math.matrix.VectorUtil
-
Gets the dimensionality of the given vector, if it is not null.
- safeSecondNext() - Method in class gov.sandia.cognition.math.matrix.MatrixUnionIterator
-
Try to advance the second entry...
- safeSecondNext() - Method in class gov.sandia.cognition.math.matrix.VectorUnionIterator
-
Try to advance the second entry...
- salt(HashFunction, byte[]...) - Static method in class gov.sandia.cognition.hash.HashFunctionUtil
-
Computes the salted hash of the given inputs, that is, we concatenate
the inputs together and compute the hash of the concatenated bytes.
- saltInto(byte[], HashFunction, byte[]...) - Static method in class gov.sandia.cognition.hash.HashFunctionUtil
-
Computes the salted hash of the given inputs, that is, we concatenate
the inputs together and compute the hash of the concatenated bytes.
- sample(Random) - Method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
- sample(Random, int) - Method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
- sample(Random) - Method in class gov.sandia.cognition.statistics.AbstractDataDistribution
-
- sample(Random, int) - Method in class gov.sandia.cognition.statistics.AbstractDataDistribution
-
- sample(Random) - Method in class gov.sandia.cognition.statistics.AbstractDistribution
-
- sample(Random, int) - Method in class gov.sandia.cognition.statistics.AbstractDistribution
-
- sample(Random) - Method in class gov.sandia.cognition.statistics.AbstractRandomVariable
-
- sample(Random) - Method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling
-
Draws a single sample by the method of adaptive rejection sampling.
- sample(Random, int) - Method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling
-
Draws samples by the adaptive rejection sampling method, which will
have the distribution of the logFunction
- sample(Random) - Method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.UpperEnvelope
-
- sample(Random, int) - Method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.UpperEnvelope
-
- sample(ClosedFormDistribution<ObservationType>, String, Distribution<ParameterType>, Random, int) - Static method in class gov.sandia.cognition.statistics.bayesian.BayesianUtil
-
Samples from the given BayesianParameter by first sampling the prior
distribution, then updating the conditional distribution, then sampling
from the updated conditional distribution.
- sample(BayesianParameter<ParameterType, ? extends Distribution<ObservationType>, ? extends Distribution<ParameterType>>, Random, int) - Static method in class gov.sandia.cognition.statistics.bayesian.BayesianUtil
-
Samples from the given BayesianParameter by first sampling the prior
distribution, then updating the conditional distribution, then sampling
from the updated conditional distribution.
- Sample(double, ArrayList<DirichletProcessMixtureModel.DPMMCluster<ObservationType>>) - Constructor for class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.Sample
-
Creates a new instance of Sample
- sample(Random) - Method in class gov.sandia.cognition.statistics.distribution.ChineseRestaurantProcess
-
- sample(double, Random, int) - Static method in class gov.sandia.cognition.statistics.distribution.ChiSquareDistribution
-
Samples from a Chi-Square distribution with the given degrees of freedom
- sample(Random) - Method in class gov.sandia.cognition.statistics.distribution.DirichletDistribution
-
- sample(double, double, Random, int) - Static method in class gov.sandia.cognition.statistics.distribution.GammaDistribution
-
Efficiently samples from a Gamma distribution given by the
shape and scale parameters.
- sample(double, double, Random) - Static method in class gov.sandia.cognition.statistics.distribution.GammaDistribution
-
Provides a single sample from a Gamma distribution with the given shape
and scale.
- sample(Random, Vector, Matrix, int) - Static method in class gov.sandia.cognition.statistics.distribution.InverseWishartDistribution
-
Creates a single sample covariance matrix inverse from the given
parameters.
- sample(Random) - Method in class gov.sandia.cognition.statistics.distribution.LinearMixtureModel
-
- sample(Vector, Matrix, Random, int) - Static method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian
-
Returns a collection of draws this Gaussian with the given mean and
covariance.
- sample(Vector, Matrix, Random) - Static method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian
-
Returns a single draw from the Gaussian with the given mean and
covariance.
- sample(Random) - Method in interface gov.sandia.cognition.statistics.Distribution
-
Draws a single random sample from the distribution.
- sample(Random, int) - Method in interface gov.sandia.cognition.statistics.Distribution
-
Draws multiple random samples from the distribution.
- sample(Random) - Method in class gov.sandia.cognition.statistics.distribution.UniformDistribution
-
- sample(ProbabilityDensityFunction<ValueType>, Evaluator<ValueType, Double>, Random, int) - Static method in class gov.sandia.cognition.statistics.method.ImportanceSampling
-
Importance sampling is a technique for estimating properties of
a target distribution, while only having samples generated from an
"importance" distribution rather than the target distribution.
- sample(CumulativeDistributionFunction<Double>, Random, int) - Static method in class gov.sandia.cognition.statistics.method.InverseTransformSampling
-
Samples from the given CDF using the inverseRootFinder transform sampling method.
- sample(ProbabilityFunction<DataType>, Random, int) - Method in class gov.sandia.cognition.statistics.montecarlo.DirectSampler
-
- sample(Evaluator<? super DataType, Double>, Random, int) - Method in class gov.sandia.cognition.statistics.montecarlo.ImportanceSampler
-
- sample(FunctionType, Random, int) - Method in interface gov.sandia.cognition.statistics.montecarlo.MonteCarloSampler
-
Draws samples according to the distribution of the target function.
- sample(ProbabilityMassFunction<DataType>, Random, int) - Static method in class gov.sandia.cognition.statistics.ProbabilityMassFunctionUtil
-
Samples from the ProbabilityMassFunction.
- sample(double[], List<? extends DataType>, Random) - Static method in class gov.sandia.cognition.statistics.ProbabilityMassFunctionUtil
-
Samples an element from the domain proportionately to the
cumulative weights in the given weight array using a fast
binary search algorithm.
- sample(Random) - Method in class gov.sandia.cognition.statistics.UnivariateRandomVariable
-
- sample(Random, int) - Method in class gov.sandia.cognition.statistics.UnivariateRandomVariable
-
- sampleAsBoolean(Random) - Method in class gov.sandia.cognition.statistics.distribution.BernoulliDistribution
-
Samples from the Bernoulli distribution as a boolean.
- sampleAsDouble(Random) - Method in class gov.sandia.cognition.statistics.AbstractClosedFormSmoothUnivariateDistribution
-
- sampleAsDouble(Random) - Method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.UpperEnvelope
-
Samples from this distribution as a double.
- sampleAsDouble(Random) - Method in class gov.sandia.cognition.statistics.distribution.BetaDistribution
-
- sampleAsDouble(Random) - Method in class gov.sandia.cognition.statistics.distribution.CauchyDistribution
-
- sampleAsDouble(Random) - Method in class gov.sandia.cognition.statistics.distribution.ExponentialDistribution
-
- sampleAsDouble(double, double, Random) - Static method in class gov.sandia.cognition.statistics.distribution.GammaDistribution
-
Efficiently samples from a Gamma distribution given by the
shape and scale parameters.
- sampleAsDouble(Random) - Method in class gov.sandia.cognition.statistics.distribution.GammaDistribution
-
- sampleAsDouble(Random) - Method in class gov.sandia.cognition.statistics.distribution.InverseGammaDistribution
-
- sampleAsDouble(Random) - Method in class gov.sandia.cognition.statistics.distribution.LaplaceDistribution
-
- sampleAsDouble(Random) - Method in class gov.sandia.cognition.statistics.distribution.LogisticDistribution
-
- sampleAsDouble(Random) - Method in class gov.sandia.cognition.statistics.distribution.LogNormalDistribution
-
- sampleAsDouble(Random) - Method in class gov.sandia.cognition.statistics.distribution.ParetoDistribution
-
- sampleAsDouble(Random) - Method in class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel
-
- sampleAsDouble(Random) - Method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian
-
- sampleAsDouble(Random) - Method in class gov.sandia.cognition.statistics.distribution.WeibullDistribution
-
- sampleAsDouble(Random) - Method in interface gov.sandia.cognition.statistics.SmoothUnivariateDistribution
-
Samples a value from this distribution as a double.
- sampleAsDoubles(Random, int) - Method in class gov.sandia.cognition.statistics.AbstractClosedFormSmoothUnivariateDistribution
-
- sampleAsDoubles(double, Random, int) - Static method in class gov.sandia.cognition.statistics.distribution.ChiSquareDistribution
-
Samples from a Chi-Square distribution with the given degrees of freedom
- sampleAsDoubles(double, double, Random, int) - Static method in class gov.sandia.cognition.statistics.distribution.GammaDistribution
-
Efficiently samples from a Gamma distribution given by the
shape and scale parameters.
- sampleAsDoubles(Random, int) - Method in class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel
-
- sampleAsDoubles(Random, int) - Method in interface gov.sandia.cognition.statistics.SmoothUnivariateDistribution
-
Samples values from this distribution as an array of doubles.
- sampleAsInt(Random) - Method in class gov.sandia.cognition.statistics.distribution.BernoulliDistribution
-
- sampleAsInt(Random) - Method in class gov.sandia.cognition.statistics.distribution.BetaBinomialDistribution
-
- sampleAsInt(Random) - Method in class gov.sandia.cognition.statistics.distribution.BinomialDistribution
-
- sampleAsInt(Random) - Method in class gov.sandia.cognition.statistics.distribution.GeometricDistribution
-
- sampleAsInt(Random) - Method in class gov.sandia.cognition.statistics.distribution.NegativeBinomialDistribution
-
- sampleAsInt(Random) - Method in class gov.sandia.cognition.statistics.distribution.PoissonDistribution
-
- sampleAsInt(Random) - Method in class gov.sandia.cognition.statistics.distribution.UniformIntegerDistribution
-
- sampleAsInt(Random) - Method in class gov.sandia.cognition.statistics.distribution.YuleSimonDistribution
-
- sampleAsInt(Random) - Method in interface gov.sandia.cognition.statistics.IntegerDistribution
-
Draws a single random sample from the distribution as an int.
- sampleAsInts(Random, int) - Method in class gov.sandia.cognition.statistics.AbstractClosedFormIntegerDistribution
-
- sampleAsInts(Random, int) - Method in interface gov.sandia.cognition.statistics.IntegerDistribution
-
Samples values from this distribution as an array of ints.
- sampleCount - Variable in class gov.sandia.cognition.text.topic.LatentDirichletAllocationVectorGibbsSampler
-
The number of model parameter samples that have been made.
- sampleExp(double) - Method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.LineSegment
-
Sample from the exponent of the line segment
- sampleIndexFromCumulativeProportions(Random, double[]) - Static method in class gov.sandia.cognition.statistics.DiscreteSamplingUtil
-
Samples a random index from an array of cumulative proportions.
- sampleIndexFromProbabilities(Random, double[]) - Static method in class gov.sandia.cognition.statistics.DiscreteSamplingUtil
-
Samples an random index according to the given array of probabilities.
- sampleIndexFromProbabilities(Random, Vector) - Static method in class gov.sandia.cognition.statistics.DiscreteSamplingUtil
-
Samples an random index according to the given vector of probabilities.
- sampleIndexFromProportions(Random, double[]) - Static method in class gov.sandia.cognition.statistics.DiscreteSamplingUtil
-
Samples a random index according to the given proportions.
- sampleIndexFromProportions(Random, double[], double) - Static method in class gov.sandia.cognition.statistics.DiscreteSamplingUtil
-
Samples a random index according to the given proportions.
- sampleIndicesFromCumulativeProportions(Random, double[], int) - Static method in class gov.sandia.cognition.statistics.DiscreteSamplingUtil
-
Samples a multiple indices with replacement from an array of cumulative
proportions.
- sampleIndicesFromProportions(Random, double[], int) - Static method in class gov.sandia.cognition.statistics.DiscreteSamplingUtil
-
Samples an array of indices from a given set of proportions.
- sampleIndicesWithReplacementInto(ArrayList<Integer>, ArrayList<? extends DataType>, int, Random, ArrayList<DataType>, int[]) - Static method in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner
-
Takes the given number of samples from the given list and places them in
the given output list.
- sampleInto(Random, int, Collection<? super ObservationType>) - Method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
- sampleInto(Random, int, Collection<? super ObservationType>) - Method in class gov.sandia.cognition.learning.function.categorization.MaximumAPosterioriCategorizer
-
- sampleInto(Random, int[], int, int) - Method in class gov.sandia.cognition.statistics.AbstractClosedFormIntegerDistribution
-
- sampleInto(Random, int, Collection<? super Double>) - Method in class gov.sandia.cognition.statistics.AbstractClosedFormSmoothUnivariateDistribution
-
- sampleInto(Random, int, Collection<? super KeyType>) - Method in class gov.sandia.cognition.statistics.AbstractDataDistribution
-
- sampleInto(Random, int, Collection<? super Double>) - Method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.UpperEnvelope
-
- sampleInto(Random, int, Collection<? super Number>) - Method in class gov.sandia.cognition.statistics.distribution.BernoulliDistribution
-
- sampleInto(Random, int, Collection<? super Number>) - Method in class gov.sandia.cognition.statistics.distribution.BetaBinomialDistribution
-
- sampleInto(Random, int[], int, int) - Method in class gov.sandia.cognition.statistics.distribution.BetaBinomialDistribution
-
- sampleInto(Random, double[], int, int) - Method in class gov.sandia.cognition.statistics.distribution.BetaDistribution
-
- sampleInto(Random, int, Collection<? super Number>) - Method in class gov.sandia.cognition.statistics.distribution.BinomialDistribution
-
- sampleInto(Random, int[], int, int) - Method in class gov.sandia.cognition.statistics.distribution.BinomialDistribution
-
- sampleInto(Random, int, Collection<? super Vector>) - Method in class gov.sandia.cognition.statistics.distribution.CategoricalDistribution
-
- sampleInto(Random, double[], int, int) - Method in class gov.sandia.cognition.statistics.distribution.CauchyDistribution
-
- sampleInto(Random, int, Collection<? super Vector>) - Method in class gov.sandia.cognition.statistics.distribution.ChineseRestaurantProcess
-
- sampleInto(Random, double[], int, int) - Method in class gov.sandia.cognition.statistics.distribution.ChiSquareDistribution
-
- sampleInto(Random, int, Collection<? super Double>) - Method in class gov.sandia.cognition.statistics.distribution.DeterministicDistribution
-
- sampleInto(Random, int, Collection<? super Vector>) - Method in class gov.sandia.cognition.statistics.distribution.DirichletDistribution
-
- sampleInto(Random, double[], int, int) - Method in class gov.sandia.cognition.statistics.distribution.ExponentialDistribution
-
- sampleInto(double, double, Random, double[], int, int) - Static method in class gov.sandia.cognition.statistics.distribution.GammaDistribution
-
Efficiently samples from a Gamma distribution given by the
shape and scale parameters.
- sampleInto(Random, double[], int, int) - Method in class gov.sandia.cognition.statistics.distribution.GammaDistribution
-
- sampleInto(Random, int, Collection<? super Number>) - Method in class gov.sandia.cognition.statistics.distribution.GeometricDistribution
-
- sampleInto(Random, double[], int, int) - Method in class gov.sandia.cognition.statistics.distribution.InverseGammaDistribution
-
- sampleInto(Random, int, Collection<? super Matrix>) - Method in class gov.sandia.cognition.statistics.distribution.InverseWishartDistribution
-
- sampleInto(Random, int, Collection<? super Double>) - Method in class gov.sandia.cognition.statistics.distribution.KolmogorovDistribution
-
- sampleInto(Random, double[], int, int) - Method in class gov.sandia.cognition.statistics.distribution.LaplaceDistribution
-
- sampleInto(Random, int, Collection<? super DataType>) - Method in class gov.sandia.cognition.statistics.distribution.LinearMixtureModel
-
- sampleInto(Random, double[], int, int) - Method in class gov.sandia.cognition.statistics.distribution.LogisticDistribution
-
- sampleInto(Random, double[], int, int) - Method in class gov.sandia.cognition.statistics.distribution.LogNormalDistribution
-
- sampleInto(Random, int, Collection<? super Vector>) - Method in class gov.sandia.cognition.statistics.distribution.MultinomialDistribution
-
- sampleInto(Random, int, Collection<? super Vector>) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian
-
- sampleInto(Vector, Matrix, Random, int, Collection<? super Vector>) - Static method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian
-
Performs a collection of draws this Gaussian with the given mean and
covariance.
- sampleInto(Random, int, Collection<? super Vector>) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussianInverseGammaDistribution
-
- sampleInto(Random, int, Collection<? super Vector>) - Method in class gov.sandia.cognition.statistics.distribution.MultivariatePolyaDistribution
-
- sampleInto(Random, int, Collection<? super Vector>) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateStudentTDistribution
-
- sampleInto(Random, int, Collection<? super Number>) - Method in class gov.sandia.cognition.statistics.distribution.NegativeBinomialDistribution
-
- sampleInto(Random, int[], int, int) - Method in class gov.sandia.cognition.statistics.distribution.NegativeBinomialDistribution
-
- sampleInto(Random, int, Collection<? super Vector>) - Method in class gov.sandia.cognition.statistics.distribution.NormalInverseGammaDistribution
-
- sampleInto(Random, int, Collection<? super Matrix>) - Method in class gov.sandia.cognition.statistics.distribution.NormalInverseWishartDistribution
-
- sampleInto(Random, double[], int, int) - Method in class gov.sandia.cognition.statistics.distribution.ParetoDistribution
-
- sampleInto(Random, int, Collection<? super Number>) - Method in class gov.sandia.cognition.statistics.distribution.PoissonDistribution
-
- sampleInto(Random, int[], int, int) - Method in class gov.sandia.cognition.statistics.distribution.PoissonDistribution
-
- sampleInto(Random, int, Collection<? super DataType>) - Method in interface gov.sandia.cognition.statistics.Distribution
-
Draws multiple random samples from the distribution and puts the result
into the given collection.
- sampleInto(Random, double[], int, int) - Method in class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel
-
- sampleInto(Random, int, Collection<? super Double>) - Method in class gov.sandia.cognition.statistics.distribution.SnedecorFDistribution
-
- sampleInto(Random, int, Collection<? super Double>) - Method in class gov.sandia.cognition.statistics.distribution.StudentizedRangeDistribution
-
- sampleInto(Random, double[], int, int) - Method in class gov.sandia.cognition.statistics.distribution.StudentTDistribution
-
- sampleInto(Random, double[], int, int) - Method in class gov.sandia.cognition.statistics.distribution.UniformDistribution
-
- sampleInto(Random, int, Collection<? super Number>) - Method in class gov.sandia.cognition.statistics.distribution.UniformIntegerDistribution
-
- sampleInto(Random, double[], int, int) - Method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian
-
- sampleInto(Random, double[], int, int) - Method in class gov.sandia.cognition.statistics.distribution.WeibullDistribution
-
- sampleInto(Random, int, Collection<? super Number>) - Method in class gov.sandia.cognition.statistics.distribution.YuleSimonDistribution
-
- sampleInto(Random, int[], int, int) - Method in interface gov.sandia.cognition.statistics.IntegerDistribution
-
Samples values from this distribution as an array of ints.
- sampleInto(CumulativeDistributionFunction<Double>, Random, int, Collection<? super Double>) - Static method in class gov.sandia.cognition.statistics.method.InverseTransformSampling
-
Samples from the given CDF using the inverseRootFinder transform sampling method.
- sampleInto(ProbabilityMassFunction<DataType>, Random, int, Collection<? super DataType>) - Static method in class gov.sandia.cognition.statistics.ProbabilityMassFunctionUtil
-
Samples from the ProbabilityMassFunction.
- sampleInto(Random, double[], int, int) - Method in interface gov.sandia.cognition.statistics.SmoothUnivariateDistribution
-
Samples values from this distribution as an array of doubles.
- sampleInto(Random, int, Collection<? super Number>) - Method in class gov.sandia.cognition.statistics.UnivariateRandomVariable
-
- sampleMultiple(ProbabilityMassFunction<DataType>, Random, int) - Static method in class gov.sandia.cognition.statistics.ProbabilityMassFunctionUtil
-
Samples from the ProbabilityMassFunction.
- sampleMultiple(double[], List<? extends DataType>, Random, int) - Static method in class gov.sandia.cognition.statistics.ProbabilityMassFunctionUtil
-
Samples multiple elements from the domain proportionately to the
cumulative weights in the given weight array using a fast
binary search algorithm
- sampleMultipleInto(ProbabilityMassFunction<DataType>, Random, int, Collection<? super DataType>) - Static method in class gov.sandia.cognition.statistics.ProbabilityMassFunctionUtil
-
Samples from the ProbabilityMassFunction.
- sampleMultipleInto(double[], List<? extends DataType>, Random, int, Collection<? super DataType>) - Static method in class gov.sandia.cognition.statistics.ProbabilityMassFunctionUtil
-
Samples multiple elements from the domain proportionately to the
cumulative weights in the given weight array using a fast
binary search algorithm
- sampleNextCustomer(Collection<Integer>, int, double, Random) - Static method in class gov.sandia.cognition.statistics.distribution.ChineseRestaurantProcess
-
Determines where the next customer sits, given the number of customers
already sitting at the various tables and the concentration parameter
alpha.
- sampler - Variable in class gov.sandia.cognition.statistics.bayesian.RejectionSampling.ScalarEstimator.MinimizerFunction
-
Sampler function
- SampleRange(Random, int, SmoothUnivariateDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.StudentizedRangeDistribution.SampleRange
-
Creates a new instance of SampleRange
- sampleSingle(ProbabilityMassFunction<DataType>, Random) - Static method in class gov.sandia.cognition.statistics.ProbabilityMassFunctionUtil
-
Draws a single sample from the given PMF
- sampleSingle(double[], Collection<? extends DataType>, Random) - Static method in class gov.sandia.cognition.statistics.ProbabilityMassFunctionUtil
-
Samples a single element from the domain proportionately to the given
weights
- sampleSize - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner
-
The size of sample to create on each iteration.
- sampleSize - Variable in class gov.sandia.cognition.learning.algorithm.svm.PrimalEstimatedSubGradient
-
The sample size requested by the user.
- sampleStandard(double, Random) - Static method in class gov.sandia.cognition.statistics.distribution.GammaDistribution
-
Provides a single sample from a Gamma distribution with the given shape
and a scale of 1.
- sampleTopic(int, int, double[]) - Method in class gov.sandia.cognition.text.topic.LatentDirichletAllocationVectorGibbsSampler
-
Samples a topic for a given document and term.
- sampleWithoutReplacement(Random, List<DataType>, int) - Static method in class gov.sandia.cognition.statistics.DiscreteSamplingUtil
-
Samples a a given number of items from a list without replacement.
- sampleWithReplacement(Random, List<? extends DataType>, int) - Static method in class gov.sandia.cognition.statistics.DiscreteSamplingUtil
-
Samples a a given number of items from a list with replacement.
- sampleWithReplacementInto(Random, List<? extends DataType>, int, Collection<? super DataType>) - Static method in class gov.sandia.cognition.statistics.DiscreteSamplingUtil
-
Samples a a given number of items from a list with replacement and puts
the samples into the given collection.
- SamplingImportanceResamplingParticleFilter<ObservationType,ParameterType> - Class in gov.sandia.cognition.statistics.bayesian
-
An implementation of the standard Sampling Importance Resampling
particle filter.
- SamplingImportanceResamplingParticleFilter() - Constructor for class gov.sandia.cognition.statistics.bayesian.SamplingImportanceResamplingParticleFilter
-
Creates a new instance of SamplingImportanceResamplingParticleFilter
- saveAsText(File) - Method in class gov.sandia.cognition.text.term.filter.DefaultStopList
-
Saves the stop list to the given file.
- saveAsText(PrintStream) - Method in class gov.sandia.cognition.text.term.filter.DefaultStopList
-
Saves the stop list to the given stream.
- saveFinalClustering() - Method in class gov.sandia.cognition.learning.algorithm.clustering.MiniBatchKMeansClusterer
-
Saves the final clustering for each data point.
- ScalarBasisSet<InputType> - Class in gov.sandia.cognition.learning.function.vector
-
Collection of scalar basis functions, where the ith function operates
on the ith element of the output Vector
- ScalarBasisSet(Collection<? extends Evaluator<? super InputType, Double>>) - Constructor for class gov.sandia.cognition.learning.function.vector.ScalarBasisSet
-
Creates a new instance of ScalarBasisSet
- ScalarBasisSet(ScalarBasisSet<InputType>) - Constructor for class gov.sandia.cognition.learning.function.vector.ScalarBasisSet
-
Copy Constructor
- ScalarDataDistribution - Class in gov.sandia.cognition.statistics.distribution
-
A Data Distribution that uses Doubles as its keys, making it a univariate
distribution
- ScalarDataDistribution() - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarDataDistribution
-
Creates a new instance of ScalarDataDistribution
- ScalarDataDistribution(ScalarDataDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarDataDistribution
-
Copy constructor
- ScalarDataDistribution(Iterable<? extends Number>) - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarDataDistribution
-
Creates a new instance of ScalarDataDistribution
- ScalarDataDistribution(Map<Double, MutableDouble>, double) - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarDataDistribution
-
Creates a new instance of ScalarDataDistribution
- ScalarDataDistribution.CDF - Class in gov.sandia.cognition.statistics.distribution
-
CDF of the ScalarDataDistribution, maintains the keys/domain in
sorted order (TreeMap), so it's slower than it's peers.
- ScalarDataDistribution.Estimator - Class in gov.sandia.cognition.statistics.distribution
-
Estimator for a ScalarDataDistribution
- ScalarDataDistribution.PMF - Class in gov.sandia.cognition.statistics.distribution
-
PMF of the ScalarDataDistribution
- ScalarEstimator(BayesianParameter<Double, ? extends ProbabilityFunction<ObservationType>, ? extends UnivariateProbabilityDensityFunction>, Iterable<? extends ObservationType>) - Constructor for class gov.sandia.cognition.statistics.bayesian.RejectionSampling.ScalarEstimator
-
Creates a new instance of ScalarEstimator
- scalarFunction - Variable in class gov.sandia.cognition.learning.algorithm.tree.RegressionTreeNode
-
The function to apply for leaf nodes.
- ScalarFunction<InputType> - Interface in gov.sandia.cognition.math
-
Interface for a function that maps some input onto a double.
- ScalarFunctionKernel<InputType> - Class in gov.sandia.cognition.learning.function.kernel
-
The ScalarFunctionKernel
class implements a kernel that applies a
scalar function two the two inputs to the kernel and then returns their
product.
- ScalarFunctionKernel() - Constructor for class gov.sandia.cognition.learning.function.kernel.ScalarFunctionKernel
-
Creates a new instance of RealFunctionKernel.
- ScalarFunctionKernel(Evaluator<? super InputType, Double>) - Constructor for class gov.sandia.cognition.learning.function.kernel.ScalarFunctionKernel
-
Creates a new instance of RealFunctionKernel.
- ScalarFunctionToBinaryCategorizerAdapter<InputType> - Class in gov.sandia.cognition.learning.function.categorization
-
Adapts a scalar function to be a categorizer using a threshold.
- ScalarFunctionToBinaryCategorizerAdapter() - Constructor for class gov.sandia.cognition.learning.function.categorization.ScalarFunctionToBinaryCategorizerAdapter
-
Creates a new ScalarFunctionToBinaryCategorizerAdapter
.
- ScalarFunctionToBinaryCategorizerAdapter(Evaluator<? super InputType, Double>) - Constructor for class gov.sandia.cognition.learning.function.categorization.ScalarFunctionToBinaryCategorizerAdapter
-
Creates a new ScalarFunctionToBinaryCategorizerAdapter
with the
given evaluator and a default threshold of 0.0.
- ScalarFunctionToBinaryCategorizerAdapter(Evaluator<? super InputType, Double>, double) - Constructor for class gov.sandia.cognition.learning.function.categorization.ScalarFunctionToBinaryCategorizerAdapter
-
Creates a new ScalarFunctionToBinaryCategorizerAdapter
with the
given evaluator and threshold.
- ScalarMap<KeyType> - Interface in gov.sandia.cognition.collection
-
An interface for a mapping of objects to scalar values represented as
doubles.
- ScalarMap.Entry<KeyType> - Interface in gov.sandia.cognition.collection
-
An entry in a scalar map.
- ScalarMixtureDensityModel - Class in gov.sandia.cognition.statistics.distribution
-
ScalarMixtureDensityModel (SMDM) implements just that: a scalar mixture density
model.
- ScalarMixtureDensityModel() - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel
-
Creates a new instance of ScalarMixtureDensityModel
- ScalarMixtureDensityModel(SmoothUnivariateDistribution...) - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel
-
Creates a new instance of ScalarMixtureDensityModel
- ScalarMixtureDensityModel(Collection<? extends SmoothUnivariateDistribution>) - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel
-
Creates a new instance of ScalarMixtureDensityModel
- ScalarMixtureDensityModel(Collection<? extends SmoothUnivariateDistribution>, double[]) - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel
-
Creates a new instance of ScalarMixtureDensityModel
- ScalarMixtureDensityModel(ScalarMixtureDensityModel) - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel
-
Copy constructor
- ScalarMixtureDensityModel.CDF - Class in gov.sandia.cognition.statistics.distribution
-
CDFof the SMDM
- ScalarMixtureDensityModel.EMLearner - Class in gov.sandia.cognition.statistics.distribution
-
An EM learner that estimates a mixture model from data
- ScalarMixtureDensityModel.PDF - Class in gov.sandia.cognition.statistics.distribution
-
PDF of the SMDM
- ScalarThresholdBinaryCategorizer - Class in gov.sandia.cognition.learning.function.categorization
-
The ScalarThresholdBinaryCategorizer
class implements a binary
categorizer that uses a threshold to categorize a given double.
- ScalarThresholdBinaryCategorizer() - Constructor for class gov.sandia.cognition.learning.function.categorization.ScalarThresholdBinaryCategorizer
-
Creates a new instance of ScalarThresholdBinaryCategorizer.
- ScalarThresholdBinaryCategorizer(double) - Constructor for class gov.sandia.cognition.learning.function.categorization.ScalarThresholdBinaryCategorizer
-
Creates a new instance of ScalarThresholdBinaryCategorizer.
- ScalarThresholdBinaryCategorizer(ScalarThresholdBinaryCategorizer) - Constructor for class gov.sandia.cognition.learning.function.categorization.ScalarThresholdBinaryCategorizer
-
Copy constructor.
- scale(double) - Method in class gov.sandia.cognition.math.AbstractRing
-
- scale(double) - Method in class gov.sandia.cognition.math.LogNumber
-
- scale(double) - Method in class gov.sandia.cognition.math.matrix.custom.DenseVector
-
- scale(double) - Method in class gov.sandia.cognition.math.matrix.custom.SparseVector
-
- scale(double) - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
-
- scale(double) - Method in class gov.sandia.cognition.math.MutableDouble
-
- scale(double) - Method in class gov.sandia.cognition.math.MutableInteger
-
- scale(double) - Method in class gov.sandia.cognition.math.MutableLong
-
- scale(double) - Method in interface gov.sandia.cognition.math.Ring
-
Element-wise scaling of this
by scaleFactor
- scale(double) - Method in class gov.sandia.cognition.math.UnsignedLogNumber
-
- scale - Variable in class gov.sandia.cognition.statistics.bayesian.RejectionSampling.DefaultUpdater
-
Scale factor to multiply the sampler function by to envelop the
conjunctive distribution.
- scale - Variable in class gov.sandia.cognition.statistics.distribution.BetaBinomialDistribution
-
Scale, similar to the beta parameter scale, must be greater than zero
- scale - Variable in class gov.sandia.cognition.statistics.distribution.CauchyDistribution
-
Scale of the distribution, must be greater than zero.
- scale - Variable in class gov.sandia.cognition.statistics.distribution.InverseGammaDistribution
-
Scale parameter, must be greater than zero.
- scale - Variable in class gov.sandia.cognition.statistics.distribution.LaplaceDistribution
-
Scale factor of the distribution, must be greater than zero.
- scale - Variable in class gov.sandia.cognition.statistics.distribution.LogisticDistribution
-
Scale of the distribution, proportionate to the standard deviation,
must be greater than zero.
- scale(Matrix) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian
-
Scales the MultivariateGaussian by premultiplying by the given Matrix
- scale - Variable in class gov.sandia.cognition.statistics.distribution.ParetoDistribution
-
Scale parameter, must be greater than zero.
- scale - Variable in class gov.sandia.cognition.statistics.distribution.WeibullDistribution
-
Scale parameter, must be greater than 0.0
- SCALE_FACTOR - Static variable in class gov.sandia.cognition.learning.algorithm.root.RootBracketExpander
-
Default scale factor on expansion, the golden ratio, 1.618034
- scaledMinus(double, RingType) - Method in class gov.sandia.cognition.math.AbstractRing
-
- scaledMinus(double, LogNumber) - Method in class gov.sandia.cognition.math.LogNumber
-
- scaledMinus(double, InfiniteVector<KeyType>) - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
-
- scaledMinus(double, MutableDouble) - Method in class gov.sandia.cognition.math.MutableDouble
-
- scaledMinus(double, MutableInteger) - Method in class gov.sandia.cognition.math.MutableInteger
-
- scaledMinus(double, MutableLong) - Method in class gov.sandia.cognition.math.MutableLong
-
- scaledMinus(double, RingType) - Method in interface gov.sandia.cognition.math.Ring
-
Arithmetic subtraction other
after element-wise scaling of
other
by scaleFactor
from this
.
- scaledMinus(double, UnsignedLogNumber) - Method in class gov.sandia.cognition.math.UnsignedLogNumber
-
- scaledMinusEquals(double, RingType) - Method in class gov.sandia.cognition.math.AbstractRing
-
- scaledMinusEquals(double, LogNumber) - Method in class gov.sandia.cognition.math.LogNumber
-
- scaledMinusEquals(double, InfiniteVector<KeyType>) - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
-
- scaledMinusEquals(double, AbstractMTJMatrix) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJMatrix
-
Subtracts from this matrix the scaled version of the other given matrix.
- scaledMinusEquals(double, AbstractMTJVector) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJVector
-
Subtracts from this vector the scaled version of the other given vector.
- scaledMinusEquals(double, MutableDouble) - Method in class gov.sandia.cognition.math.MutableDouble
-
- scaledMinusEquals(double, MutableInteger) - Method in class gov.sandia.cognition.math.MutableInteger
-
- scaledMinusEquals(double, MutableLong) - Method in class gov.sandia.cognition.math.MutableLong
-
- scaledMinusEquals(double, RingType) - Method in interface gov.sandia.cognition.math.Ring
-
Inline arithmetic subtraction of other
after element-wise
scaling of other
by scaleFactor
from this
.
- scaledMinusEquals(double, UnsignedLogNumber) - Method in class gov.sandia.cognition.math.UnsignedLogNumber
-
- scaledPlus(double, RingType) - Method in class gov.sandia.cognition.math.AbstractRing
-
- scaledPlus(double, LogNumber) - Method in class gov.sandia.cognition.math.LogNumber
-
- scaledPlus(double, InfiniteVector<KeyType>) - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
-
- scaledPlus(double, MutableDouble) - Method in class gov.sandia.cognition.math.MutableDouble
-
- scaledPlus(double, MutableInteger) - Method in class gov.sandia.cognition.math.MutableInteger
-
- scaledPlus(double, MutableLong) - Method in class gov.sandia.cognition.math.MutableLong
-
- scaledPlus(double, RingType) - Method in interface gov.sandia.cognition.math.Ring
-
Arithmetic addition of this
and other
after
element-wise scaling of other
by scaleFactor
.
- scaledPlus(double, UnsignedLogNumber) - Method in class gov.sandia.cognition.math.UnsignedLogNumber
-
- scaledPlusEquals(double, ComplexNumber) - Method in class gov.sandia.cognition.math.ComplexNumber
-
- scaledPlusEquals(double, LogNumber) - Method in class gov.sandia.cognition.math.LogNumber
-
- scaledPlusEquals(double, Matrix) - Method in class gov.sandia.cognition.math.matrix.AbstractMatrix
-
- scaledPlusEquals(double, Vector) - Method in class gov.sandia.cognition.math.matrix.AbstractVector
-
- scaledPlusEquals(SparseMatrix, double) - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
-
- scaledPlusEquals(DenseMatrix, double) - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
-
- scaledPlusEquals(DiagonalMatrix, double) - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
-
- scaledPlusEquals(DenseVector, double) - Method in class gov.sandia.cognition.math.matrix.custom.DenseVector
-
- scaledPlusEquals(SparseVector, double) - Method in class gov.sandia.cognition.math.matrix.custom.DenseVector
-
- scaledPlusEquals(SparseMatrix, double) - Method in class gov.sandia.cognition.math.matrix.custom.DiagonalMatrix
-
Type-specific version of scaledPlusEquals for combining whatever type
this is with the input sparse matrix.
- scaledPlusEquals(DenseMatrix, double) - Method in class gov.sandia.cognition.math.matrix.custom.DiagonalMatrix
-
Type-specific version of scaledPlusEquals for combining whatever type
this is with the input dense matrix.
- scaledPlusEquals(DiagonalMatrix, double) - Method in class gov.sandia.cognition.math.matrix.custom.DiagonalMatrix
-
- scaledPlusEquals(SparseMatrix, double) - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
Type-specific version of scaledPlusEquals for combining whatever type
this is with the input sparse matrix.
- scaledPlusEquals(DenseMatrix, double) - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
Type-specific version of scaledPlusEquals for combining whatever type
this is with the input dense matrix.
- scaledPlusEquals(DiagonalMatrix, double) - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
Type-specific version of scaledPlusEquals for combining whatever type
this is with the input diagonal matrix.
- scaledPlusEquals(DenseVector, double) - Method in class gov.sandia.cognition.math.matrix.custom.SparseVector
-
Type-specific version of scaledPlusEquals for combining whatever type
this is with the input dense vector.
- scaledPlusEquals(SparseVector, double) - Method in class gov.sandia.cognition.math.matrix.custom.SparseVector
-
- scaledPlusEquals(double, InfiniteVector<KeyType>) - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
-
- scaledPlusEquals(double, Matrix) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJMatrix
-
- scaledPlusEquals(double, AbstractMTJMatrix) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJMatrix
-
Adds to this vector the scaled version of the other given vector.
- scaledPlusEquals(double, Vector) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJVector
-
- scaledPlusEquals(double, AbstractMTJVector) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJVector
-
Adds to this vector the scaled version of the other given vector.
- scaledPlusEquals(double, MutableDouble) - Method in class gov.sandia.cognition.math.MutableDouble
-
- scaledPlusEquals(double, MutableInteger) - Method in class gov.sandia.cognition.math.MutableInteger
-
- scaledPlusEquals(double, MutableLong) - Method in class gov.sandia.cognition.math.MutableLong
-
- scaledPlusEquals(double, RingType) - Method in interface gov.sandia.cognition.math.Ring
-
Inline arithmetic addition of this
and other
after
element-wise scaling of other
by scaleFactor
.
- scaledPlusEquals(double, UnsignedLogNumber) - Method in class gov.sandia.cognition.math.UnsignedLogNumber
-
- scaledPlusEquals(double, RandomVariable<Number>) - Method in class gov.sandia.cognition.statistics.UnivariateRandomVariable
-
- scaleEquals(DefaultKernelBinaryCategorizer<?>, double) - Static method in class gov.sandia.cognition.learning.function.kernel.KernelUtil
-
Scales all of the weights in the given kernel binary categorizer by
the given value.
- scaleEquals(double) - Method in class gov.sandia.cognition.math.ComplexNumber
-
- scaleEquals(double) - Method in class gov.sandia.cognition.math.LogNumber
-
- scaleEquals(double) - Method in class gov.sandia.cognition.math.matrix.AbstractVectorSpace
-
- scaleEquals(double) - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
-
- scaleEquals(double) - Method in class gov.sandia.cognition.math.matrix.custom.DiagonalMatrix
-
- scaleEquals(double) - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
Inline element-wise scaling of this
by
scaleFactor
- scaleEquals(double) - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
-
- scaleEquals(double) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJMatrix
-
- scaleEquals(double) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJVector
-
- scaleEquals(double) - Method in class gov.sandia.cognition.math.MutableDouble
-
- scaleEquals(double) - Method in class gov.sandia.cognition.math.MutableInteger
-
- scaleEquals(double) - Method in class gov.sandia.cognition.math.MutableLong
-
- scaleEquals(double) - Method in interface gov.sandia.cognition.math.Ring
-
Inline element-wise scaling of this
by
scaleFactor
- scaleEquals(double) - Method in class gov.sandia.cognition.math.UnsignedLogNumber
-
- scaleEquals(double) - Method in class gov.sandia.cognition.statistics.UnivariateRandomVariable
-
- scaleSum(double) - Method in class gov.sandia.cognition.math.RingAccumulator
-
Returns the sum scaled by the given scale factor.
- searchForBetter(EvaluatedGenome<GenomeType>, Collection<EvaluatedGenome<GenomeType>>) - Method in class gov.sandia.cognition.learning.algorithm.genetic.GeneticAlgorithm
-
Searches the provided population of genomes for one whose cost is lower
than the provided best so far genome.
- SECOND - Static variable in class gov.sandia.cognition.time.DefaultDuration
-
A second in duration.
- second - Variable in class gov.sandia.cognition.util.DefaultPair
-
The second object.
- second - Variable in class gov.sandia.cognition.util.DefaultTriple
-
The second object.
- secondChild - Variable in class gov.sandia.cognition.learning.algorithm.clustering.hierarchy.BinaryClusterHierarchyNode
-
The second child node.
- secondLearner - Variable in class gov.sandia.cognition.learning.algorithm.CompositeBatchLearnerPair
-
The second learner that is trained on the output of the evaluator
created by the first learner.
- SECONDS_PER_MINUTE - Static variable in class gov.sandia.cognition.time.DefaultDuration
-
There are 60 seconds per minute.
- sectioningStep() - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.AbstractAnytimeLineMinimizer
-
- sectioningStep() - Method in interface gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizer
-
Continues the sectioning phase of the algorihtm.
- sectioningStep() - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizerBacktracking
-
- sectioningStep() - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizerDerivativeBased
-
- sectioningStep() - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizerDerivativeFree
-
- seedScale - Variable in class gov.sandia.cognition.learning.algorithm.factor.machine.AbstractFactorizationMachineLearner
-
The standard deviation for initializing the factors.
- seek(Date) - Method in interface gov.sandia.cognition.data.temporal.SeekableTemporalDataReadChannel
-
Seeks to the given time in the data.
- SeekableTemporalDataReadChannel<DataType extends Temporal> - Interface in gov.sandia.cognition.data.temporal
-
The SeekableTemporalDataReadChannel
interface extends the
TemporalDataReadChannel
interface to give the ability to seek around in
the temporal data based on a time coordinate.
- segmentCDF - Variable in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.UpperEnvelope
-
Cumulative sums of the normalized weights of the lines...
- select(Collection<EvaluatedGenome<GenomeType>>) - Method in interface gov.sandia.cognition.learning.algorithm.genetic.selector.Selector
-
Selects and returns a portion of the given population.
- select(Collection<EvaluatedGenome<GenomeType>>) - Method in class gov.sandia.cognition.learning.algorithm.genetic.selector.TournamentSelector
-
Uses tournament selection to create a new population.
- selectNextClusterIndex(double[], boolean[]) - Method in class gov.sandia.cognition.learning.algorithm.clustering.initializer.AbstractMinDistanceFixedClusterInitializer
-
Select the index for the next cluster based on the given minimum
distances and array indicating which clusters have already been selected.
- selectNextClusterIndex(double[], boolean[]) - Method in class gov.sandia.cognition.learning.algorithm.clustering.initializer.DistanceSamplingClusterInitializer
-
- selectNextClusterIndex(double[], boolean[]) - Method in class gov.sandia.cognition.learning.algorithm.clustering.initializer.GreedyClusterInitializer
-
- Selector<GenomeType> - Interface in gov.sandia.cognition.learning.algorithm.genetic.selector
-
The Selector interface defines a type of reproducer that can select a portion
of a population for reproduction.
- selfKernel - Variable in class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation.Entry
-
This is the value of the kernel applied to the example and itself.
- SemanticIdentifier - Interface in gov.sandia.cognition.framework
-
The SemanticIdentifier class holds a SemanticLabel along with the unique
integer that can be used to identify the SemanticLabel within a model.
- semanticIdentifierAdded(SemanticIdentifierMapEvent) - Method in interface gov.sandia.cognition.framework.SemanticIdentifierMapListener
-
This event is triggered when a SemanticIdentifier has been added to the
map.
- semanticIdentifierMap - Variable in class gov.sandia.cognition.framework.learning.converter.AbstractCogxelConverter
-
The SemanticIdentifierMap for the converter.
- SemanticIdentifierMap - Interface in gov.sandia.cognition.framework
-
The SemanticIdentifierMap defines the functionality of a class that
assigns identifiers to SemanticLabels and keeps track of them.
- SemanticIdentifierMapEvent - Class in gov.sandia.cognition.framework
-
The SemanticIdentifierMapEvent
class implements an event
object for the SemanticIdentifierMapListener
interface to
make use of.
- SemanticIdentifierMapEvent(SemanticIdentifierMap, SemanticIdentifierMapEventType, SemanticIdentifier) - Constructor for class gov.sandia.cognition.framework.SemanticIdentifierMapEvent
-
Creates a new instance of CognitiveModelStateChangeEvent.
- SemanticIdentifierMapEventType - Enum in gov.sandia.cognition.framework
-
The SemanticIdentifierMapEventType
- SemanticIdentifierMapListener - Interface in gov.sandia.cognition.framework
-
The SemanticIdentifierMapListener defines an EventListener for the
SemanticIdentifierMap.
- SemanticLabel - Interface in gov.sandia.cognition.framework
-
This interface defines what a semantic label should have.
- SemanticMemory - Interface in gov.sandia.cognition.framework
-
The SemanticMemory interface defines the general functionality required of
a module in the CognitiveModel that is a semantic memory.
- SemanticNetwork - Interface in gov.sandia.cognition.framework
-
The SemanticNetwork interface defines the functionality required for a
network that is used as part of the paramterization to a SemanticMemory.
- Semimetric<InputType> - Interface in gov.sandia.cognition.math
-
A semimetric is a divergence function that takes inputs from the same
set (domain) and is positive definite and symmetric.
- sequenceGammas - Variable in class gov.sandia.cognition.learning.algorithm.hmm.BaumWelchAlgorithm
-
The list of all gammas from each sequence
- SequencePredictionLearner<DataType,LearnedType> - Class in gov.sandia.cognition.learning.algorithm
-
A wrapper learner that converts an unlabeled sequence of data into a sequence
of prediction data using a fixed prediction horizon.
- SequencePredictionLearner() - Constructor for class gov.sandia.cognition.learning.algorithm.SequencePredictionLearner
-
Creates a new SequencePredictionLearner
with default parameters.
- SequencePredictionLearner(BatchLearner<? super Collection<? extends InputOutputPair<? extends DataType, DataType>>, ? extends LearnedType>, int) - Constructor for class gov.sandia.cognition.learning.algorithm.SequencePredictionLearner
-
Creates a new SequencePredictionLearner
with the given learner
and prediction horizon.
- SequentialDataMultiPartitioner - Class in gov.sandia.cognition.learning.data
-
This partitioner splits a Collection of data into a pre-defined number of
approximately equal sequential partitions, with the nonzero remainder
elements going into the final partition.
- SequentialDataMultiPartitioner() - Constructor for class gov.sandia.cognition.learning.data.SequentialDataMultiPartitioner
-
- SequentialMinimalOptimization<InputType> - Class in gov.sandia.cognition.learning.algorithm.svm
-
An implementation of the Sequential Minimal Optimization (SMO) algorithm for
training a Support Vector Machine (SVM), which is a kernel-based binary
categorizer.
- SequentialMinimalOptimization() - Constructor for class gov.sandia.cognition.learning.algorithm.svm.SequentialMinimalOptimization
-
Creates a new instance of Sequential Minimal Optimization.
- SequentialMinimalOptimization(Kernel<? super InputType>) - Constructor for class gov.sandia.cognition.learning.algorithm.svm.SequentialMinimalOptimization
-
Creates a new instance of Sequential Minimal Optimization with the
given kernel.
- SequentialMinimalOptimization(Kernel<? super InputType>, Random) - Constructor for class gov.sandia.cognition.learning.algorithm.svm.SequentialMinimalOptimization
-
Creates a new instance of Sequential Minimal Optimization with the
given kernel and random number generator.
- SequentialMinimalOptimization(Kernel<? super InputType>, double, double, double, int, int, Random) - Constructor for class gov.sandia.cognition.learning.algorithm.svm.SequentialMinimalOptimization
-
Creates a new instance of Sequential Minimal Optimization with the
given kernel and random number generator.
- serialize(String, DenseMemoryGraph<?>) - Static method in class gov.sandia.cognition.graph.DenseMemoryGraph
-
Helper method for serializing the input to file.
- serialize(String, WeightedDenseMemoryGraph<?>) - Static method in class gov.sandia.cognition.graph.WeightedDenseMemoryGraph
-
Helper method for serializing the input to file.
- SerializedModelHandler - Class in gov.sandia.cognition.framework.io
-
The SerializedModelHandler
class implements some utility
methods for dealing with models that have been serialized using the Java
serialization API.
- SerializedModelHandler() - Constructor for class gov.sandia.cognition.framework.io.SerializedModelHandler
-
Creates a new instance of SerializedModelHandler
- set(KeyType, double) - Method in class gov.sandia.cognition.collection.AbstractLogNumberMap
-
- set(KeyType, double) - Method in class gov.sandia.cognition.collection.AbstractMutableDoubleMap
-
- set(int, double) - Method in class gov.sandia.cognition.collection.DoubleArrayList
-
Sets the element at idx
- set(DataType) - Method in class gov.sandia.cognition.collection.FiniteCapacityBuffer.InternalIterator
-
- set(int, DataType) - Method in class gov.sandia.cognition.collection.FiniteCapacityBuffer
-
- set(int, int) - Method in class gov.sandia.cognition.collection.IntArrayList
-
Sets the element at idx
- set(KeyType, double) - Method in interface gov.sandia.cognition.collection.ScalarMap
-
Sets the value associated with a given key.
- set(int, int, double) - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
-
- set(int, double) - Method in class gov.sandia.cognition.math.matrix.custom.DenseVector
-
- set(int, int, double) - Method in class gov.sandia.cognition.math.matrix.custom.DiagonalMatrix
-
- set(int, int, double) - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
Sets the value of the element of the matrix at the zero-based row and
column indices.
- set(int, double) - Method in class gov.sandia.cognition.math.matrix.custom.SparseVector
-
- set(int, int, double) - Method in interface gov.sandia.cognition.math.matrix.Matrix
-
Sets the value of the element of the matrix at the zero-based row and
column indices.
- set(int, int, double) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJMatrix
-
- set(int, double) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJVector
-
- set(int, double) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseVector
-
- set(int, double) - Method in interface gov.sandia.cognition.math.matrix.Vector
-
Sets the value for an element at the zero-based index from the vector.
- set(KeyType, double) - Method in class gov.sandia.cognition.statistics.distribution.DefaultDataDistribution
-
- setA(Matrix) - Method in class gov.sandia.cognition.math.signals.LinearDynamicalSystem
-
Setter for A.
- setAccessedDate(long) - Method in class gov.sandia.cognition.text.document.DefaultDocument
-
Sets the last accessed date of the document.
- setAccessedDate(Date) - Method in class gov.sandia.cognition.text.document.DefaultDocument
-
Sets the last accessed date of the document.
- setActivated(boolean) - Method in class gov.sandia.cognition.framework.lite.BooleanActivatableCogxel
-
Sets a boolean indicating whether the cogxel is activated.
- setActivation(double) - Method in interface gov.sandia.cognition.framework.Cogxel
-
Sets the activation level of the Cogxel.
- setActivation(double) - Method in class gov.sandia.cognition.framework.DefaultCogxel
-
Sets the activation level of the Cogxel.
- setActualCommand(String) - Method in class gov.sandia.cognition.io.ProcessLauncher
-
Setter for actualCommand
- setAggressiveness(double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlinePassiveAggressivePerceptron.AbstractSoftMargin
-
Sets the aggressiveness parameter (C), which is the trade-off between
aggressive updating to meet an incorrect example and keeping
history around.
- setAlgorithm(InternalAlgorithm) - Method in class gov.sandia.cognition.algorithm.AnytimeAlgorithmWrapper
-
Sets the underlying algorithm.
- setAll(Iterable<? extends KeyType>, double) - Method in class gov.sandia.cognition.collection.AbstractScalarMap
-
- setAll(ScalarMap<? extends KeyType>) - Method in class gov.sandia.cognition.collection.AbstractScalarMap
-
- setAll(Iterable<? extends KeyType>, double) - Method in interface gov.sandia.cognition.collection.ScalarMap
-
Sets all the given keys to the given value.
- setAll(ScalarMap<? extends KeyType>) - Method in interface gov.sandia.cognition.collection.ScalarMap
-
Sets all the given keys to the given value.
- setAllowedTerms(Set<Term>) - Method in class gov.sandia.cognition.text.term.filter.DictionaryFilter
-
Sets the set of allowed terms.
- setAlpha(double) - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.Sample
-
Setter for alpha
- setAlpha(double) - Method in class gov.sandia.cognition.statistics.distribution.BetaDistribution
-
Setter for alpha
- setAlpha(double) - Method in class gov.sandia.cognition.statistics.distribution.ChineseRestaurantProcess
-
Setter for alpha.
- setAlpha(double) - Method in class gov.sandia.cognition.statistics.method.MultipleComparisonExperiment
-
Setter for alpha
- setAlpha(double) - Method in class gov.sandia.cognition.text.topic.LatentDirichletAllocationVectorGibbsSampler
-
Sets the alpha parameter controlling the Dirichlet distribution for the
document-topic probabilities.
- setAlphabet(char[]) - Method in class gov.sandia.cognition.text.spelling.SimpleStatisticalSpellingCorrector.Learner
-
Sets the alphabet of lower-case characters that can be used for
replaces and inserts.
- setAlphabet(char[]) - Method in class gov.sandia.cognition.text.spelling.SimpleStatisticalSpellingCorrector
-
Sets the alphabet of lower-case characters that can be used for replaces
and inserts.
- setAmplitude(double) - Method in class gov.sandia.cognition.learning.function.scalar.CosineFunction
-
Setter for amplitude
- setAreaUnderCurve(double) - Method in class gov.sandia.cognition.statistics.method.ReceiverOperatingCharacteristic.Statistic
-
Setter for areaUnderCurve
- setAssignment(int, int) - Method in class gov.sandia.cognition.learning.algorithm.clustering.KMeansClusterer
-
Sets the assignment of the given element to the new cluster index,
updating the cluster counts as well.
- setAssignments(int[]) - Method in class gov.sandia.cognition.learning.algorithm.clustering.AffinityPropagation
-
Sets the assignments of examples to exemplars (clusters).
- setAssociation(SemanticLabel, SemanticLabel, double) - Method in class gov.sandia.cognition.framework.DefaultSemanticNetwork
-
Sets the association between two nodes in the network.
- setAssociation(SemanticLabel, SemanticLabel, double) - Method in interface gov.sandia.cognition.framework.lite.MutablePatternRecognizerLite
-
Sets the association between nodes in the recognizer.
- setAssociation(SemanticLabel, SemanticLabel, double) - Method in class gov.sandia.cognition.framework.lite.MutableSemanticMemoryLite
-
Sets the association between nodes in the recognizer.
- setAssociation(SemanticLabel, SemanticLabel, double) - Method in class gov.sandia.cognition.framework.lite.SimplePatternRecognizer
-
Sets the association between nodes in the recognizer.
- setAuthor(String) - Method in class gov.sandia.cognition.text.document.DefaultDocument
-
Sets the author field of the document to the given string.
- setAutoregressiveCoefficients(Vector) - Method in class gov.sandia.cognition.math.signals.AutoRegressiveMovingAverageFilter
-
Setter for autoregressiveCoefficients
- setAvailabilities(double[][]) - Method in class gov.sandia.cognition.learning.algorithm.clustering.AffinityPropagation
-
Sets the availability values.
- setAverager(Summarizer<? super OutputType, ? extends OutputType>) - Method in class gov.sandia.cognition.learning.algorithm.nearest.AbstractKNearestNeighbor
-
Setter for averager
- setAverager(Summarizer<? super OutputType, ? extends OutputType>) - Method in interface gov.sandia.cognition.learning.algorithm.nearest.KNearestNeighbor
-
Setter for averager.
- setB(Matrix) - Method in class gov.sandia.cognition.math.signals.LinearDynamicalSystem
-
Setter for B.
- setBag(ArrayList<InputOutputPair<? extends InputType, OutputType>>) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractBaggingLearner
-
Sets the most recently created bag.
- setBaseHandler(StreamSerializationHandler<SerializedType>) - Method in class gov.sandia.cognition.io.serialization.GZIPSerializationHandler
-
Sets the base handler whose output is serialized.
- setBasisFunctions(ArrayList<? extends Evaluator<? super InputType, ? extends OutputType>>) - Method in class gov.sandia.cognition.learning.function.LinearCombinationFunction
-
Setter for basisFunctions
- setBasisFunctions(Collection<? extends Evaluator<? super InputType, Double>>) - Method in class gov.sandia.cognition.learning.function.vector.ScalarBasisSet
-
Setter for basisFunctions
- setBestSoFar(AnnealedType) - Method in class gov.sandia.cognition.learning.algorithm.annealing.SimulatedAnnealer
-
Sets the best state found so far.
- setBestSoFar(EvaluatedGenome<GenomeType>) - Method in class gov.sandia.cognition.learning.algorithm.genetic.GeneticAlgorithm
-
Sets the best genome found so far.
- setBestSoFarScore(double) - Method in class gov.sandia.cognition.learning.algorithm.annealing.SimulatedAnnealer
-
Sets the score for the best state found so far.
- setBeta(double) - Method in class gov.sandia.cognition.statistics.distribution.BetaDistribution
-
Setter for beta
- setBeta(double) - Method in class gov.sandia.cognition.text.topic.LatentDirichletAllocationVectorGibbsSampler
-
Sets the beta parameter controlling the Dirichlet distribution for the
topic-term probabilities.
- setBias(double) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.AdditiveEnsemble
-
Sets the initial offset value (bias) to which the output of the ensemble
members are added when computing a result.
- setBias(double) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.WeightedAdditiveEnsemble
-
Sets the initial offset value (bias) to which the output of the ensemble
members are added when computing a result.
- setBias(double) - Method in class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachine
-
Sets the bias value.
- setBias(double) - Method in class gov.sandia.cognition.learning.function.categorization.KernelBinaryCategorizer
-
Sets the bias term.
- setBias(double) - Method in class gov.sandia.cognition.learning.function.categorization.LinearBinaryCategorizer
-
Sets the bias term.
- setBias(double) - Method in class gov.sandia.cognition.learning.function.scalar.KernelScalarFunction
-
Sets the bias term.
- setBias(double) - Method in class gov.sandia.cognition.learning.function.scalar.LinearDiscriminantWithBias
-
Setter for bias.
- setBias(double) - Method in class gov.sandia.cognition.learning.function.scalar.LinearVectorScalarFunction
-
Sets the bias term.
- setBias(Vector) - Method in class gov.sandia.cognition.learning.function.vector.MultivariateDiscriminantWithBias
-
Setter for bias
- setBiasEnabled(boolean) - Method in class gov.sandia.cognition.learning.algorithm.factor.machine.AbstractFactorizationMachineLearner
-
Sets whether or not the bias term is enabled.
- setBiasRegularization(double) - Method in class gov.sandia.cognition.learning.algorithm.factor.machine.AbstractFactorizationMachineLearner
-
Sets the value for the parameter controlling the bias regularization.
- setBlockExperimentComparison(BlockExperimentComparison<Number>) - Method in class gov.sandia.cognition.statistics.method.MultipleComparisonExperiment
-
Setter for blockExperimentComparison
- setBody(String) - Method in class gov.sandia.cognition.text.document.DefaultDocument
-
Sets the body field of the document to the given string.
- setBooleanConverter(DataToVectorEncoder<Boolean>) - Method in class gov.sandia.cognition.data.convert.vector.UniqueBooleanVectorEncoder
-
Sets the boolean converter used to encode the equality comparison
between each of the unique values and a given input.
- setBounds(Rectangle2D.Double) - Method in class gov.sandia.cognition.math.geometry.Quadtree.Node
-
Sets the bounding box of the region represented by this node.
- setBracket(LineBracket) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.AbstractAnytimeLineMinimizer
-
Setter for bracket
- setBracket(LineBracket) - Method in class gov.sandia.cognition.learning.algorithm.root.RootBracketExpander
-
Setter for bracket.
- setBracketer(RootBracketer) - Method in class gov.sandia.cognition.learning.algorithm.root.AbstractBracketedRootFinder
-
Gets the root-bracketing algorithm that will be used to initially
bracket the root.
- setBudget(int) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.AbstractOnlineBudgetedKernelBinaryCategorizerLearner
-
Sets the budget.
- setBudget(int) - Method in interface gov.sandia.cognition.learning.algorithm.perceptron.kernel.BudgetedKernelBinaryCategorizerLearner
-
Sets the budget.
- setBufferedReader(BufferedReader) - Method in class gov.sandia.cognition.io.ReaderTokenizer
-
Setter for bufferedReader
- setBurnInIterations(int) - Method in class gov.sandia.cognition.statistics.bayesian.AbstractMarkovChainMonteCarlo
-
- setBurnInIterations(int) - Method in interface gov.sandia.cognition.statistics.bayesian.MarkovChainMonteCarlo
-
Sets the number of iterations that must transpire before the algorithm
begins collection the samples.
- setBurnInIterations(int) - Method in class gov.sandia.cognition.text.topic.LatentDirichletAllocationVectorGibbsSampler
-
Sets he number of burn-in iterations for the Markov Chain Monte Carlo
algorithm to run before sampling begins.
- setC(Matrix) - Method in class gov.sandia.cognition.math.signals.LinearDynamicalSystem
-
Setter for C.
- setCapacity(int) - Method in class gov.sandia.cognition.collection.FiniteCapacityBuffer
-
Sets the capacity of the buffer, which is the maximum number of elements
that can be stored in it.
- setCapacity(int) - Method in class gov.sandia.cognition.learning.function.scalar.KolmogorovSmirnovEvaluator
-
Setter for capacity
- setCategories(Set<OutputType>) - Method in class gov.sandia.cognition.learning.algorithm.tree.CategorizationTree
-
Sets the possible output categories.
- setCategories(Set<CategoryType>) - Method in class gov.sandia.cognition.learning.function.categorization.AbstractCategorizer
-
Sets the Set of possible categories, which are the output values.
- setCategories(Set<CategoryType>) - Method in class gov.sandia.cognition.learning.function.categorization.EvaluatorToCategorizerAdapter
-
- setCategories(Set<CategoryType>) - Method in class gov.sandia.cognition.learning.function.categorization.WinnerTakeAllCategorizer
-
- setCategorizedVector(Vector) - Method in class gov.sandia.cognition.statistics.ChiSquaredSimilarity
-
Basic setter for the categorized vector.
- setCategorizer(Categorizer<? super IntermediateType, ? extends CategoryType>) - Method in class gov.sandia.cognition.learning.function.categorization.CompositeCategorizer
-
Sets the categorizer, which takes the output of the preprocessor and
categorizes it.
- setCategorizers(Collection<BinaryCategorizer<? super InputType>>) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.BinaryCategorizerSelector
-
Gets the collection of categorizers that the learner selects from.
- setCategoryPairsToEvaluatorMap(Map<Pair<CategoryType, CategoryType>, Evaluator<? super InputType, Boolean>>) - Method in class gov.sandia.cognition.learning.function.categorization.BinaryVersusCategorizer
-
Sets the mapping of false-true category pairs to the binary categorizer
that distinguishes them.
- setCategoryPriors(Map<OutputType, Double>) - Method in class gov.sandia.cognition.learning.algorithm.tree.CategorizationTreeLearner
-
Set prior category probabilities.
- setCDF(CumulativeDistributionFunction<Double>) - Method in class gov.sandia.cognition.learning.function.scalar.KolmogorovSmirnovEvaluator
-
Setter for cdf
- setCenterData(boolean) - Method in class gov.sandia.cognition.learning.algorithm.pca.KernelPrincipalComponentsAnalysis.Function
-
Sets whether or not the data needs to be centered in the kernel space
before applying the function.
- setCenterData(boolean) - Method in class gov.sandia.cognition.learning.algorithm.pca.KernelPrincipalComponentsAnalysis
-
Sets whether or not the data needs to be centered in the kernel space
before applying the algorithm.
- setCentralValue(double) - Method in class gov.sandia.cognition.statistics.method.ConfidenceInterval
-
Setter for centralValue
- setCentroid(ClusterType) - Method in class gov.sandia.cognition.learning.algorithm.clustering.cluster.CentroidCluster
-
Sets the centroid of the cluster.
- setChangedCount(int) - Method in class gov.sandia.cognition.learning.algorithm.clustering.AffinityPropagation
-
Sets the number of cluster assignments that have changed in the most
recent iteration.
- setChildMap(Map<InteriorType, DecisionTreeNode<InputType, OutputType>>) - Method in class gov.sandia.cognition.learning.algorithm.tree.AbstractDecisionTreeNode
-
Sets the mapping of decision values to child nodes.
- setChildren(List<ClusterHierarchyNode<DataType, ClusterType>>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.hierarchy.DefaultClusterHierarchyNode
-
Sets the children of this node.
- setChildren(ClusterHierarchyNode<DataType, ClusterType>, ClusterHierarchyNode<DataType, ClusterType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.hierarchy.DefaultClusterHierarchyNode
-
Sets the children of this node.
- setChildren(ArrayList<Quadtree<DataType>.Node>) - Method in class gov.sandia.cognition.math.geometry.Quadtree.Node
-
Sets the list of child nodes of this node.
- setChildrenDivergence(double) - Method in class gov.sandia.cognition.learning.algorithm.clustering.AgglomerativeClusterer.HierarchyNode
-
Sets the divergence between the two children.
- setChiSquare(double) - Method in class gov.sandia.cognition.learning.algorithm.regression.LinearRegression.Statistic
-
Setter for chiSquare
- setClassifier(ScalarThresholdBinaryCategorizer) - Method in class gov.sandia.cognition.statistics.method.ReceiverOperatingCharacteristic.DataPoint
-
Setter for classifier
- setCluster(ClusterType) - Method in class gov.sandia.cognition.learning.algorithm.clustering.hierarchy.AbstractClusterHierarchyNode
-
Sets the cluster associated with the node.
- setClusterCount(int) - Method in class gov.sandia.cognition.learning.algorithm.clustering.DBSCANClusterer
-
Sets the number of clusters.
- setClusters(HashMap<Integer, CentroidCluster<DataType>>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.AffinityPropagation
-
Sets the current clusters, which is a sparse mapping of exemplar
identifier to cluster object.
- setClusters(ArrayList<ClusterType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.AgglomerativeClusterer
-
Sets the clusters.
- setClusters(ArrayList<ClusterType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.DBSCANClusterer
-
Sets the current clusters, which is a sparse mapping of exemplar
identifier to cluster object.
- setClusters(ArrayList<ClusterType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.KMeansClusterer
-
Sets the clusters.
- setClusters(ArrayList<ClusterType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
-
Sets the clusters cache to the provided value.
- setClusters(ArrayList<DirichletProcessMixtureModel.DPMMCluster<ObservationType>>) - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.Sample
-
Setter for clusters
- setClustersHierarchy(ArrayList<AgglomerativeClusterer.HierarchyNode<DataType, ClusterType>>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.AgglomerativeClusterer
-
Sets the hierarchy of clusters.
- setClustersHierarchy(ArrayList<BinaryClusterHierarchyNode<DataType, ClusterType>>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
-
Sets the hierarchy of clusters.
- setCoefficients(Vector) - Method in class gov.sandia.cognition.learning.function.LinearCombinationFunction
-
Setter for coefficients
- setCognitiveState(CognitiveModelLiteState) - Method in class gov.sandia.cognition.framework.lite.AbstractCognitiveModelLite
-
Sets the cognitive state to the given state.
- setCogxelFactory(CogxelFactory) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelBooleanConverter
-
Gets the CogxelFactory used to create the cogxels used by the converter.
- setCogxelFactory(CogxelFactory) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelDoubleConverter
-
Gets the CogxelFactory used to create the Cogxels used by the converter.
- setCogxelFactory(CogxelFactory) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelVectorConverter
-
Gets the CogxelFactory used to create the Cogxels used by the converter.
- setCogxelFactory(CogxelFactory) - Method in class gov.sandia.cognition.framework.lite.ArrayBasedPerceptionModule
-
Sets the cogxel factory to use.
- setCogxelFactory(CogxelFactory) - Method in class gov.sandia.cognition.framework.lite.VectorBasedPerceptionModule
-
Setter for cogxelFactory
- setCogxelFactory(CogxelFactory) - Method in class gov.sandia.cognition.framework.lite.VectorBasedPerceptionModuleFactory
-
Setter for cogxelFactory
- setCogxels(CogxelStateLite) - Method in class gov.sandia.cognition.framework.lite.CognitiveModelLiteState
-
Setter for cogxels
- setCogxelVectorConverters(Collection<CogxelVectorConverter>) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelVectorCollectionConverter
-
Setter for cogxelVectorConverters
- setColumn(int, Vector) - Method in class gov.sandia.cognition.math.matrix.AbstractMatrix
-
- setColumn(int, Vector) - Method in interface gov.sandia.cognition.math.matrix.Matrix
-
Sets the specified column from the given columnVector
- setColumn(int, SparseVector) - Method in class gov.sandia.cognition.math.matrix.mtj.SparseColumnMatrix
-
Sets the column of the matrix using the given SparseVector, using MTJ's
internal routine to speed things up
- setColumnConverters(ArrayList<CogxelVectorConverter>) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelMatrixConverter
-
Setter for columnConverters
- setColumnIndex(int) - Method in interface gov.sandia.cognition.math.matrix.MatrixEntry
-
Sets the column index to which the entry points
- setColumnIndex(int) - Method in class gov.sandia.cognition.math.matrix.mtj.TwoMatrixEntryMTJ
-
Setter for columnIndex.
- setColumnIndex(int) - Method in interface gov.sandia.cognition.math.matrix.TwoMatrixEntry
-
Sets the column index to which the entry points
- setComponentCount(int) - Method in class gov.sandia.cognition.learning.algorithm.pca.KernelPrincipalComponentsAnalysis
-
Gets the number of components the analysis attempts to find.
- setComponents(Matrix) - Method in class gov.sandia.cognition.learning.algorithm.pca.KernelPrincipalComponentsAnalysis.Function
-
Sets the matrix of components from the analysis.
- setConditionalDistribution(ConditionalType) - Method in class gov.sandia.cognition.statistics.bayesian.AbstractBayesianParameter
-
Setter for conditionalDistribution
- setConditionalDistribution(ConditionalType) - Method in class gov.sandia.cognition.statistics.DefaultDistributionParameter
-
Setter for conditionalDistribution
- setConditionalLearner(BatchLearner<Collection<? extends ObservationType>, ? extends ComputableDistribution<ObservationType>>) - Method in class gov.sandia.cognition.learning.function.categorization.MaximumAPosterioriCategorizer.Learner
-
Setter for conditionalLearner
- setConditionals(Map<CategoryType, List<DistributionType>>) - Method in class gov.sandia.cognition.learning.algorithm.bayes.VectorNaiveBayesCategorizer
-
Sets the conditional distributions, which is a mapping of category to
the list of probability density functions, one for each dimension of the
vector.
- setConfidence(double) - Method in class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalDeviation
-
Gets the confidence to use for updating.
- setConfidence(double) - Method in class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalVariance
-
Gets the confidence to use for updating.
- setConfidence(ConfidenceStatistic) - Method in class gov.sandia.cognition.learning.experiment.LearnerComparisonExperiment.Result
-
Sets the confidence statistic for the learners.
- setConfidence(ConfidenceStatistic) - Method in class gov.sandia.cognition.learning.experiment.LearnerComparisonExperiment
-
Sets the confidence statistic that the two learners are different.
- setConfidence(double) - Method in class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrixConfidenceInterval
-
Setter for confidence
- setConfidence(double) - Method in class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrixConfidenceInterval.Summary
-
Sets the confidence for created the interval.
- setConfidence(double) - Method in class gov.sandia.cognition.statistics.method.ConfidenceInterval
-
Setter for confidence
- setConfidence(double) - Method in class gov.sandia.cognition.statistics.method.StudentTConfidence.Summary
-
Sets the confidence for created the interval.
- setConfusionMatrix(DefaultBinaryConfusionMatrix) - Method in class gov.sandia.cognition.statistics.method.ReceiverOperatingCharacteristic.DataPoint
-
Setter for confusionMatrix
- setConjuctive(BayesianParameter<ParameterType, ? extends ProbabilityFunction<ObservationType>, ? extends ProbabilityFunction<ParameterType>>) - Method in class gov.sandia.cognition.statistics.bayesian.ImportanceSampling.DefaultUpdater
-
Setter for conjunctive
- setConjuctive(BayesianParameter<ParameterType, ? extends ProbabilityFunction<ObservationType>, ? extends ProbabilityFunction<ParameterType>>) - Method in class gov.sandia.cognition.statistics.bayesian.RejectionSampling.DefaultUpdater
-
Setter for conjunctive
- setConstant(double) - Method in class gov.sandia.cognition.learning.function.kernel.PolynomialKernel
-
Gets the constant of the polynomial.
- setConstant(double) - Method in class gov.sandia.cognition.learning.function.kernel.SigmoidKernel
-
Sets the constant inside of the sigmoid kernel.
- setConstantValue(double) - Method in class gov.sandia.cognition.learning.function.scalar.LocallyWeightedKernelScalarFunction
-
Sets the constant value.
- setConstantWeight(double) - Method in class gov.sandia.cognition.learning.function.scalar.LocallyWeightedKernelScalarFunction
-
Sets the constant weight.
- setConstructor(Constructor<? extends CreatedType>) - Method in class gov.sandia.cognition.factory.ConstructorBasedFactory
-
Sets the constructor to use to create new objects.
- setConverter(DataConverter<? super InputType, ? extends Number>) - Method in class gov.sandia.cognition.data.convert.vector.NumberConverterToVectorAdapter
-
Sets the number converter being adapted to work with vectors.
- setConverter(SingleTextualConverter<? super InputType, ? extends OutputType>) - Method in class gov.sandia.cognition.text.convert.SingleToMultiTextualConverterAdapter
-
Sets the internal single textual converter being wrapped.
- setConvexHull(ArrayList<ReceiverOperatingCharacteristic.DataPoint>) - Method in class gov.sandia.cognition.statistics.method.ConvexReceiverOperatingCharacteristic
-
Setter for convexHull
- setCoolingFactor(double) - Method in class gov.sandia.cognition.learning.algorithm.annealing.SimulatedAnnealer
-
Sets the cooling factor.
- setCost(double) - Method in class gov.sandia.cognition.learning.algorithm.genetic.EvaluatedGenome
-
Sets the cost of the genome.
- setCostFunction(CostFunction<? super AnnealedType, ? super CostParametersType>) - Method in class gov.sandia.cognition.learning.algorithm.annealing.SimulatedAnnealer
-
Sets the cost function.
- setCostFunction(CostFunction<? super GenomeType, ? super CostParametersType>) - Method in class gov.sandia.cognition.learning.algorithm.genetic.GeneticAlgorithm
-
Sets the cost function.
- setCostFunction(SupervisedCostFunction<Vector, Vector>) - Method in class gov.sandia.cognition.learning.algorithm.regression.AbstractMinimizerBasedParameterCostMinimizer
-
Setter for costFunction
- setCostFunction(CostFunctionType) - Method in class gov.sandia.cognition.learning.algorithm.regression.AbstractParameterCostMinimizer
-
Setter for costFunction
- setCostFunction(ParallelizableCostFunction) - Method in class gov.sandia.cognition.learning.function.cost.ParallelizedCostFunctionContainer
-
Setter for costFunction
- setCostParameters(CostParametersType) - Method in class gov.sandia.cognition.learning.function.cost.AbstractCostFunction
-
- setCostParameters(Collection<? extends InputOutputPair<? extends InputType, TargetType>>) - Method in class gov.sandia.cognition.learning.function.cost.AbstractSupervisedCostFunction
-
- setCostParameters(ClusterDivergenceFunction<? super ClusterType, ? super DataType>) - Method in class gov.sandia.cognition.learning.function.cost.ClusterDistortionMeasure
-
- setCostParameters(CostParametersType) - Method in interface gov.sandia.cognition.learning.function.cost.CostFunction
-
Sets the parameters of the cost function used to evaluate the cost of
a target.
- setCostParameters(Vectorizable) - Method in class gov.sandia.cognition.learning.function.cost.EuclideanDistanceCostFunction
-
- setCostParameters(Collection<? extends InputOutputPair<? extends Vector, Vector>>) - Method in class gov.sandia.cognition.learning.function.cost.ParallelizedCostFunctionContainer
-
- setCount(long) - Method in class gov.sandia.cognition.statistics.AbstractSufficientStatistic
-
Setter for count
- setCounterFactory(Factory<? extends DataDistribution<CategoryType>>) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner
-
Sets the factory used for creating the object for counting the votes of
the learned ensemble members.
- setCovariance(Matrix) - Method in class gov.sandia.cognition.learning.algorithm.annealing.VectorizablePerturber
-
Sets the covariance of the perturber.
- setCovariance(Matrix) - Method in class gov.sandia.cognition.learning.function.categorization.DefaultConfidenceWeightedBinaryCategorizer
-
Sets the covariance matrix.
- setCovariance(Matrix) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian
-
Sets the covariance matrix.
- setCovariance(Matrix, double) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian
-
Sets the covariance matrix.
- setCovarianceDivisor(double) - Method in class gov.sandia.cognition.statistics.distribution.NormalInverseWishartDistribution
-
Setter for covarianceDivisor
- setCovarianceInverse(Matrix) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian
-
Sets the covariance inverse
- setCovarianceInverse(Matrix, double) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian
-
Sets the covariance inverse
- setCovarianceSqrt(Matrix) - Method in class gov.sandia.cognition.learning.algorithm.annealing.VectorizablePerturber
-
Sets the covariance square root matrix.
- setCreatedClass(Class<? extends CreatedType>) - Method in class gov.sandia.cognition.factory.DefaultFactory
-
Sets the class whose default constructor is used to create new objects.
- setCreator(ClusterCreator<ClusterType, DataType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.AgglomerativeClusterer
-
Sets the cluster creator.
- setCreator(ClusterCreator<ClusterType, DataType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.DBSCANClusterer
-
Sets the cluster creator.
- setCreator(KDTree<DataType, Double, InputOutputPair<DataType, Double>>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.DBSCANClusterer
-
Sets the spatial index.
- setCreator(ClusterCreator<ClusterType, DataType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.initializer.AbstractMinDistanceFixedClusterInitializer
-
Sets the cluster creator used to create the initial clusters.
- setCreator(ClusterCreator<ClusterType, DataType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.KMeansClusterer
-
Sets the cluster creator.
- setCreator(IncrementalClusterCreator<ClusterType, DataType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
-
Sets the cluster creator.
- setCrossoverFunction(CrossoverFunction<GenomeType>) - Method in class gov.sandia.cognition.learning.algorithm.genetic.reproducer.CrossoverReproducer
-
Sets the CrossoverFunction.
- setCurrent(AnnealedType) - Method in class gov.sandia.cognition.learning.algorithm.annealing.SimulatedAnnealer
-
Sets the current state of the system.
- setCurrentInput(Vector) - Method in class gov.sandia.cognition.statistics.bayesian.AbstractKalmanFilter
-
Setter for currentInput
- setCurrentLine(String) - Method in class gov.sandia.cognition.io.ProcessLauncherEvent
-
Setter for currentLine
- setCurrentParameter(ParameterType) - Method in class gov.sandia.cognition.statistics.bayesian.AbstractMarkovChainMonteCarlo
-
Setter for currentParameter.
- setCurrentScore(double) - Method in class gov.sandia.cognition.learning.algorithm.annealing.SimulatedAnnealer
-
Sets the score of the current state.
- setCurvatureCondition(double) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.WolfeConditions
-
Setter for curvatureCondition
- setD(double) - Method in class gov.sandia.cognition.statistics.method.KolmogorovSmirnovConfidence.Statistic
-
Setter for D
- setDampingFactor(double) - Method in class gov.sandia.cognition.learning.algorithm.clustering.AffinityPropagation
-
Sets the damping factor.
- setDampingFactor(double) - Method in class gov.sandia.cognition.learning.algorithm.regression.LevenbergMarquardtEstimation
-
Setter for dampingFactor
- setDampingFactorDivisor(double) - Method in class gov.sandia.cognition.learning.algorithm.regression.FletcherXuHybridEstimation
-
Setter for dampingFactorDivisor
- setDampingFactorDivisor(double) - Method in class gov.sandia.cognition.learning.algorithm.regression.LevenbergMarquardtEstimation
-
Setter for dampingFactorDivisor
- setData(DataType) - Method in class gov.sandia.cognition.learning.algorithm.AbstractAnytimeBatchLearner
-
Gets the data to use for learning.
- setData(Collection<? extends DataType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.KMeansClusterer
-
- setData(Collection<? extends Vector>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.MiniBatchKMeansClusterer
-
Set the data to be clustered.
- setData(EvaluatorType) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.AbstractAnytimeLineMinimizer
-
- setData(Collection<InputOutputPair<? extends InputType, OutputType>>) - Method in class gov.sandia.cognition.learning.algorithm.nearest.KNearestNeighborExhaustive
-
Setter for data
- setData(KDTree<InputType, OutputType, InputOutputPair<? extends InputType, OutputType>>) - Method in class gov.sandia.cognition.learning.algorithm.nearest.KNearestNeighborKDTree
-
Setter for data
- setData(LinkedList<InputOutputPair<? extends InputType, OutputType>>) - Method in class gov.sandia.cognition.learning.algorithm.nearest.NearestNeighborExhaustive
-
Sets the data that the object performs nearest-neighbor lookup on.
- setData(KDTree<InputType, OutputType, InputOutputPair<? extends InputType, OutputType>>) - Method in class gov.sandia.cognition.learning.algorithm.nearest.NearestNeighborKDTree
-
Setter for data
- setData(List<? extends DataType>) - Method in class gov.sandia.cognition.learning.algorithm.pca.KernelPrincipalComponentsAnalysis.Function
-
Sets the data that was used in the analysis.
- setDataInBag(int[]) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractBaggingLearner
-
Sets the array of counts of the number of samples of each example in
the current bag.
- setDataList(ArrayList<? extends InputOutputPair<? extends InputType, OutputType>>) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractBaggingLearner
-
Sets the data the learner is using as an array list.
- setDate(Date) - Method in class gov.sandia.cognition.text.document.DefaultDateField
-
Sets the date stored in the field.
- setDecider(Categorizer<? super InputType, ? extends InteriorType>) - Method in class gov.sandia.cognition.learning.algorithm.tree.AbstractDecisionTreeNode
-
Sets the decider used at this node.
- setDeciderLearner(DeciderLearner<? super InputType, OutputType, ?, ?>) - Method in class gov.sandia.cognition.learning.algorithm.tree.AbstractDecisionTreeLearner
-
Sets the learner for the decision function.
- setDefaultCovariance(double) - Method in class gov.sandia.cognition.learning.algorithm.clustering.cluster.GaussianClusterCreator
-
Setter for defaultCovariance
- setDefaultCovariance(double) - Method in class gov.sandia.cognition.learning.algorithm.clustering.initializer.NeighborhoodGaussianClusterInitializer
-
Setter for defaultCovariance
- setDefaultCovariance(double) - Method in class gov.sandia.cognition.learning.data.feature.MultivariateDecorrelator.DiagonalCovarianceLearner
-
Sets the default covariance value.
- setDefaultCovariance(double) - Method in class gov.sandia.cognition.learning.data.feature.MultivariateDecorrelator.FullCovarianceLearner
-
Sets the default covariance value.
- setDefaultCovariance(double) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.IncrementalEstimator
-
Setter for defaultCovariance
- setDefaultCovariance(double) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.SufficientStatistic
-
Setter for defaultCovariance
- setDefaultCovariance(double) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.SufficientStatisticCovarianceInverse
-
Setter for defaultCovarianceInverse
- setDefaultCovarianceInverse(double) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.IncrementalEstimatorCovarianceInverse
-
Setter for defaultCovarianceInverse
- setDefaultNumThreads(int) - Static method in class gov.sandia.cognition.algorithm.ParallelUtil
-
Sets the current default number of threads to use when calling the
default createThreadPool() method
- setDefaultVariance(double) - Method in class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalDeviation
-
Sets the default variance, which the diagonal of the covariance matrix is
initialized to.
- setDefaultVariance(double) - Method in class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalVariance
-
Sets the default variance, which the diagonal of the covariance matrix is
initialized to.
- setDefaultVariance(double) - Method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.IncrementalEstimator
-
Sets the default variance, which is the amount added to the variance.
- setDefaultVariance(double) - Method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.MaximumLikelihoodEstimator
-
Sets the default variance, which is the amount added to the variance.
- setDegree(int) - Method in class gov.sandia.cognition.learning.function.kernel.PolynomialKernel
-
Sets the degree of the polynomial.
- setDegreesOfFreedom(double) - Method in class gov.sandia.cognition.learning.algorithm.regression.LinearRegression.Statistic
-
Setter for degreesOfFreedom
- setDegreesOfFreedom(double) - Method in class gov.sandia.cognition.statistics.distribution.ChiSquareDistribution
-
Setter for degrees of freedom
- setDegreesOfFreedom(int) - Method in class gov.sandia.cognition.statistics.distribution.InverseWishartDistribution
-
Setter for degreesOfFreedom
- setDegreesOfFreedom(double) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateStudentTDistribution
-
Setter for degreesOfFreedom
- setDegreesOfFreedom(double) - Method in class gov.sandia.cognition.statistics.distribution.StudentizedRangeDistribution
-
Setter for degreesOfFreedom
- setDegreesOfFreedom(double) - Method in class gov.sandia.cognition.statistics.distribution.StudentTDistribution
-
Setter for degreesOfFreedom
- setDegreesOfFreedom(double) - Method in class gov.sandia.cognition.statistics.method.StudentTConfidence.Statistic
-
Setter for degreesOfFreedom
- setDelaySamples(int) - Method in class gov.sandia.cognition.learning.data.feature.DelayFunction
-
Setter for delaySamples
- setDelta(double) - Method in class gov.sandia.cognition.math.matrix.NumericalDifferentiator
-
Setter for delta
- setDeltaSize(double) - Method in class gov.sandia.cognition.learning.algorithm.gradient.GradientDescendableApproximator
-
Setter for deltaSize
- setDemoteToZero(boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.Winnow
-
Sets whether or not the algorithm will demote features involved in an
incorrect categorization to zero (Winnow1).
- setDepth(int) - Method in class gov.sandia.cognition.math.geometry.Quadtree.Node
-
Sets the depth in the tree of this node.
- setDerivativeGain(double) - Method in class gov.sandia.cognition.math.signals.PIDController
-
Setter for derivativeGain
- setDFbetween(double) - Method in class gov.sandia.cognition.statistics.method.AnalysisOfVarianceOneWay.Statistic
-
Setter for DFbetween
- setDFwithin(double) - Method in class gov.sandia.cognition.statistics.method.AnalysisOfVarianceOneWay.Statistic
-
Setter for DFwithin
- setDimensionReducer(MultivariateDiscriminant) - Method in class gov.sandia.cognition.learning.algorithm.pca.PrincipalComponentsAnalysisFunction
-
Setter for dimensionReducer
- setDimensionsToConsider(int...) - Method in interface gov.sandia.cognition.learning.algorithm.DimensionFilterableLearner
-
Gets the dimensions that the learner is to consider.
- setDimensionsToConsider(int...) - Method in class gov.sandia.cognition.learning.algorithm.tree.AbstractVectorThresholdMaximumGainLearner
-
- setDimensionsToConsider(int...) - Method in class gov.sandia.cognition.learning.algorithm.tree.RandomSubVectorThresholdLearner
-
- setDimensionsToConsider(int...) - Method in class gov.sandia.cognition.learning.algorithm.tree.VectorThresholdVarianceLearner
-
- setDirection(Vector) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.DirectionalVectorToScalarFunction
-
Setter for direction
- setDiscriminant(DiscriminantType) - Method in class gov.sandia.cognition.learning.data.DefaultValueDiscriminantPair
-
Sets the discriminant.
- setDiscriminant(LinearDiscriminant) - Method in class gov.sandia.cognition.learning.function.scalar.VectorFunctionLinearDiscriminant
-
Setter for discriminant
- setDiscriminant(MultivariateDiscriminant) - Method in class gov.sandia.cognition.learning.function.vector.GeneralizedLinearModel
-
Setter for discriminant
- setDiscriminant(Matrix) - Method in class gov.sandia.cognition.learning.function.vector.MultivariateDiscriminant
-
Setter for discriminant
- setDistribution(UnivariateDistribution<? extends Number>) - Method in class gov.sandia.cognition.statistics.UnivariateRandomVariable
-
Setter for distribution
- setDistributionEstimator(DistributionEstimator<? super Double, ? extends DistributionType>) - Method in class gov.sandia.cognition.learning.algorithm.bayes.VectorNaiveBayesCategorizer.Learner
-
Sets the estimation method for the distribution of each dimension of
each category.
- setDistributionLearner(IncrementalLearner<? super Double, DistributionType>) - Method in class gov.sandia.cognition.learning.algorithm.bayes.VectorNaiveBayesCategorizer.OnlineLearner
-
Sets the learner used for the distribution representing each
dimension.
- setDistributionLearner(BatchLearner<Collection<? extends WeightedValue<? extends ObservationType>>, ? extends ComputableDistribution<ObservationType>>) - Method in class gov.sandia.cognition.learning.algorithm.hmm.AbstractBaumWelchAlgorithm
-
Setter for distributionLearner
- setDistributions(ArrayList<? extends DistributionType>) - Method in class gov.sandia.cognition.statistics.distribution.LinearMixtureModel
-
Setter for distributions
- setDistributions(Collection<? extends ClosedFormComputableDistribution<DataType>>) - Method in class gov.sandia.cognition.statistics.method.MaximumLikelihoodDistributionEstimator
-
Setter for distributions
- setDivergence(DivergenceFunction<? super DataType, ? super DataType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.AffinityPropagation
-
Sets the divergence function used by the algorithm.
- setDivergenceFunction(ClusterToClusterDivergenceFunction<? super ClusterType, ? super DataType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.AgglomerativeClusterer
-
Sets the divergence function.
- setDivergenceFunction(ClusterDivergenceFunction<? super ClusterType, ? super DataType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.KMeansClusterer
-
Sets the divergence function.
- setDivergenceFunction(DivergenceFunction<? super ClusterType, ? super DataType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
-
Use a metric between a cluster and a point to update the metric on
clusters.
- setDivergenceFunction(DivergenceFunction<? super InputType, ? super InputType>) - Method in class gov.sandia.cognition.learning.algorithm.nearest.KNearestNeighborKDTree
-
- setDivergenceFunction(Metric<? super InputType>) - Method in class gov.sandia.cognition.learning.algorithm.nearest.KNearestNeighborKDTree
-
Sets the Metric to use.
- setDivergenceFunction(DivergenceFunction<? super InputType, ? super InputType>) - Method in class gov.sandia.cognition.learning.algorithm.nearest.NearestNeighborKDTree
-
- setDivergenceFunction(Metric<? super InputType>) - Method in class gov.sandia.cognition.learning.algorithm.nearest.NearestNeighborKDTree
-
Sets the Metric to use.
- setDivergenceFunction(DivergenceFunction<? super FirstType, ? super SecondType>) - Method in class gov.sandia.cognition.learning.function.distance.DefaultDivergenceFunctionContainer
-
Sets the divergence function used by this object.
- setDivergenceFunction(DivergenceFunction<? super ValueType, ? super InputType>) - Method in class gov.sandia.cognition.learning.function.distance.DivergencesEvaluator.Learner
-
Sets the divergence function to use from the values to the inputs.
- setDivergenceFunction(DivergenceFunction<? super ValueType, ? super InputType>) - Method in class gov.sandia.cognition.learning.function.distance.DivergencesEvaluator
-
Sets the divergence function to use from the values to the inputs.
- setDocumentCount(int) - Method in class gov.sandia.cognition.text.term.vector.weighter.global.AbstractFrequencyBasedGlobalTermWeighter
-
Sets the document count.
- setDocumentTopicProbabilities(double[][]) - Method in class gov.sandia.cognition.text.topic.LatentDirichletAllocationVectorGibbsSampler.Result
-
Sets the topic-term probabilities, which are the often called the phi
model parameters.
- setDominance(Vector) - Method in class gov.sandia.cognition.text.term.vector.weighter.global.DominanceGlobalTermWeighter
-
Sets the cached dominance weight vector.
- setDPrime(double) - Method in class gov.sandia.cognition.statistics.method.ReceiverOperatingCharacteristic.Statistic
-
Setter for dPrime
- setEffectiveZero(double) - Method in class gov.sandia.cognition.learning.algorithm.svm.SequentialMinimalOptimization
-
Sets the effective value for zero to use in the computation to deal with
numerical imprecision.
- setEffectiveZero(double) - Method in class gov.sandia.cognition.text.term.relation.TermVectorSimilarityNetworkCreator
-
Sets the value to treat as zero.
- setEigenDecomposition(ComplexNumber[], Matrix, Matrix, boolean) - Method in class gov.sandia.cognition.math.matrix.decomposition.AbstractEigenDecomposition
-
Sets the eigen decomposition for this
- setEigenValues(ComplexNumber[]) - Method in class gov.sandia.cognition.math.matrix.decomposition.AbstractEigenDecomposition
-
setter for eigenValues
- setEigenVectorsImaginaryPart(Matrix) - Method in class gov.sandia.cognition.math.matrix.decomposition.AbstractEigenDecomposition
-
setter for the imaginary part of the eienvector, where the ith eigenvector is
the ith column
- setEigenVectorsRealPart(Matrix) - Method in class gov.sandia.cognition.math.matrix.decomposition.AbstractEigenDecomposition
-
setter for eigenVectorsRealPart, where the ith eigenvector is the ith column
- setElement(int, int, double) - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
-
- setElement(int, double) - Method in class gov.sandia.cognition.math.matrix.custom.DenseVector
-
- setElement(int, int, double) - Method in class gov.sandia.cognition.math.matrix.custom.DiagonalMatrix
-
Set the value stored at the input locations to the input value
- setElement(int, int, double) - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
Sets the Matrix element at the specified zero-based indices
throws ArrayIndexOutOfBoundsException if either rowIndex or columnIndex
are less than 0, or greater than the number of rows (columns) minus one
(0 <= index <= num-1)
- setElement(int, double) - Method in class gov.sandia.cognition.math.matrix.custom.SparseVector
-
- setElement(int, double) - Method in interface gov.sandia.cognition.math.matrix.DiagonalMatrix
-
Sets the zero-based index diagonal element into the diagonal matrix
- setElement(int, int, double) - Method in interface gov.sandia.cognition.math.matrix.Matrix
-
Sets the Matrix element at the specified zero-based indices
throws ArrayIndexOutOfBoundsException if either rowIndex or columnIndex
are less than 0, or greater than the number of rows (columns) minus one
(0 <= index <= num-1)
- setElement(int, int, double) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJMatrix
-
- setElement(int, double) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJVector
-
- setElement(int, int, double) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractSparseMatrix
-
- setElement(int, double) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseVector
-
- setElement(int, int, double) - Method in class gov.sandia.cognition.math.matrix.mtj.DiagonalMatrixMTJ
-
- setElement(int, double) - Method in class gov.sandia.cognition.math.matrix.mtj.DiagonalMatrixMTJ
-
- setElement(int, double) - Method in class gov.sandia.cognition.math.matrix.mtj.SparseVector
-
- setElement(int, double) - Method in interface gov.sandia.cognition.math.matrix.Vector
-
Sets the zero-based indexed element in the Vector from the specified value
- setElements(Quaternion) - Method in interface gov.sandia.cognition.math.matrix.Quaternion
-
Sets the elements of this quaternion equal to the elements of the given
quaternion.
- setElementsScore(int, int, double, double) - Method in class gov.sandia.cognition.learning.algorithm.semisupervised.valence.MultipartiteValenceMatrix
-
Sets elements of the group with their score (+1/-1 or similar) and how
much to trust that weight.
- setEmissionFunctions(Collection<? extends ComputableDistribution<ObservationType>>) - Method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
Setter for emissionFunctions.
- setEnsemble(EnsembleType) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractBaggingLearner
-
Sets the ensemble created by this learner.
- setEnsemble(WeightedBinaryEnsemble<InputType, Evaluator<? super InputType, ? extends Boolean>>) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.AdaBoost
-
Sets the ensemble created by this learner.
- setEnsembleSize(int) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.OnlineBaggingCategorizerLearner
-
Sets the size of the ensemble to create.
- setEntries(ArrayList<SuccessiveOverrelaxation<InputType>.Entry>) - Method in class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation
-
Gets the data that the algorithm keeps for each training instance.
- setEntropy(Vector) - Method in class gov.sandia.cognition.text.term.vector.weighter.global.EntropyGlobalTermWeighter
-
Sets the cached entropy weight vector.
- setErrorCount(int) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.BatchMultiPerceptron
-
Sets the error count of the most recent iteration.
- setErrorCount(long) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Forgetron.Result
-
Sets the error count.
- setErrorCount(int) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelAdatron
-
Sets the error count of the most recent iteration.
- setErrorCount(int) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelPerceptron
-
Sets the error count of the most recent iteration.
- setErrorCount(long) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineShiftingPerceptron.LinearResult
-
Sets the error count.
- setErrorCount(int) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.Perceptron
-
Sets the error count of the most recent iteration.
- setErrorCount(int) - Method in class gov.sandia.cognition.learning.algorithm.regression.KernelBasedIterativeRegression
-
Sets the error count of the most recent iteration.
- setErrorTolerance(double) - Method in class gov.sandia.cognition.learning.algorithm.svm.SequentialMinimalOptimization
-
Sets the error tolerance for the algorithm.
- setErrSum(double) - Method in class gov.sandia.cognition.math.signals.PIDController.State
-
Setter for errSum
- setEstimate(EstimateType) - Method in class gov.sandia.cognition.learning.data.DefaultTargetEstimatePair
-
Sets the estimate, which is the prediction or guess.
- setEstimateConverter(CogxelConverter<EstimateType>) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelTargetEstimatePairConverter
-
Sets the converter for the estimate value.
- setEta(double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Projectron
-
Sets the eta parameter that controls how many supports are allowed.
- setEvaluator(Evaluator<? super InputType, ? extends OutputType>) - Method in class gov.sandia.cognition.framework.learning.EvaluatorBasedCognitiveModuleSettings
-
Sets the evaluator to be used by the module.
- setEvaluator(Evaluator<? super InputType, ? extends CategoryType>) - Method in class gov.sandia.cognition.learning.function.categorization.EvaluatorToCategorizerAdapter
-
Sets the evaluator that is to be adapted to be a categorizer.
- setEvaluator(Evaluator<? super InputType, Double>) - Method in class gov.sandia.cognition.learning.function.categorization.ScalarFunctionToBinaryCategorizerAdapter
-
Sets the scalar function that the adapter wraps.
- setEvaluator(Evaluator<? super InputType, ? extends Vectorizable>) - Method in class gov.sandia.cognition.learning.function.categorization.WinnerTakeAllCategorizer
-
Sets the wrapped evaluator.
- setEvaluator(Evaluator<String, String>) - Method in class gov.sandia.cognition.text.term.filter.StringEvaluatorSingleTermFilter
-
Sets the evaluator being used as a filter.
- setEvaluators(Collection<? extends Evaluator<?, ?>>) - Method in class gov.sandia.cognition.evaluator.CompositeEvaluatorList
-
Sets the list of evaluators to compose together.
- setEvaluators(Evaluator<?, ?>...) - Method in class gov.sandia.cognition.evaluator.CompositeEvaluatorList
-
Sets the array of evaluators to compose together.
- setEventType(SemanticIdentifierMapEventType) - Method in class gov.sandia.cognition.framework.SemanticIdentifierMapEvent
-
Sets the type of the event.
- setExamples(ArrayList<DataType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.AffinityPropagation
-
Sets the array list of examples to cluster.
- setExamples(Collection<EntryType>) - Method in class gov.sandia.cognition.learning.function.categorization.KernelBinaryCategorizer
-
Sets the list of weighted examples that categorizer is using.
- setExamples(Collection<? extends WeightedValue<? extends InputType>>) - Method in class gov.sandia.cognition.learning.function.scalar.KernelScalarFunction
-
Sets the list of weighted examples that categorizer is using.
- setExponent(double) - Method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction
-
Setter for exponent
- setF(double) - Method in class gov.sandia.cognition.statistics.method.AnalysisOfVarianceOneWay.Statistic
-
Setter for F
- setFactorCount(int) - Method in class gov.sandia.cognition.learning.algorithm.factor.machine.AbstractFactorizationMachineLearner
-
Sets the number of factors.
- setFactorRegularization(double) - Method in class gov.sandia.cognition.learning.algorithm.factor.machine.AbstractFactorizationMachineLearner
-
Sets the value for the parameter controlling the factor matrix
regularization.
- setFactors(Matrix) - Method in class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachine
-
Sets the matrix of factors.
- setFactory(Factory<? extends ConfusionMatrix<CategoryType>>) - Method in class gov.sandia.cognition.learning.performance.categorization.ConfusionMatrixPerformanceEvaluator
-
Sets the factory for the confusion matrix the evaluator creates.
- setFalseNegativesCount(double) - Method in class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrix
-
Sets the number of false negatives in the matrix.
- setFalseNegativesRate(ConfidenceInterval) - Method in class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrixConfidenceInterval
-
Setter for falseNegativesRate
- setFalsePositivesCount(double) - Method in class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrix
-
Sets the number of false positives in the matrix.
- setFalsePositivesRate(ConfidenceInterval) - Method in class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrixConfidenceInterval
-
Setter for falsePositivesRate
- setFalseValue(Number) - Method in class gov.sandia.cognition.data.convert.number.DefaultBooleanToNumberConverter
-
Sets the number that represents a falue value.
- setField(Field) - Method in class gov.sandia.cognition.statistics.method.FieldConfidenceInterval
-
Setter for field
- setFieldMap(HashMap<String, Field>) - Method in class gov.sandia.cognition.text.document.AbstractDocument
-
Sets the mapping of field name to the field.
- setFieldName(String) - Method in class gov.sandia.cognition.text.convert.DocumentSingleFieldConverter
-
Sets the name of the field to extract.
- setFieldNames(List<String>) - Method in class gov.sandia.cognition.text.convert.DocumentFieldConcatenator
-
Sets the list of field names whose text are to be concatenated together.
- setFieldSeparator(String) - Method in class gov.sandia.cognition.text.convert.DocumentFieldConcatenator
-
Sets the string used as a separator between field text values.
- setFirst(FirstType) - Method in class gov.sandia.cognition.util.DefaultPair
-
Sets the first object.
- setFirst(FirstType) - Method in class gov.sandia.cognition.util.DefaultTriple
-
Sets the first object.
- setFirstChild(ClusterHierarchyNode<DataType, ClusterType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.hierarchy.BinaryClusterHierarchyNode
-
Sets the first child node.
- setFirstConverter(CogxelConverter<FirstType>) - Method in class gov.sandia.cognition.framework.learning.converter.AbstractCogxelPairConverter
-
Setter for firstConverter
- setFirstInternalEntry(MatrixEntry) - Method in class gov.sandia.cognition.math.matrix.MatrixUnionIterator
-
setter for firstInternalEntry
- setFirstInternalEntry(VectorEntry) - Method in class gov.sandia.cognition.math.matrix.VectorUnionIterator
-
setter for firstInternalEntry
- setFirstIterator(Iterator<MatrixEntry>) - Method in class gov.sandia.cognition.math.matrix.MatrixUnionIterator
-
setter for firstInterator
- setFirstIterator(Iterator<VectorEntry>) - Method in class gov.sandia.cognition.math.matrix.VectorUnionIterator
-
setter for firstIterator
- setFirstLearner(BatchLearner<? super Collection<? extends InputType>, ? extends Evaluator<? super InputType, ? extends IntermediateType>>) - Method in class gov.sandia.cognition.learning.algorithm.CompositeBatchLearnerPair
-
Sets the first learner that is applied to the input data.
- setFirstMatrix(AbstractMTJMatrix) - Method in class gov.sandia.cognition.math.matrix.mtj.TwoMatrixEntryMTJ
-
Setter for firstMatrix.
- setFirstValue(double) - Method in class gov.sandia.cognition.math.matrix.DefaultTwoVectorEntry
-
Sets the entry value to the first underlying vector.
- setFirstValue(double) - Method in class gov.sandia.cognition.math.matrix.mtj.TwoMatrixEntryMTJ
-
Sets the first value of the entry into the first underlying matrix.
- setFirstValue(double) - Method in interface gov.sandia.cognition.math.matrix.TwoMatrixEntry
-
Sets the first value to which this entry points
- setFirstValue(double) - Method in interface gov.sandia.cognition.math.matrix.TwoVectorEntry
-
Sets the first value to which this entry points
- setFirstVector(Vector) - Method in class gov.sandia.cognition.math.matrix.DefaultTwoVectorEntry
-
Setter for firstVector.
- setFoldCreator(ValidationFoldCreator<InputDataType, FoldDataType>) - Method in class gov.sandia.cognition.learning.experiment.AbstractValidationFoldExperiment
-
Sets the fold creator.
- setForward(ForwardType) - Method in class gov.sandia.cognition.evaluator.ForwardReverseEvaluatorPair
-
Sets the forward evaluator that maps input type to output type.
- setFractionValue(double) - Method in class gov.sandia.cognition.math.LentzMethod
-
Setter for fractionValue
- setFrequency(double) - Method in class gov.sandia.cognition.learning.function.scalar.CosineFunction
-
Setter for frequency
- setFunction(VectorizableVectorFunction) - Method in class gov.sandia.cognition.learning.algorithm.gradient.GradientDescendableApproximator
-
Setter for function
- setFunction(Evaluator<? super InputType, Double>) - Method in class gov.sandia.cognition.learning.function.kernel.ScalarFunctionKernel
-
Sets the scalar function for the kernel to use.
- setFunction(VectorFunction) - Method in class gov.sandia.cognition.learning.function.kernel.VectorFunctionKernel
-
Sets the vector function for the kernel to use.
- setFunction(EvaluatorType) - Method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.LogEvaluator
-
Setter for function
- setGammas(ArrayList<Vector>) - Method in class gov.sandia.cognition.learning.algorithm.hmm.ParallelBaumWelchAlgorithm.DistributionEstimatorTask
-
Sets the gamma samples pointer.
- setGaussian(MultivariateGaussian.PDF) - Method in class gov.sandia.cognition.learning.algorithm.clustering.cluster.GaussianCluster
-
Sets the Gaussian representing the cluster.
- setGaussian(MultivariateGaussian) - Method in class gov.sandia.cognition.learning.data.feature.MultivariateDecorrelator
-
Sets the underlying multivariate Gaussian.
- setGaussian(MultivariateGaussian) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussianInverseGammaDistribution
-
Setter for gaussian
- setGaussian(MultivariateGaussian) - Method in class gov.sandia.cognition.statistics.distribution.NormalInverseWishartDistribution
-
Setter for gaussian
- setGaussianMixture(MixtureOfGaussians.PDF) - Method in class gov.sandia.cognition.learning.function.vector.GaussianContextRecognizer
-
Setter for gaussianMixture
- setGenome(GenomeType) - Method in class gov.sandia.cognition.learning.algorithm.genetic.EvaluatedGenome
-
Sets the genome.
- setGeometricDecrease(double) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizerBacktracking
-
Setter for geometricDecrease
- setGlobalWeighter(GlobalTermWeighter) - Method in class gov.sandia.cognition.text.term.vector.weighter.CompositeLocalGlobalTermWeighter
-
Sets the weighting scheme for the global weights.
- setGoldenInterpolator(LineBracketInterpolatorGoldenSection) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.interpolator.LineBracketInterpolatorBrent
-
Setter for goldenInterpolator
- setHashFunction(HashFunction) - Method in class gov.sandia.cognition.learning.data.feature.FeatureHashing
-
Gets the hash function to use.
- setHiddenDimensionality(int) - Method in class gov.sandia.cognition.learning.function.vector.ThreeLayerFeedforwardNeuralNetwork
-
Sets the number of hidden units, not including the bias term, by
re-initializing the neural net's weights.
- setHighValue(double) - Method in class gov.sandia.cognition.learning.function.scalar.ThresholdFunction
-
Setter for highValue
- setIdentifier(SemanticIdentifier) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelBooleanConverter
-
Gets the semantic identifier of the cogxel to convert.
- setIdentifier(SemanticIdentifier) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelDoubleConverter
-
Gets the semantic identifier of the Cogxel to convert.
- setIdentifier(SemanticIdentifier) - Method in class gov.sandia.cognition.framework.SemanticIdentifierMapEvent
-
Sets the SemanticIdentifier involved in the event.
- setIdentifier(IdentifierType) - Method in class gov.sandia.cognition.util.DefaultIdentifiedValue
-
Sets the identifier.
- setIdentifierCounter(int) - Method in class gov.sandia.cognition.framework.DefaultSemanticIdentifierMap
-
Setter for identifier Counter.
- setIdentifiers(ArrayList<SemanticIdentifier>) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelVectorConverter
-
Sets the list of cached SemanticIdentifiers.
- setIdentifiers(SemanticIdentifier[]) - Method in class gov.sandia.cognition.framework.lite.VectorBasedCognitiveModelInput
-
Setter for identifiers
- setIdentifierToIndexMap(HashMap<SemanticIdentifier, Integer>) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelVectorConverter
-
Sets the cached mapping of SemanticIdentifier to vector index.
- setImaginaryPart(double) - Method in class gov.sandia.cognition.math.ComplexNumber
-
Sets the imaginary portion of the complex number
- setImportanceDistribution(ProbabilityFunction<DataType>) - Method in class gov.sandia.cognition.statistics.montecarlo.ImportanceSampler
-
Setter for importanceDistribution.
- setIncomingValue(Object) - Method in class gov.sandia.cognition.learning.algorithm.tree.AbstractDecisionTreeNode
-
Sets the incoming value for the node.
- setIndex(int) - Method in class gov.sandia.cognition.learning.algorithm.clustering.cluster.DefaultCluster
-
Sets the index of the cluster.
- setIndex(int) - Method in class gov.sandia.cognition.learning.function.categorization.VectorElementThresholdCategorizer
-
Sets the vector index that the threshold is being applied to.
- setIndex(int) - Method in class gov.sandia.cognition.learning.function.scalar.VectorEntryFunction
-
Sets the index into the vector that the function gets the value for.
- setIndex(int) - Method in class gov.sandia.cognition.math.matrix.DefaultTwoVectorEntry
-
Sets the current index into the underlying vectors.
- setIndex(int) - Method in interface gov.sandia.cognition.math.matrix.TwoVectorEntry
-
Sets the current index into the Vector to which this entry points
- setIndex(int) - Method in interface gov.sandia.cognition.math.matrix.VectorEntry
-
Sets the current index into the Vector to which this entry points
- setIndex(int) - Method in class gov.sandia.cognition.math.matrix.VectorizableIndexComparator
-
Setter for index.
- setIndex(int) - Method in class gov.sandia.cognition.text.term.DefaultIndexedTerm
-
Sets the index of the term.
- setIndexComparator(EntryIndexComparator<MatrixEntry>) - Method in class gov.sandia.cognition.math.matrix.MatrixUnionIterator
-
Sets the index comparator.
- setInitialAlpha(double) - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel
-
Setter for initialAlpha
- setInitialDomainCapacity(int) - Method in class gov.sandia.cognition.statistics.distribution.DefaultDataDistribution.DefaultFactory
-
Sets the initial domain capacity.
- setInitialGuess(HiddenMarkovModel<ObservationType>) - Method in class gov.sandia.cognition.learning.algorithm.hmm.AbstractBaumWelchAlgorithm
-
Setter for initialGuess.
- setInitialGuess(InputType) - Method in class gov.sandia.cognition.learning.algorithm.minimization.AbstractAnytimeFunctionMinimizer
-
Setter for initialGuess
- setInitialGuess(InputType) - Method in interface gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizer
-
Sets the initial guess of the minimization routine
- setInitialGuess(Double) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.AbstractAnytimeLineMinimizer
-
- setInitialGuess(Vector) - Method in class gov.sandia.cognition.learning.algorithm.minimization.matrix.IterativeMatrixSolver
-
Sets the initial guess ("x0")
- setInitialGuess(double) - Method in class gov.sandia.cognition.learning.algorithm.root.AbstractRootFinder
-
- setInitialGuess(double) - Method in class gov.sandia.cognition.learning.algorithm.root.MinimizerBasedRootFinder
-
- setInitialGuess(double) - Method in interface gov.sandia.cognition.learning.algorithm.root.RootBracketer
-
Sets the initial guess of the root location.
- setInitialGuess(double) - Method in class gov.sandia.cognition.learning.algorithm.root.RootBracketExpander
-
- setInitialGuess(double) - Method in interface gov.sandia.cognition.learning.algorithm.root.RootFinder
-
Sets the initial guess of the root (zero-crossing), which is supplied
as input to the function to find the zero-crossings of.
- setInitialGuessFunctionValue(Double) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.AbstractAnytimeLineMinimizer
-
Setter for initialGuessFunctionValue
- setInitialGuessSlope(Double) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.AbstractAnytimeLineMinimizer
-
Setter for initialGuessSlope
- setInitializationRange(double) - Method in class gov.sandia.cognition.learning.function.vector.ThreeLayerFeedforwardNeuralNetwork
-
Setter for initializationRange
- setInitialized(boolean) - Method in class gov.sandia.cognition.framework.lite.CognitiveModelLiteState
-
Sets whether or not this state has been initialized.
- setInitializer(FixedClusterInitializer<ClusterType, DataType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.KMeansClusterer
-
Sets the cluster initializer.
- setInitialPopulation(Collection<GenomeType>) - Method in class gov.sandia.cognition.learning.algorithm.genetic.GeneticAlgorithm
-
Setter for initialPopulation.
- setInitialProbability(Vector) - Method in class gov.sandia.cognition.learning.algorithm.hmm.MarkovChain
-
Setter for initialProbability
- setInput(CognitiveModelInput) - Method in interface gov.sandia.cognition.framework.CognitiveModelState
-
Sets the input for this model state.
- setInput(CognitiveModelInput) - Method in class gov.sandia.cognition.framework.lite.CognitiveModelLiteState
-
Sets the input for this model state.
- setInput(InputType) - Method in class gov.sandia.cognition.learning.data.DefaultInputOutputPair
-
Sets the input.
- setInputConverter(CogxelConverter<InputType>) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelInputOutputPairConverter
-
Sets the input converter
- setInputConverter(CogxelConverter<InputType>) - Method in class gov.sandia.cognition.framework.learning.EvaluatorBasedCognitiveModuleFactoryLearner
-
Sets the CogxelConverter used to convert from a CogxelState to InputType.
- setInputConverter(CogxelConverter<InputType>) - Method in class gov.sandia.cognition.framework.learning.EvaluatorBasedCognitiveModuleSettings
-
Sets the CogxelConverter used to convert from a CogxelState to InputType.
- setInputDimensionality(int) - Method in class gov.sandia.cognition.learning.algorithm.bayes.DiscreteNaiveBayesCategorizer
-
Setter for inputDimensionality.
- setInputDimensionality(int) - Method in class gov.sandia.cognition.learning.function.vector.SubVectorEvaluator
-
Sets the expected input dimensionality.
- setInputDimensionality(int) - Method in class gov.sandia.cognition.learning.function.vector.ThreeLayerFeedforwardNeuralNetwork
-
Sets the number of input units, not counting the bias term,
by re-initializing the neural net's parameters.
- setInputLearner(BatchLearner<? super Collection<? extends InputType>, ? extends Evaluator<? super InputType, ? extends TransformedInputType>>) - Method in class gov.sandia.cognition.learning.algorithm.InputOutputTransformedBatchLearner
-
Sets the unsupervised learning algorithm for creating the input
transformation.
- setInputToVectorMap(Evaluator<? super InputType, Vector>) - Method in class gov.sandia.cognition.learning.algorithm.regression.LinearBasisRegression
-
Setter for inputToVectorMap
- setIntegralGain(double) - Method in class gov.sandia.cognition.math.signals.PIDController
-
Setter for integralGain
- setInternalEntry(TwoMatrixEntry) - Method in class gov.sandia.cognition.math.matrix.MatrixUnionIterator
-
setter for internalEntry
- setInternalEntry(TwoVectorEntry) - Method in class gov.sandia.cognition.math.matrix.VectorUnionIterator
-
setter for internalEntry
- setInternalFunction(Evaluator<Double, Double>) - Method in class gov.sandia.cognition.learning.algorithm.root.SolverFunction
-
Setter for internalFunction.
- setInternalFunction(Evaluator<? super InputType, OutputType>) - Method in class gov.sandia.cognition.math.matrix.NumericalDifferentiator
-
Setter for internalFunction
- setInternalMatrix(Matrix) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJMatrix
-
Setter for internalMatrix
- setInternalMatrix(Matrix) - Method in class gov.sandia.cognition.math.matrix.mtj.DiagonalMatrixMTJ
-
- setInternalReader(VectorReader) - Method in class gov.sandia.cognition.math.matrix.MatrixReader
-
Setter for internalReader
- setInternalState(CloneableSerializable) - Method in class gov.sandia.cognition.framework.lite.CognitiveModuleStateWrapper
-
Sets the internal state object.
- setInternalVector(Vector) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJVector
-
Setter for internalVector
- setInternalVector(Vector) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseVector
-
- setInternalVector(DenseVector) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseVector
-
Sets the internalVector using MTJ's DenseVector
- setInternalVector(Vector) - Method in class gov.sandia.cognition.math.matrix.mtj.SparseVector
-
- setInternalVector(SparseVector) - Method in class gov.sandia.cognition.math.matrix.mtj.SparseVector
-
Setter for the internal MTJ vector.
- setInterpolator(LineBracketInterpolator<? super EvaluatorType>) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.AbstractAnytimeLineMinimizer
-
Setter for interpolator
- setInverseDocumentFrequency(Vector) - Method in class gov.sandia.cognition.text.term.vector.weighter.global.InverseDocumentFrequencyGlobalTermWeighter
-
Sets the cached inverse-document-frequency (IDF) global weight values.
- setInverseGamma(InverseGammaDistribution) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussianInverseGammaDistribution
-
Setter for inverseGamma
- setInverseScale(Matrix) - Method in class gov.sandia.cognition.statistics.distribution.InverseWishartDistribution
-
Setter for inverseScale
- setInverseWishart(InverseWishartDistribution) - Method in class gov.sandia.cognition.statistics.distribution.NormalInverseWishartDistribution
-
Setter for inverseWishart
- setIteration(int) - Method in class gov.sandia.cognition.algorithm.AbstractIterativeAlgorithm
-
Sets the current iteration number.
- setIterationLearner(SupervisedBatchLearner<InputType, OutputType, ?>) - Method in class gov.sandia.cognition.learning.algorithm.regression.KernelWeightedRobustRegression
-
- setIterationsPerSample(int) - Method in class gov.sandia.cognition.statistics.bayesian.AbstractMarkovChainMonteCarlo
-
- setIterationsPerSample(int) - Method in interface gov.sandia.cognition.statistics.bayesian.MarkovChainMonteCarlo
-
Sets the number of iterations that must transpire between capturing
samples from the distribution.
- setIterationsPerSample(int) - Method in class gov.sandia.cognition.text.topic.LatentDirichletAllocationVectorGibbsSampler
-
Sets the number of iterations to the Markov Chain Monte Carlo algorithm
between samples (after the burn-in iterations).
- setIterationsWithoutImprovement(int) - Method in class gov.sandia.cognition.learning.algorithm.annealing.SimulatedAnnealer
-
Sets the current number of iterations without improvement.
- setIterationsWithoutImprovement(int) - Method in class gov.sandia.cognition.learning.algorithm.genetic.GeneticAlgorithm
-
Sets the current number of iterations without improvement.
- setIterationsWithoutImprovement(int) - Method in class gov.sandia.cognition.learning.algorithm.regression.LevenbergMarquardtEstimation
-
Setter for iterationsWithoutImprovement
- setIterativeSolverTolerance(double) - Method in class gov.sandia.cognition.text.algorithm.ValenceSpreader
-
The tolerance that between-iteration error must be below before
considering the iterative solver "done".
- setK(int) - Method in class gov.sandia.cognition.learning.algorithm.nearest.AbstractKNearestNeighbor
-
Setter for k
- setK(int) - Method in interface gov.sandia.cognition.learning.algorithm.nearest.KNearestNeighbor
-
Setter for k
- setKappa(double) - Method in class gov.sandia.cognition.learning.function.kernel.SigmoidKernel
-
Sets kappa, the value multiplied by the dot product of the two vectors
before it is passed to the hyperbolic tangent function.
- setKeepGoing(boolean) - Method in class gov.sandia.cognition.learning.algorithm.AbstractAnytimeBatchLearner
-
Sets the keep going value, which indicates if the algorithm should
continue on to another step.
- setKernel(Kernel<? super InputType>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.AbstractOnlineKernelBinaryCategorizerLearner
-
Sets the kernel used by this learner.
- setKernel(Kernel<? super InputType>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelAdatron
-
Sets the kernel to use.
- setKernel(Kernel<? super InputType>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelPerceptron
-
Sets the kernel to use.
- setKernel(Kernel<? super InputType>) - Method in class gov.sandia.cognition.learning.algorithm.regression.KernelBasedIterativeRegression
-
Sets the kernel to use.
- setKernel(Kernel<? super InputType>) - Method in class gov.sandia.cognition.learning.algorithm.regression.LocallyWeightedFunction.Learner
-
Setter for kernel
- setKernel(Kernel<? super InputType>) - Method in class gov.sandia.cognition.learning.algorithm.regression.LocallyWeightedFunction
-
Setter for kernel
- setKernel(Kernel<? super InputType>) - Method in class gov.sandia.cognition.learning.algorithm.svm.SequentialMinimalOptimization
-
Sets the kernel to use in training the SVM.
- setKernel(Kernel<? super InputType>) - Method in class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation
-
Sets the kernel to use.
- setKernel(Kernel<? super InputType>) - Method in class gov.sandia.cognition.learning.function.categorization.KernelBinaryCategorizer
-
Sets the internal kernel.
- setKernel(Kernel<? super InputType>) - Method in class gov.sandia.cognition.learning.function.kernel.DefaultKernelContainer
-
Sets the internal kernel.
- setKernelCacheSize(int) - Method in class gov.sandia.cognition.learning.algorithm.svm.SequentialMinimalOptimization
-
Sets the size of the kernel cache or 0 if no kernel cache is to be used.
- setKernelMatrix(Matrix) - Method in class gov.sandia.cognition.learning.algorithm.pca.KernelPrincipalComponentsAnalysis.Function
-
Sets the kernel matrix for the data that the analysis was done over.
- setKernels(Collection<? extends Kernel<? super InputType>>) - Method in class gov.sandia.cognition.learning.function.kernel.DefaultKernelsContainer
-
Sets the collection of kernels.
- setKernelWeightingFunction(Kernel<? super OutputType>) - Method in class gov.sandia.cognition.learning.algorithm.regression.KernelWeightedRobustRegression
-
Getter for kernelWeightingFunction
- setKey(KeyType) - Method in class gov.sandia.cognition.util.DefaultKeyValuePair
-
Sets the key element of the pair.
- setKnownCovarianceInverse(Matrix) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanBayesianEstimator
-
Setter for knownCovarianceInverse.
- setKnownVariance(double) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanBayesianEstimator
-
Setter for knownVariance.
- setLabel(SemanticLabel) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelBooleanConverter
-
Sets the label of the cogxel to convert.
- setLabel(SemanticLabel) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelDoubleConverter
-
Sets the label of the Cogxel to convert.
- setLabel(NodeNameType, LabelType) - Method in class gov.sandia.cognition.graph.inference.CostSpeedupEnergyFunction
-
- setLabel(NodeNameType, LabelType) - Method in class gov.sandia.cognition.graph.inference.EdgeMergingEnergyFunction
-
- setLabel(NodeNameType, LabelType) - Method in class gov.sandia.cognition.graph.inference.GraphWrappingEnergyFunction
-
- setLabel(NodeNameType, LabelType) - Method in interface gov.sandia.cognition.graph.inference.NodeNameAwareEnergyFunction
-
Set the label for the input node
- setLabels(HashMap<String, DefaultSemanticLabel>) - Method in class gov.sandia.cognition.framework.io.CSVDefaultCognitiveModelLiteHandler
-
Sets the label mapping.
- setLabels(ArrayList<SemanticLabel>) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelVectorConverter
-
Sets the labels to be used by the converter, each one corresponding to
one dimension in the converted Vector.
- setLabels(Collection<SemanticLabel>) - Method in class gov.sandia.cognition.framework.lite.SimplePatternRecognizerState
-
Sets the labels for the state to keep as the labels of the dimensions
of the state.
- setLambda(double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineShiftingPerceptron
-
Sets the lambda parameter, which controls how much shifting and decay
there is in the weight vector.
- setLastErr(double) - Method in class gov.sandia.cognition.math.signals.PIDController.State
-
Setter for lastErr
- setLastGradient(InputOutputPair<Vector, Vector>) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.DirectionalVectorToDifferentiableScalarFunction
-
Setter for lastGradient
- setLastModifiedDate(long) - Method in class gov.sandia.cognition.text.document.DefaultDocument
-
Sets the last modified date of the document.
- setLastModifiedDate(Date) - Method in class gov.sandia.cognition.text.document.DefaultDocument
-
Sets the last modified date of the document.
- setLastTokenNum(int) - Method in class gov.sandia.cognition.io.ReaderTokenizer
-
Setter for lastTokenNum
- setLayers(ArrayList<? extends GeneralizedLinearModel>) - Method in class gov.sandia.cognition.learning.function.vector.FeedforwardNeuralNetwork
-
Setter for layers
- setLeafCountThreshold(int) - Method in class gov.sandia.cognition.learning.algorithm.tree.CategorizationTreeLearner
-
Sets the leaf count threshold, which determines the number of elements
at which to make an element into a leaf.
- setLeafCountThreshold(int) - Method in class gov.sandia.cognition.learning.algorithm.tree.RegressionTreeLearner
-
Sets the leaf count threshold, which determines the number of elements
at which to learn a regression function.
- setLeakage(double) - Method in class gov.sandia.cognition.learning.function.scalar.LeakyRectifiedLinearFunction
-
Sets the leakage, which is the multiplier for the value when it is
less than zero.
- setLearned(KernelBinaryCategorizer<InputType, DefaultWeightedValue<InputType>>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelAdatron
-
Sets the object currently being result.
- setLearned(Evaluator<InputType, OutputType>) - Method in class gov.sandia.cognition.learning.algorithm.regression.KernelWeightedRobustRegression
-
Getter for result
- setLearner(BatchLearner<? super Collection<LearningDataType>, ? extends Evaluator<? super InputType, ? extends OutputType>>) - Method in class gov.sandia.cognition.framework.learning.EvaluatorBasedCognitiveModuleFactoryLearner
-
Sets the learner used to create the Evaluator for the module.
- setLearner(LearnerType) - Method in class gov.sandia.cognition.learning.algorithm.AbstractBatchLearnerContainer
-
Sets the wrapped learner.
- setLearner(BatchLearner<? super Collection<? extends InputOutputPair<? extends InputType, OutputType>>, ? extends MemberType>) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractBaggingLearner
-
Sets the learner used to learn each ensemble member.
- setLearner(BatchLearner<? super Collection<? extends InputOutputPair<? extends InputType, CategoryType>>, ? extends Evaluator<? super InputType, ? extends CategoryType>>) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner
-
Sets the learner used to learn each ensemble member.
- setLearner(IncrementalLearner<? super InputOutputPair<? extends InputType, CategoryType>, MemberType>) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.OnlineBaggingCategorizerLearner
-
Sets the incremental (online) learning algorithm to use to learn all of
the ensemble members.
- setLearner(KernelizableBinaryCategorizerOnlineLearner) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelBinaryCategorizerOnlineLearnerAdapter
-
Sets the kernelizable learner that this adapter is wrapping.
- setLearner(SupervisedBatchLearner<InputType, OutputType, ?>) - Method in class gov.sandia.cognition.learning.algorithm.regression.LocallyWeightedFunction.Learner
-
Setter for learner
- setLearner(SupervisedBatchLearner<InputType, OutputType, ?>) - Method in class gov.sandia.cognition.learning.algorithm.regression.LocallyWeightedFunction
-
Setter for learner
- setLearner(BatchLearner<? super Collection<? extends InputDataType>, ? extends LearnedType>) - Method in class gov.sandia.cognition.learning.experiment.LearnerRepeatExperiment
-
Sets the learner the experiment is being run on.
- setLearner(BatchLearner<? super Collection<? extends FoldDataType>, ? extends LearnedType>) - Method in class gov.sandia.cognition.learning.experiment.LearnerValidationExperiment
-
Sets the learner the experiment is being run on.
- setLearner(BatchLearner<? super Collection<? extends InputOutputPair<? extends InputType, CategoryType>>, ? extends Evaluator<? super InputType, ? extends CategoryType>>) - Method in class gov.sandia.cognition.learning.function.categorization.EvaluatorToCategorizerAdapter.Learner
-
Sets the learner whose output is to be adapted to be a categorizer.
- setLearners(Pair<BatchLearner<? super Collection<? extends FoldDataType>, ? extends LearnedType>, BatchLearner<? super Collection<? extends FoldDataType>, ? extends LearnedType>>) - Method in class gov.sandia.cognition.learning.experiment.LearnerComparisonExperiment
-
Sets the learners the experiment is being run on.
- setLearners(Collection<? extends DistributionWeightedEstimator<Double, ? extends SmoothUnivariateDistribution>>) - Method in class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel.EMLearner
-
Setter for learners
- setLearningDataConverter(CogxelConverter<LearningDataType>) - Method in class gov.sandia.cognition.framework.learning.EvaluatorBasedCognitiveModuleFactoryLearner
-
Sets the CogxelConverter used to convert from a CogxelState to
LearningDataType.
- setLearningRate(double) - Method in class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachineStochasticGradient
-
Gets the learning rate.
- setLearningRate(double) - Method in class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerGradientDescent
-
Setter for learningRate
- setLearningRate(double) - Method in class gov.sandia.cognition.learning.algorithm.pca.GeneralizedHebbianAlgorithm
-
Setter for learningRate
- setLength(int) - Method in class gov.sandia.cognition.text.AbstractOccurrenceInText
-
Sets the length of the occurrence.
- setLineMinimizer(LineMinimizer<?>) - Method in class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerConjugateGradient
-
Setter for lineMinimizer
- setLineMinimizer(LineMinimizer<?>) - Method in class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerDirectionSetPowell
-
Setter for lineMinimizer
- setLineMinimizer(LineMinimizer<?>) - Method in class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerQuasiNewton
-
Setter for lineMinimizer
- setLineMinimizer(LineMinimizer<?>) - Method in class gov.sandia.cognition.learning.algorithm.regression.FletcherXuHybridEstimation
-
Setter for lineMinimizer
- setLineMinimizer(LineMinimizer<?>) - Method in class gov.sandia.cognition.learning.algorithm.regression.GaussNewtonAlgorithm
-
Setter for lineMinimizer
- setListeners(LinkedList<IterativeAlgorithmListener>) - Method in class gov.sandia.cognition.algorithm.AbstractIterativeAlgorithm
-
Sets the list of listeners for this algorithm.
- setListeners(LinkedList<LearningExperimentListener>) - Method in class gov.sandia.cognition.learning.experiment.AbstractLearningExperiment
-
Sets the listeners for this experiment.
- setLocalApproximator(Evaluator<? super InputType, ? extends OutputType>) - Method in class gov.sandia.cognition.learning.algorithm.regression.LocallyWeightedFunction
-
Setter for localApproximator
- setLocalItems(LinkedList<DataType>) - Method in class gov.sandia.cognition.math.geometry.Quadtree.Node
-
Gets the list of items stored locally at the node in the tree.
- setLocalWeighter(LocalTermWeighter) - Method in class gov.sandia.cognition.text.term.vector.weighter.CompositeLocalGlobalTermWeighter
-
Sets the weighting scheme for the local weights.
- setLocation(double) - Method in class gov.sandia.cognition.statistics.distribution.CauchyDistribution
-
Setter for location
- setLocation(double) - Method in class gov.sandia.cognition.statistics.distribution.NormalInverseGammaDistribution
-
Setter for location.
- setLog(KeyType, LogNumber) - Method in class gov.sandia.cognition.collection.AbstractLogNumberMap
-
Sets the LogNumber at the given key
- setLogFunction(AdaptiveRejectionSampling.LogEvaluator<?>) - Method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling
-
Setter for logFunction
- setLogNormalMean(double) - Method in class gov.sandia.cognition.statistics.distribution.LogNormalDistribution
-
Setter for logNormalMean
- setLogNormalVariance(double) - Method in class gov.sandia.cognition.statistics.distribution.LogNormalDistribution
-
Setter for logNormalVariance
- setLogValue(double) - Method in class gov.sandia.cognition.math.LogNumber
-
Sets the log of the value represented by this object, which is what is
stored in the object.
- setLogValue(double) - Method in class gov.sandia.cognition.math.UnsignedLogNumber
-
Sets the log of the value represented by this object, which is what is
stored in the object.
- setLowerBound(InputOutputSlopeTriplet) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.LineBracket
-
Setter for lowerBound
- setLowerBound(double) - Method in class gov.sandia.cognition.statistics.method.ConfidenceInterval
-
Setter for lowerBound
- setLowerLeft(Quadtree<DataType>.Node) - Method in class gov.sandia.cognition.math.geometry.Quadtree.Node
-
Sets the lower-left child.
- setLowerRight(Quadtree<DataType>.Node) - Method in class gov.sandia.cognition.math.geometry.Quadtree.Node
-
Sets the lower-right child.
- setLowValue(double) - Method in class gov.sandia.cognition.learning.function.scalar.ThresholdFunction
-
Setter for lowValue
- setMap(SemanticIdentifierMap) - Method in class gov.sandia.cognition.framework.SemanticIdentifierMapEvent
-
Sets the SemanticIdentifierMap that the event happened in.
- setMapping(LinkedHashMap<SemanticLabel, SemanticIdentifier>) - Method in class gov.sandia.cognition.framework.DefaultSemanticIdentifierMap
-
Sets the mapping used by the object.
- setMargin(double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelPerceptron
-
Sets both the positive and negative margin to the same value.
- setMargin(double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.Perceptron
-
Sets both the positive and negative margin to the same value.
- setMarginNegative(double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelPerceptron
-
Sets the negative margin that is enforced.
- setMarginNegative(double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.Perceptron
-
Sets the negative margin that is enforced.
- setMarginPositive(double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelPerceptron
-
Sets the positive margin that is enforced.
- setMarginPositive(double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.Perceptron
-
Sets the positive margin that is enforced.
- setMatrix(Matrix) - Method in class gov.sandia.cognition.framework.lite.SimplePatternRecognizer
-
Sets the underlying matrix.
- setMatrixFactory(MatrixFactory<? extends Matrix>) - Method in class gov.sandia.cognition.text.term.relation.TermVectorSimilarityNetworkCreator
-
Sets the matrix factory to create the matrix that backs the similarity
network.
- setMatrixFactory(MatrixFactory<? extends Matrix>) - Method in class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis
-
Sets the matrix factory to use.
- setMaxBufferSize(int) - Method in class gov.sandia.cognition.learning.data.feature.LinearRegressionCoefficientExtractor
-
Setter for maxBufferSize
- setMaxCriterionDecrease(double) - Method in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
-
Sets the maximum decrease in the training criterion allowed following a
bisection.
- setMaxDepth(int) - Method in class gov.sandia.cognition.learning.algorithm.tree.CategorizationTreeLearner
-
Sets the maximum depth to grow the tree.
- setMaxDepth(int) - Method in class gov.sandia.cognition.learning.algorithm.tree.RegressionTreeLearner
-
Sets the maximum depth to grow the tree.
- setMaxDistance(double) - Method in class gov.sandia.cognition.learning.algorithm.clustering.AgglomerativeClusterer
-
The maximum distance between clusters that is allowed
for the two clusters to be merged.
- setMaximum(DataType) - Method in class gov.sandia.cognition.evaluator.ValueClamper
-
Sets the maximum value to allow.
- setMaximumLength(Integer) - Method in class gov.sandia.cognition.text.term.filter.TermLengthFilter
-
Gets the maximum length allowed for a term (inclusive).
- setMaxIterations(int) - Method in class gov.sandia.cognition.algorithm.AbstractAnytimeAlgorithm
-
- setMaxIterations(int) - Method in interface gov.sandia.cognition.algorithm.AnytimeAlgorithm
-
Sets the maximum number of total iterations before stopping.
- setMaxIterations(int) - Method in class gov.sandia.cognition.algorithm.AnytimeAlgorithmWrapper
-
- setMaxIterations(int) - Method in class gov.sandia.cognition.learning.algorithm.minimization.matrix.IterativeMatrixSolver
-
Sets the maximum number of iterations before this will stop iterating.
- setMaxIterationsWithoutImprovement(int) - Method in class gov.sandia.cognition.learning.algorithm.annealing.SimulatedAnnealer
-
Sets the maximum number of iterations to go without improvement before
stopping.
- setMaxIterationsWithoutImprovement(int) - Method in class gov.sandia.cognition.learning.algorithm.genetic.GeneticAlgorithm
-
Sets the maximum number of iterations to go without improvement before
stopping.
- setMaxIterationsWithoutImprovement(int) - Method in class gov.sandia.cognition.learning.algorithm.regression.LevenbergMarquardtEstimation
-
Setter for maxIterationsWithoutImprovement
- setMaxMagnitude(double) - Method in class gov.sandia.cognition.learning.function.scalar.AtanFunction
-
Setter for maxMagnitude.
- setMaxMinDistance(double) - Method in class gov.sandia.cognition.learning.algorithm.clustering.AgglomerativeClusterer
-
- setMaxNumPoints(int) - Method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling
-
Setter for maxNumPoints
- setMaxPenalty(double) - Method in class gov.sandia.cognition.learning.algorithm.svm.SequentialMinimalOptimization
-
Sets the maximum penalty parameter for the algorithm, which is also known
as C in the paper and in other related literature.
- setMaxSupport(double) - Method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling
-
Setter for maxSupport
- setMaxSupport(double) - Method in class gov.sandia.cognition.statistics.distribution.UniformDistribution
-
Setter for maxSupport
- setMaxSupport(int) - Method in class gov.sandia.cognition.statistics.distribution.UniformIntegerDistribution
-
Sets the maximum support.
- setMaxValue(int) - Method in class gov.sandia.cognition.collection.IntegerSpan
-
Setter for maxValue
- setMaxWeight(double) - Method in class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation
-
Sets the maximum weight allowed on an instance (support vector).
- setMean(Vector) - Method in class gov.sandia.cognition.learning.algorithm.pca.PrincipalComponentsAnalysisFunction
-
Setter for mean
- setMean(double) - Method in class gov.sandia.cognition.learning.data.feature.StandardDistributionNormalizer
-
Sets the mean.
- setMean(Vector) - Method in class gov.sandia.cognition.learning.function.categorization.AbstractConfidenceWeightedBinaryCategorizer
-
Sets the mean of the categorizer, which is the weight vector.
- setMean(double) - Method in class gov.sandia.cognition.statistics.distribution.LaplaceDistribution
-
Setter for mean
- setMean(double) - Method in class gov.sandia.cognition.statistics.distribution.LogisticDistribution
-
Setter for mean
- setMean(Vector) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian
-
Sets the mean vector.
- setMean(Vector) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateStudentTDistribution
-
Setter for mean
- setMean(double) - Method in class gov.sandia.cognition.statistics.distribution.StudentTDistribution
-
Setter for mean
- setMean(double) - Method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian
-
Setter for mean
- setMeanL1Error(double) - Method in class gov.sandia.cognition.learning.algorithm.regression.LinearRegression.Statistic
-
Setter for meanL1Error
- setMeasurementCovariance(Matrix) - Method in class gov.sandia.cognition.statistics.bayesian.AbstractKalmanFilter
-
Setter for measurementCovariance
- setMembers(List<MemberType>) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractUnweightedEnsemble
-
Sets the list of ensemble members.
- setMembers(List<WeightedValue<MemberType>>) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractWeightedEnsemble
-
Sets the members of the ensemble.
- setMembers(List<MemberType>) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.VotingCategorizerEnsemble
-
Sets the list of ensemble members.
- setMembers(List<WeightedValue<MemberType>>) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.WeightedBinaryEnsemble
-
Sets the members of the ensemble.
- setMembers(List<WeightedValue<MemberType>>) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.WeightedVotingCategorizerEnsemble
-
Sets the members of the ensemble.
- setMetric(Semimetric<? super DataType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.DBSCANClusterer
-
Sets the distance metric the clustering uses.
- setMinChange(double) - Method in class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachineAlternatingLeastSquares
-
Sets the minimum change allowed in an iteration.
- setMinChange(double) - Method in class gov.sandia.cognition.learning.algorithm.pca.GeneralizedHebbianAlgorithm
-
Setter for minChange
- setMinChange(double) - Method in class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation
-
Sets the minimum total weight change allowed for the algorithm to
continue.
- setMinClusters(ArrayList<Integer>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.AgglomerativeClusterer
-
Sets the index of the closest cluster.
- setMinClusterSize(int) - Method in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
-
Sets the minimum number of elements per cluster to allow.
- setMinDenominator(double) - Method in class gov.sandia.cognition.math.LentzMethod
-
Setter for minDenominator
- setMinDistances(ArrayList<Double>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.AgglomerativeClusterer
-
Sets the minimum distances for each clusters.
- setMinFunctionValue(double) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizerDerivativeBased
-
Setter for minFunctionValue
- setMinibatchSize(int) - Method in class gov.sandia.cognition.learning.algorithm.clustering.MiniBatchKMeansClusterer
-
Set the size of the mini-batches.
- setMinimum(DataType) - Method in class gov.sandia.cognition.evaluator.ValueClamper
-
Gets the minimum value to allow.
- setMinimumChange(double) - Method in class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis
-
Sets the minimum change in log-likelihood to allow before stopping the
algorithm.
- setMinimumLength(Integer) - Method in class gov.sandia.cognition.text.term.filter.TermLengthFilter
-
Gets the minimum length allowed for a term (inclusive).
- setMinMargin(double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.BatchMultiPerceptron
-
Gets the minimum margin to enforce.
- setMinMargin(double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineBinaryMarginInfusedRelaxedAlgorithm
-
Gets the minimum margin to enforce.
- setMinMargin(double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineMultiPerceptron.ProportionalUpdate
-
- setMinMargin(double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineMultiPerceptron
-
Gets the minimum margin to enforce.
- setMinNumClusters(int) - Method in class gov.sandia.cognition.learning.algorithm.clustering.AgglomerativeClusterer
-
The minimum number of clusters to allow.
- setMinSamples(int) - Method in class gov.sandia.cognition.learning.algorithm.clustering.DBSCANClusterer
-
Sets the minimum number of samples.
- setMinSensitivity(double) - Method in class gov.sandia.cognition.learning.algorithm.regression.KernelBasedIterativeRegression
-
Sets the minimum sensitivity that an example can have on the result
function.
- setMinSplitSize(int) - Method in class gov.sandia.cognition.learning.algorithm.tree.AbstractVectorThresholdMaximumGainLearner
-
Sets the minimum split size.
- setMinSplitSize(int) - Method in class gov.sandia.cognition.learning.algorithm.tree.VectorThresholdVarianceLearner
-
Sets the minimum split size.
- setMinSupport(double) - Method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling
-
Setter for minSupport
- setMinSupport(double) - Method in class gov.sandia.cognition.statistics.distribution.UniformDistribution
-
Setter for minSupport
- setMinSupport(int) - Method in class gov.sandia.cognition.statistics.distribution.UniformIntegerDistribution
-
Sets the minimum support.
- setMinValue(int) - Method in class gov.sandia.cognition.collection.IntegerSpan
-
Setter for minValue
- setModel(CognitiveModel) - Method in class gov.sandia.cognition.framework.CognitiveModelStateChangeEvent
-
Sets the model that changed.
- setModel(LinearDynamicalSystem) - Method in class gov.sandia.cognition.statistics.bayesian.KalmanFilter
-
Setter for model
- setModelCovariance(Matrix) - Method in class gov.sandia.cognition.statistics.bayesian.AbstractKalmanFilter
-
Setter for modelCovariance
- setModuleFactories(ArrayList<CognitiveModuleFactory>) - Method in class gov.sandia.cognition.framework.AbstractCognitiveModelFactory
-
Sets the list of module factories to use.
- setModuleStatesArray(CognitiveModuleState[]) - Method in class gov.sandia.cognition.framework.lite.CognitiveModelLiteState
-
Sets the array of module states.
- setMomentum(double) - Method in class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerGradientDescent
-
Getter for momentum
- setMotionModel(StatefulEvaluator<Vector, Vector, Vector>) - Method in class gov.sandia.cognition.statistics.bayesian.ExtendedKalmanFilter
-
Setter for motionModel
- setMovingAverageCoefficients(Vector) - Method in class gov.sandia.cognition.math.signals.AutoRegressiveMovingAverageFilter
-
Setter for movingAverageCoefficients
- setMovingAverageCoefficients(Vector) - Method in class gov.sandia.cognition.math.signals.MovingAverageFilter
-
Setter for movingAverageCoefficients
- setN(int) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.BinomialBayesianEstimator
-
Sets the number of samples in the experiment
- setN(int) - Method in class gov.sandia.cognition.statistics.distribution.BetaBinomialDistribution
-
Setter for n
- setN(int) - Method in class gov.sandia.cognition.statistics.distribution.BinomialDistribution
-
Setter for N
- setN1(int) - Method in class gov.sandia.cognition.statistics.method.MannWhitneyUConfidence.Statistic
-
Setter for N1
- setN2(int) - Method in class gov.sandia.cognition.statistics.method.MannWhitneyUConfidence.Statistic
-
Setter for N2
- setName(String) - Method in class gov.sandia.cognition.framework.learning.EvaluatorBasedCognitiveModule
-
Sets the name of the module
- setName(String) - Method in class gov.sandia.cognition.framework.learning.EvaluatorBasedCognitiveModuleFactory
-
Setter for name
- setName(String) - Method in class gov.sandia.cognition.framework.learning.EvaluatorBasedCognitiveModuleFactoryLearner
-
Setter for name
- setName(String) - Method in class gov.sandia.cognition.statistics.DefaultDistributionParameter
-
- setName(String) - Method in class gov.sandia.cognition.util.AbstractNamed
-
Sets the name of this Object.
- setName(String) - Method in class gov.sandia.cognition.util.DefaultNamedValue
-
- setNe(double) - Method in class gov.sandia.cognition.statistics.method.KolmogorovSmirnovConfidence.Statistic
-
Setter for Ne
- setNegative(boolean) - Method in class gov.sandia.cognition.math.LogNumber
-
Sets whether or not this value has a negative sign.
- setNeighborhoodRadius(double) - Method in class gov.sandia.cognition.learning.algorithm.clustering.DBSCANClusterer
-
Sets the neighborhood radius.
- setNetwork(DefaultSemanticNetwork) - Method in class gov.sandia.cognition.framework.io.CSVDefaultCognitiveModelLiteHandler
-
Set the network being parsed.
- setNodes(ArrayList<SemanticLabel>) - Method in class gov.sandia.cognition.framework.lite.SimplePatternRecognizer
-
Sets the nodes in the recognizer.
- setNodeToIDMap(HashMap<SemanticLabel, Integer>) - Method in class gov.sandia.cognition.framework.lite.SimplePatternRecognizer
-
Sets the mapping of nodes to their vector indices.
- setNormalizedCentroid(ClusterType) - Method in class gov.sandia.cognition.learning.algorithm.clustering.cluster.NormalizedCentroidCluster
-
Sets the normalized centroid of the cluster.
- setNormalizer(TermWeightNormalizer) - Method in class gov.sandia.cognition.text.term.vector.weighter.CompositeLocalGlobalTermWeighter
-
Sets the weight normalizer.
- setNullHypothesisProbability(double) - Method in class gov.sandia.cognition.statistics.method.AbstractConfidenceStatistic
-
Setter for nullHypothesisProbability
- setNullValue(Number) - Method in class gov.sandia.cognition.data.convert.number.DefaultBooleanToNumberConverter
-
Sets the number that represents a null value.
- setNumChanged(int) - Method in class gov.sandia.cognition.learning.algorithm.clustering.KMeansClusterer
-
Setter for numChanged
- setNumClusters(int) - Method in class gov.sandia.cognition.learning.algorithm.clustering.KMeansFactory
-
Sets the number of clusters for the algorithm to attempt to create.
- setNumComponents(int) - Method in class gov.sandia.cognition.learning.algorithm.pca.AbstractPrincipalComponentsAnalysis
-
Setter for numComponents
- setNumComponents(int) - Method in class gov.sandia.cognition.learning.algorithm.pca.GeneralizedHebbianAlgorithm
-
Setter for numComponents
- setNumCustomers(int) - Method in class gov.sandia.cognition.statistics.distribution.ChineseRestaurantProcess
-
Setter for numCustomers
- setNumDifferent(int) - Method in class gov.sandia.cognition.statistics.method.FisherSignConfidence.Statistic
-
Setter for numDifferent
- setNumericalDerivative(boolean) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizerBacktracking
-
Setter for numericalDerivative
- setNumFolds(int) - Method in class gov.sandia.cognition.learning.experiment.CrossFoldCreator
-
Sets the number of folds to create.
- setNumFolds(int) - Method in class gov.sandia.cognition.learning.experiment.RandomFoldCreator
-
Sets the number of folds to create.
- setNumInitialClusters(int) - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel
-
Getter for numInitialClusters
- setNumNonZero(int) - Method in class gov.sandia.cognition.statistics.method.WilcoxonSignedRankConfidence.Statistic
-
Setter for numNonZero
- setNumParameters(int) - Method in class gov.sandia.cognition.learning.algorithm.regression.LinearRegression.Statistic
-
Setter for numParameters
- setNumParticles(int) - Method in class gov.sandia.cognition.statistics.bayesian.AbstractParticleFilter
-
- setNumParticles(int) - Method in interface gov.sandia.cognition.statistics.bayesian.ParticleFilter
-
Sets the number of particles
- setNumPositiveSign(int) - Method in class gov.sandia.cognition.statistics.method.FisherSignConfidence.Statistic
-
Setter for numPositiveSign
- setNumRequestedClusters(int) - Method in class gov.sandia.cognition.learning.algorithm.clustering.KMeansClusterer
-
Sets the number of requested clusters.
- setNumRequestedClusters(int) - Method in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
-
Sets the number of clusters requested.
- setNumSamples(int) - Method in class gov.sandia.cognition.learning.algorithm.regression.LinearRegression.Statistic
-
Setter for numSamples
- setNumSamples(int) - Method in class gov.sandia.cognition.statistics.bayesian.ImportanceSampling
-
Setter for numSamples
- setNumSamples(int) - Method in class gov.sandia.cognition.statistics.bayesian.RejectionSampling
-
Setter for numSamples
- setNumSamples(int) - Method in class gov.sandia.cognition.statistics.method.ConfidenceInterval
-
Setter for numSamples
- setNumSamples(int) - Method in class gov.sandia.cognition.statistics.UnivariateRandomVariable
-
Setter for numSamples
- setNumSplits(int) - Method in class gov.sandia.cognition.learning.experiment.RandomByTwoFoldCreator
-
Sets the number of splits to perform.
- setNumThreads(int) - Method in class gov.sandia.cognition.text.algorithm.ValenceSpreader
-
Specifies how many threads to use in the matrix/vector multiplies in the
iterative solver.
- setNumTrials(int) - Method in class gov.sandia.cognition.learning.experiment.AbstractValidationFoldExperiment
-
Sets the number of trials in the experiment.
- setNumTrials(int) - Method in class gov.sandia.cognition.learning.experiment.LearnerRepeatExperiment
-
Sets the number of trials for the experiment to repeatedly call the
learning algorithm.
- setNumTrials(int) - Method in class gov.sandia.cognition.learning.experiment.OnlineLearnerValidationExperiment
-
Sets the number of trials.
- setNumTrials(int) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.MultinomialBayesianEstimator
-
Setter for numTrials
- setNumTrials(int) - Method in class gov.sandia.cognition.statistics.distribution.MultinomialDistribution
-
Setter for numTrials
- setNumTrials(int) - Method in class gov.sandia.cognition.statistics.distribution.MultivariatePolyaDistribution
-
Setter for numTrials
- setObjectToOptimize(FunctionType) - Method in class gov.sandia.cognition.learning.algorithm.regression.AbstractLogisticRegression
-
Setter for objectToOptimize
- setObjectToOptimize(ResultType) - Method in class gov.sandia.cognition.learning.algorithm.regression.AbstractMinimizerBasedParameterCostMinimizer
-
- setObjectToOptimize(ResultType) - Method in class gov.sandia.cognition.learning.algorithm.regression.AbstractParameterCostMinimizer
-
Setter for objectToOptimize
- setObjectToOptimize(LogisticRegression.Function) - Method in class gov.sandia.cognition.learning.algorithm.regression.LogisticRegression
-
Setter for objectToOptimize
- setObjectToOptimize(ResultType) - Method in interface gov.sandia.cognition.learning.algorithm.regression.ParameterCostMinimizer
-
Set the object to optimize
- setObservationModel(Evaluator<Vector, Vector>) - Method in class gov.sandia.cognition.statistics.bayesian.ExtendedKalmanFilter
-
Setter for observationModel
- setOffset(double) - Method in class gov.sandia.cognition.learning.function.scalar.LinearFunction
-
Sets the offset of the function, which is the b term in: f(x) = m*x + b.
- setOptimalThreshold(ReceiverOperatingCharacteristic.DataPoint) - Method in class gov.sandia.cognition.statistics.method.ReceiverOperatingCharacteristic.Statistic
-
Setter for optimalThreshold
- setOriginalPoint(InputOutputSlopeTriplet) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.WolfeConditions
-
Setter for originalPoint
- setOtherPoint(InputOutputSlopeTriplet) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.LineBracket
-
Setter for otherPoint
- setOutlierPercent(double) - Method in class gov.sandia.cognition.learning.data.feature.StandardDistributionNormalizer.Learner
-
Sets the percentage of outliers to exclude from learning.
- setOutput(OutputType) - Method in class gov.sandia.cognition.learning.data.DefaultInputOutputPair
-
Sets the output.
- setOutputCategory(OutputType) - Method in class gov.sandia.cognition.learning.algorithm.tree.CategorizationTreeNode
-
Sets the output category for the node.
- setOutputConverter(CogxelConverter<OutputType>) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelInputOutputPairConverter
-
Sets the output converter
- setOutputConverter(CogxelConverter<OutputType>) - Method in class gov.sandia.cognition.framework.learning.EvaluatorBasedCognitiveModuleFactoryLearner
-
Sets the CogxelConverter used to convert OutputType to a CogxelState.
- setOutputConverter(CogxelConverter<OutputType>) - Method in class gov.sandia.cognition.framework.learning.EvaluatorBasedCognitiveModuleSettings
-
Sets the CogxelConverter used to convert OutputType to a CogxelState.
- setOutputDimensionality(int) - Method in class gov.sandia.cognition.learning.data.feature.FeatureHashing
-
Sets the output dimensionality, which is the size of the output vector
that the input is hashed into.
- setOutputDimensionality(int) - Method in class gov.sandia.cognition.learning.function.vector.ThreeLayerFeedforwardNeuralNetwork
-
Sets the output dimensionality of the neural net by re-initializing the
weights.
- setOutputLearner(BatchLearner<? super Collection<? extends OutputType>, ? extends ReversibleEvaluator<OutputType, TransformedOutputType, ?>>) - Method in class gov.sandia.cognition.learning.algorithm.InputOutputTransformedBatchLearner
-
Gets the unsupervised learning algorithm for creating the
output transformation, which must be reversible for evaluation.
- setOutputVariance(double) - Method in class gov.sandia.cognition.statistics.bayesian.BayesianLinearRegression
-
Setter for outputVariance
- setOutputVariance(InverseGammaDistribution) - Method in class gov.sandia.cognition.statistics.bayesian.BayesianRobustLinearRegression
-
Setter for outputVariance
- setOutputVariance(double) - Method in class gov.sandia.cognition.statistics.bayesian.GaussianProcessRegression
-
Getter for outputVariance
- setOverrelaxation(double) - Method in class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation
-
Gets the overrelaxation parameter for the algorithm.
- setP(double) - Method in class gov.sandia.cognition.statistics.distribution.BernoulliDistribution
-
Setter for p
- setP(double) - Method in class gov.sandia.cognition.statistics.distribution.BinomialDistribution
-
Setter for p
- setP(double) - Method in class gov.sandia.cognition.statistics.distribution.GeometricDistribution
-
Setter for p
- setP(double) - Method in class gov.sandia.cognition.statistics.distribution.NegativeBinomialDistribution
-
Setter for p
- setPairConverter(CogxelInputOutputPairConverter<InputType, OutputType>) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelWeightedInputOutputPairConverter
-
Setter for pairConverter
- setPairwiseTest(NullHypothesisEvaluator<Collection<? extends Number>>) - Method in class gov.sandia.cognition.statistics.method.AbstractPairwiseMultipleHypothesisComparison
-
Setter for pairwiseTest
- setParabolicInterpolator(LineBracketInterpolatorParabola) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.interpolator.LineBracketInterpolatorBrent
-
Setter for parabolicInterpolator
- setParameter(BayesianParameter<ParameterType, ConditionalType, BeliefType>) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.AbstractConjugatePriorBayesianEstimator
-
Setter for parameter
- setParameterAdapters(LinkedList<ParameterAdapter<? super LearnerType, ? super DataType>>) - Method in class gov.sandia.cognition.learning.parameter.ParameterAdaptableBatchLearnerWrapper
-
Sets the list of parameter adapters for the learning algorithm.
- setParameterPrior(PriorType) - Method in class gov.sandia.cognition.statistics.bayesian.AbstractBayesianParameter
-
Setter for parameterPrior
- setParameterPrior(PriorType) - Method in class gov.sandia.cognition.statistics.bayesian.DefaultBayesianParameter
-
Sets the Distribution of values that the parameter is assumed to take.
- setParameters(Object...) - Method in class gov.sandia.cognition.factory.ConstructorBasedFactory
-
Sets the parameters that are passed to the constructor to create new
objects.
- setParameters(Vector) - Method in class gov.sandia.cognition.statistics.distribution.CategoricalDistribution
-
Setter for parameters
- setParameters(Vector) - Method in class gov.sandia.cognition.statistics.distribution.DirichletDistribution
-
Setter for parameters
- setParameters(Vector) - Method in class gov.sandia.cognition.statistics.distribution.MultinomialDistribution
-
Setter for parameters
- setParameters(Vector) - Method in class gov.sandia.cognition.statistics.distribution.MultivariatePolyaDistribution
-
Setter for parameters
- setParent(DecisionTreeNode<InputType, OutputType>) - Method in class gov.sandia.cognition.learning.algorithm.tree.AbstractDecisionTreeNode
-
Sets the parent node for this node.
- setParent(Quadtree<DataType>.Node) - Method in class gov.sandia.cognition.math.geometry.Quadtree.Node
-
Sets the parent node of this node.
- setParticlePctThreadhold(double) - Method in class gov.sandia.cognition.statistics.bayesian.SamplingImportanceResamplingParticleFilter
-
Setter for particlePctThreadhold
- setPartitioner(RandomizedDataPartitioner<DataType>) - Method in class gov.sandia.cognition.learning.experiment.RandomFoldCreator
-
Sets the randomized partitioner to use.
- setPercent(double) - Method in class gov.sandia.cognition.learning.algorithm.genetic.selector.TournamentSelector
-
Sets the percent of the population to select.
- setPercentToSample(double) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractBaggingLearner
-
Sets the percentage of the data to sample (with replacement) on each
iteration.
- setPercentToSample(double) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner
-
Sets the percentage of the data to sample (with replacement) on each
iteration.
- setPercentToSample(double) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.OnlineBaggingCategorizerLearner
-
Sets the percent of the data to attempt to sample for each ensemble
member.
- setPercentToSample(double) - Method in class gov.sandia.cognition.learning.algorithm.tree.RandomSubVectorThresholdLearner
-
Sets the percent of the dimensionality to sample.
- setPerformanceEvaluator(PerformanceEvaluator<? super LearnedType, ? super Collection<? extends FoldDataType>, ? extends StatisticType>) - Method in class gov.sandia.cognition.learning.experiment.LearnerComparisonExperiment
-
Sets the performance evaluator to apply to each fold.
- setPerformanceEvaluator(PerformanceEvaluator<? super LearnedType, ? super Collection<? extends InputDataType>, ? extends StatisticType>) - Method in class gov.sandia.cognition.learning.experiment.LearnerRepeatExperiment
-
Sets the performance evaluator to apply to each fold.
- setPerformanceEvaluator(PerformanceEvaluator<? super LearnedType, ? super Collection<? extends FoldDataType>, ? extends StatisticType>) - Method in class gov.sandia.cognition.learning.experiment.LearnerValidationExperiment
-
Sets the performance evaluator to apply to each fold.
- setPerformanceEvaluator(PerformanceEvaluator<? super LearnedType, ? super Collection<? extends DataType>, ? extends StatisticType>) - Method in class gov.sandia.cognition.learning.experiment.OnlineLearnerValidationExperiment
-
Sets the performance evaluator to apply to each fold.
- setPerformanceEvaluator(PerformanceEvaluator<? super ObjectType, ? super DataType, ?>) - Method in class gov.sandia.cognition.learning.performance.AnytimeBatchLearnerValidationPerformanceReporter
-
Sets the performance evaluator.
- setPerturber(Perturber<AnnealedType>) - Method in class gov.sandia.cognition.learning.algorithm.annealing.SimulatedAnnealer
-
Sets the perturber.
- setPerturber(Perturber<GenomeType>) - Method in class gov.sandia.cognition.learning.algorithm.genetic.reproducer.MutationReproducer
-
Sets the perturber used for mutation.
- setPhase(double) - Method in class gov.sandia.cognition.learning.function.scalar.CosineFunction
-
Setter for phase
- setPoint(double) - Method in class gov.sandia.cognition.statistics.distribution.DeterministicDistribution
-
Setter for point
- setPointIndex(int) - Method in class gov.sandia.cognition.learning.algorithm.clustering.DBSCANClusterer
-
Sets the point index.
- setPoints(ArrayList<DataType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.DBSCANClusterer
-
Sets the list of points.
- setPolynomials(ScalarBasisSet<Double>) - Method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Regression
-
Setter for polynomials
- setPopulation(Collection<EvaluatedGenome<GenomeType>>) - Method in class gov.sandia.cognition.learning.algorithm.genetic.GeneticAlgorithm
-
Sets the population of genomes.
- setPosteriorLogLikelihood(Double) - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.Sample
-
sets the posterior log-likelihood.
- setPostHocTest(MultipleHypothesisComparison<Collection<? extends Number>>) - Method in class gov.sandia.cognition.statistics.method.MultipleComparisonExperiment
-
Setter for postHocTest
- setPower(double) - Method in class gov.sandia.cognition.learning.function.distance.MinkowskiDistanceMetric
-
Sets the power used for the distance.
- setPrecision(Matrix) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateStudentTDistribution.PDF
-
- setPrecision(Matrix) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateStudentTDistribution
-
Setter for precision
- setPrecision(double) - Method in class gov.sandia.cognition.statistics.distribution.NormalInverseGammaDistribution
-
Setter for precision.
- setPrecision(double) - Method in class gov.sandia.cognition.statistics.distribution.StudentTDistribution
-
Setter for precision
- setPrecision(double) - Method in class gov.sandia.cognition.text.evaluation.DefaultPrecisionRecallPair
-
Sets the precision.
- setPredictionHorizon(int) - Method in class gov.sandia.cognition.learning.algorithm.SequencePredictionLearner
-
Sets the prediction horizon, which is the number of samples ahead in time
that the learner is to predict.
- setPredictionHorizon(int) - Method in class gov.sandia.cognition.learning.algorithm.TimeSeriesPredictionLearner
-
Setter for predictionHorizon
- setPreprocessor(Evaluator<? super InputType, ? extends IntermediateType>) - Method in class gov.sandia.cognition.learning.function.categorization.CompositeCategorizer
-
Sets the preprocessor, which takes the input and produces an intermediate
value that is then passed to the categorizer.
- setPriors(DataDistribution<CategoryType>) - Method in class gov.sandia.cognition.learning.algorithm.bayes.VectorNaiveBayesCategorizer
-
Sets the prior distribution over the categories.
- setPriorWeights(double[]) - Method in class gov.sandia.cognition.statistics.distribution.LinearMixtureModel
-
Getter for priorWeights
- setProbabilityCrossover(double) - Method in class gov.sandia.cognition.learning.algorithm.genetic.reproducer.VectorizableCrossoverFunction
-
Setter for probabilityCrossover.
- setProbabilityFunction(ProbabilityFunction<? super ObservationType>) - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.DPMMCluster
-
Setter for probabilityFunction
- setProcess(Process) - Method in class gov.sandia.cognition.io.ProcessLauncher
-
Setter for process
- setProcess(Process) - Method in class gov.sandia.cognition.io.ProcessLauncherEvent
-
Setter for process
- setProportionalGain(double) - Method in class gov.sandia.cognition.math.signals.PIDController
-
Setter for proportionalGain
- setProportionIncorrectInSample(double) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner
-
Sets the proportion of incorrect examples to place in each sample.
- setProposals(int) - Method in class gov.sandia.cognition.statistics.bayesian.RejectionSampling.DefaultUpdater
-
Setter for proposals
- setPrototype(CreatedType) - Method in class gov.sandia.cognition.factory.PrototypeFactory
-
Sets the prototype object that is cloned to create new objects.
- setPrototypes(Map<CategoryType, LinearBinaryCategorizer>) - Method in class gov.sandia.cognition.learning.function.categorization.LinearMultiCategorizer
-
Sets the mapping of categories to prototypes.
- setQ(double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Forgetron.Result
-
Gets the value Q updated by the algorithm.
- setQ0(double) - Method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Linear
-
Setter for q0
- setQ1(double) - Method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Linear
-
Setter for q1
- setQ2(double) - Method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Quadratic
-
Setter for q2
- setQ3(double) - Method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Cubic
-
Setter for q3
- setR(double) - Method in class gov.sandia.cognition.learning.algorithm.confidence.AdaptiveRegularizationOfWeights
-
Sets the regularization parameter.
- setR(DenseMatrix) - Method in class gov.sandia.cognition.math.matrix.mtj.decomposition.CholeskyDecompositionMTJ
-
Setter for R
- setR(double) - Method in class gov.sandia.cognition.statistics.distribution.NegativeBinomialDistribution
-
Setter for r.
- setRadius(double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.Ballseptron
-
Sets the radius parameter.
- setRandom(Random) - Method in class gov.sandia.cognition.learning.algorithm.annealing.SimulatedAnnealer
-
Sets the random number generator.
- setRandom(Random) - Method in class gov.sandia.cognition.learning.algorithm.clustering.DirichletProcessClustering
-
- setRandom(Random) - Method in class gov.sandia.cognition.learning.algorithm.clustering.initializer.AbstractMinDistanceFixedClusterInitializer
-
- setRandom(Random) - Method in class gov.sandia.cognition.learning.algorithm.clustering.MiniBatchKMeansClusterer
-
- setRandom(Random) - Method in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
-
- setRandom(Random) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractBaggingLearner
-
- setRandom(Random) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner
-
- setRandom(Random) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.OnlineBaggingCategorizerLearner
-
- setRandom(Random) - Method in class gov.sandia.cognition.learning.algorithm.factor.machine.AbstractFactorizationMachineLearner
-
- setRandom(Random) - Method in class gov.sandia.cognition.learning.algorithm.genetic.selector.TournamentSelector
-
Sets the random number generator to use.
- setRandom(Random) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.OnlineKernelRandomizedBudgetPerceptron
-
- setRandom(Random) - Method in class gov.sandia.cognition.learning.algorithm.svm.PrimalEstimatedSubGradient
-
- setRandom(Random) - Method in class gov.sandia.cognition.learning.algorithm.svm.SequentialMinimalOptimization
-
- setRandom(Random) - Method in class gov.sandia.cognition.statistics.bayesian.AbstractMarkovChainMonteCarlo
-
- setRandom(Random) - Method in class gov.sandia.cognition.statistics.bayesian.AbstractParticleFilter
-
- setRandom(Random) - Method in class gov.sandia.cognition.statistics.distribution.MixtureOfGaussians.EMLearner
-
- setRandom(Random) - Method in class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel.EMLearner
-
- setRandom(Random) - Method in class gov.sandia.cognition.statistics.distribution.StudentizedRangeDistribution
-
- setRandom(Random) - Method in class gov.sandia.cognition.statistics.UnivariateRandomVariable
-
- setRandom(Random) - Method in class gov.sandia.cognition.text.topic.LatentDirichletAllocationVectorGibbsSampler
-
- setRandom(Random) - Method in class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis
-
- setRandom(Random) - Method in class gov.sandia.cognition.util.AbstractRandomized
-
- setRandom(Random) - Method in interface gov.sandia.cognition.util.Randomized
-
Sets the random number generator used by this object.
- setRandomRange(double) - Method in class gov.sandia.cognition.learning.algorithm.clustering.initializer.NeighborhoodGaussianClusterInitializer
-
Setter for randomRange
- setRandomSet(long) - Method in class gov.sandia.cognition.graph.community.Louvain
-
Initialize the random number generator with the input seed.
- setRandomSet(long) - Method in class gov.sandia.cognition.graph.community.PersonalizedPageRank
-
Initialize the random number generator with the input seed.
- setRate(double) - Method in class gov.sandia.cognition.statistics.distribution.ExponentialDistribution
-
Setter for rate.
- setRate(double) - Method in class gov.sandia.cognition.statistics.distribution.GammaDistribution
-
Sets the rate parameter, which is just the inverse of the scale parameter.
- setRate(double) - Method in class gov.sandia.cognition.statistics.distribution.PoissonDistribution
-
Setter for rate
- setRealPart(double) - Method in class gov.sandia.cognition.math.ComplexNumber
-
Sets the real part of the complex number
- setRecall(double) - Method in class gov.sandia.cognition.text.evaluation.DefaultPrecisionRecallPair
-
Sets the recall.
- setRecognizer(MutablePatternRecognizerLite) - Method in class gov.sandia.cognition.framework.lite.MutableSemanticMemoryLiteFactory
-
Sets the settings used by the factory.
- setReductionTest(double) - Method in class gov.sandia.cognition.learning.algorithm.regression.FletcherXuHybridEstimation
-
Setter for reduction test.
- setReestimateAlpha(boolean) - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel
-
Setter for reestimateAlpha
- setReestimateInitialProbabilities(boolean) - Method in class gov.sandia.cognition.learning.algorithm.hmm.AbstractBaumWelchAlgorithm
-
Setter for reestimateInitialProbabilities
- setReference(DocumentReference) - Method in class gov.sandia.cognition.text.document.AbstractDocument
-
Sets the reference to where the document can be found.
- setRegressionLearner(BatchLearner<? super Collection<? extends InputOutputPair<? extends InputType, Double>>, ? extends Evaluator<? super InputType, Double>>) - Method in class gov.sandia.cognition.learning.algorithm.tree.RegressionTreeLearner
-
Sets the regression learner that is to be used to fit a function
approximator to the values in the tree.
- setRegularization(double) - Method in class gov.sandia.cognition.learning.algorithm.regression.AbstractLogisticRegression
-
Setter for regularization
- setRegularization(double) - Method in class gov.sandia.cognition.learning.algorithm.regression.LinearRegression
-
Setter for regularization
- setRegularization(double) - Method in class gov.sandia.cognition.learning.algorithm.regression.LogisticRegression
-
Setter for regularization
- setRegularization(double) - Method in class gov.sandia.cognition.learning.algorithm.regression.MultivariateLinearRegression
-
Setter for regularization
- setRegularizationWeight(double) - Method in class gov.sandia.cognition.learning.algorithm.svm.PrimalEstimatedSubGradient
-
Sets the regularization weight (lambda) assigned to the regularization
term of the algorithm.
- setRemovalThreshold(double) - Method in class gov.sandia.cognition.learning.algorithm.clustering.KMeansClustererWithRemoval
-
Setter for removalThreshold
- setReproducer(Reproducer<GenomeType>) - Method in class gov.sandia.cognition.learning.algorithm.genetic.GeneticAlgorithm
-
Sets the reproducer.
- setReproducers(Collection<Reproducer<GenomeType>>) - Method in class gov.sandia.cognition.learning.algorithm.genetic.reproducer.MultiReproducer
-
Sets the reproducers to use for reproducing.
- setRequestedRank(int) - Method in class gov.sandia.cognition.text.topic.LatentSemanticAnalysis
-
Sets the requested rank of the analysis.
- setRequestedRank(int) - Method in class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis
-
Sets the requested rank to conduct the analysis for.
- setResponsibilities(double[][]) - Method in class gov.sandia.cognition.learning.algorithm.clustering.AffinityPropagation
-
Sets the responsibility values.
- setResult(InputOutputPair<InputType, OutputType>) - Method in class gov.sandia.cognition.learning.algorithm.minimization.AbstractAnytimeFunctionMinimizer
-
Setter for result
- setResult(PrincipalComponentsAnalysisFunction) - Method in class gov.sandia.cognition.learning.algorithm.pca.AbstractPrincipalComponentsAnalysis
-
Setter for result
- setResult(PrincipalComponentsAnalysisFunction) - Method in class gov.sandia.cognition.learning.algorithm.pca.GeneralizedHebbianAlgorithm
-
Setter for result
- setResult(LinearMultiCategorizer<CategoryType>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.BatchMultiPerceptron
-
Sets the result of the algorithm.
- setResult(DefaultKernelBinaryCategorizer<InputType>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelPerceptron
-
Sets the object currently being result.
- setResult(LinearBinaryCategorizer) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.Perceptron
-
Sets the object currently being result.
- setResult(ResultType) - Method in class gov.sandia.cognition.learning.algorithm.regression.AbstractMinimizerBasedParameterCostMinimizer
-
Setter for result
- setResult(ResultType) - Method in class gov.sandia.cognition.learning.algorithm.regression.AbstractParameterCostMinimizer
-
Setter for result
- setResult(KernelScalarFunction<InputType>) - Method in class gov.sandia.cognition.learning.algorithm.regression.KernelBasedIterativeRegression
-
Sets the object currently being result.
- setResult(LogisticRegression.Function) - Method in class gov.sandia.cognition.learning.algorithm.regression.LogisticRegression
-
Setter for result
- setResult(KernelBinaryCategorizer<InputType, DefaultWeightedValue<InputType>>) - Method in class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation
-
Sets the object currently being result.
- setResult(DefaultDataDistribution<ParameterType>) - Method in class gov.sandia.cognition.statistics.bayesian.AbstractMarkovChainMonteCarlo
-
Setter for result
- setResultCost(Double) - Method in class gov.sandia.cognition.learning.algorithm.regression.AbstractParameterCostMinimizer
-
Setter for resultCost
- setReverse(ReverseType) - Method in class gov.sandia.cognition.evaluator.ForwardReverseEvaluatorPair
-
Sets the reverse evaluator that maps output type to input type.
- setRootBracket(LineBracket) - Method in class gov.sandia.cognition.learning.algorithm.root.AbstractBracketedRootFinder
-
Setter for rootBracket.
- setRootMeanSquaredError(double) - Method in class gov.sandia.cognition.learning.algorithm.regression.LinearRegression.Statistic
-
Setter fpr rootMeanSquaredError
- setRootNode(DecisionTreeNode<InputType, OutputType>) - Method in class gov.sandia.cognition.learning.algorithm.tree.DecisionTree
-
Sets the root node of the decision tree.
- setRow(int, Vector) - Method in class gov.sandia.cognition.math.matrix.AbstractMatrix
-
- setRow(int, Vector) - Method in interface gov.sandia.cognition.math.matrix.Matrix
-
Sets the specified row from the given rowVector
- setRow(int, SparseVector) - Method in class gov.sandia.cognition.math.matrix.mtj.SparseRowMatrix
-
Sets the specified row of the matrix using rowVector, using MTJ's
internal routine to speed things up.
- setRowIndex(int) - Method in interface gov.sandia.cognition.math.matrix.MatrixEntry
-
Sets the current row index to which this entry points
- setRowIndex(int) - Method in class gov.sandia.cognition.math.matrix.mtj.TwoMatrixEntryMTJ
-
Setter for rowIndex.
- setRowIndex(int) - Method in interface gov.sandia.cognition.math.matrix.TwoMatrixEntry
-
Sets the current row index to which this entry points
- setS(Matrix) - Method in class gov.sandia.cognition.math.matrix.decomposition.AbstractSingularValueDecomposition
-
setter for the singular values matrix
- setSampler(ProbabilityFunction<ParameterType>) - Method in class gov.sandia.cognition.statistics.bayesian.RejectionSampling.DefaultUpdater
-
Setter for sampler
- setSampleSize(int) - Method in class gov.sandia.cognition.learning.algorithm.svm.PrimalEstimatedSubGradient
-
Sets the sample size, which is the number of examples sampled without
replacement on each iteration of the algorithm.
- setScalarFunction(Evaluator<? super InputType, Double>) - Method in class gov.sandia.cognition.learning.algorithm.tree.RegressionTreeNode
-
Sets the scalar function applied to the input when the node is a leaf
node.
- setScalarFunction(UnivariateScalarFunction) - Method in class gov.sandia.cognition.learning.function.vector.ElementWiseDifferentiableVectorFunction
-
- setScalarFunction(UnivariateScalarFunction) - Method in class gov.sandia.cognition.learning.function.vector.ElementWiseVectorFunction
-
Setter for scalarFunction
- setScale(Double) - Method in class gov.sandia.cognition.statistics.bayesian.RejectionSampling.DefaultUpdater
-
Setter for scale
- setScale(double) - Method in class gov.sandia.cognition.statistics.distribution.BetaBinomialDistribution
-
Setter for scale
- setScale(double) - Method in class gov.sandia.cognition.statistics.distribution.CauchyDistribution
-
Setter for scale
- setScale(double) - Method in class gov.sandia.cognition.statistics.distribution.GammaDistribution
-
Setter for scale
- setScale(double) - Method in class gov.sandia.cognition.statistics.distribution.InverseGammaDistribution
-
Setter for scale
- setScale(double) - Method in class gov.sandia.cognition.statistics.distribution.LaplaceDistribution
-
Setter for scale
- setScale(double) - Method in class gov.sandia.cognition.statistics.distribution.LogisticDistribution
-
Setter for scale
- setScale(double) - Method in class gov.sandia.cognition.statistics.distribution.NormalInverseGammaDistribution
-
Setter for scale
- setScale(double) - Method in class gov.sandia.cognition.statistics.distribution.ParetoDistribution
-
Setter for scale
- setScale(double) - Method in class gov.sandia.cognition.statistics.distribution.WeibullDistribution
-
Setter for scale
- setScaleFactor(double) - Method in class gov.sandia.cognition.learning.function.vector.LinearVectorFunction
-
Sets the linear scale factor.
- setSecond(SecondType) - Method in class gov.sandia.cognition.util.DefaultPair
-
Sets the second object.
- setSecond(SecondType) - Method in class gov.sandia.cognition.util.DefaultTriple
-
Sets the second object.
- setSecondChild(ClusterHierarchyNode<DataType, ClusterType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.hierarchy.BinaryClusterHierarchyNode
-
Sets the second child node.
- setSecondConverter(CogxelConverter<SecondType>) - Method in class gov.sandia.cognition.framework.learning.converter.AbstractCogxelPairConverter
-
Setter for secondConverter
- setSecondInternalEntry(MatrixEntry) - Method in class gov.sandia.cognition.math.matrix.MatrixUnionIterator
-
setter for secondInternalEntry
- setSecondInternalEntry(VectorEntry) - Method in class gov.sandia.cognition.math.matrix.VectorUnionIterator
-
setter for secondInternalEntry
- setSecondIterator(Iterator<MatrixEntry>) - Method in class gov.sandia.cognition.math.matrix.MatrixUnionIterator
-
setter for secondIterator
- setSecondIterator(Iterator<VectorEntry>) - Method in class gov.sandia.cognition.math.matrix.VectorUnionIterator
-
setter for secondIterator
- setSecondLearner(BatchLearner<? super Collection<? extends IntermediateType>, ? extends Evaluator<? super IntermediateType, ? extends OutputType>>) - Method in class gov.sandia.cognition.learning.algorithm.CompositeBatchLearnerPair
-
Sets the second learner that is applied to the output of the first
learner.
- setSecondMatrix(AbstractMTJMatrix) - Method in class gov.sandia.cognition.math.matrix.mtj.TwoMatrixEntryMTJ
-
Setter for secondMatrix.
- setSecondValue(double) - Method in class gov.sandia.cognition.math.matrix.DefaultTwoVectorEntry
-
Sets the entry value for the second underlying vector.
- setSecondValue(double) - Method in class gov.sandia.cognition.math.matrix.mtj.TwoMatrixEntryMTJ
-
Sets the entry value from the second underlying matrix.
- setSecondValue(double) - Method in interface gov.sandia.cognition.math.matrix.TwoMatrixEntry
-
Sets the second value to which this entry points
- setSecondValue(double) - Method in interface gov.sandia.cognition.math.matrix.TwoVectorEntry
-
Sets the second value to which this entry points
- setSecondVector(Vector) - Method in class gov.sandia.cognition.math.matrix.DefaultTwoVectorEntry
-
Setter for secondVector.
- setSeedScale(double) - Method in class gov.sandia.cognition.learning.algorithm.factor.machine.AbstractFactorizationMachineLearner
-
Sets the seed initialization scale.
- setSelector(Selector<GenomeType>) - Method in class gov.sandia.cognition.learning.algorithm.genetic.reproducer.CrossoverReproducer
-
Sets the selector.
- setSelector(Selector<GenomeType>) - Method in class gov.sandia.cognition.learning.algorithm.genetic.reproducer.MutationReproducer
-
Sets the selector used to select the population.
- setSelfDivergence(double) - Method in class gov.sandia.cognition.learning.algorithm.clustering.AffinityPropagation
-
Sets the value used for self-divergence, which controls how many
clusters are generated.
- setSemanticIdentifierMap(SemanticIdentifierMap) - Method in class gov.sandia.cognition.framework.learning.converter.AbstractCogxelConverter
-
- setSemanticIdentifierMap(SemanticIdentifierMap) - Method in class gov.sandia.cognition.framework.learning.converter.AbstractCogxelPairConverter
-
- setSemanticIdentifierMap(SemanticIdentifierMap) - Method in interface gov.sandia.cognition.framework.learning.converter.CogxelConverter
-
Sets the SemanticIdentifierMap that the converter is to use.
- setSemanticIdentifierMap(SemanticIdentifierMap) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelDoubleConverter
-
Sets the SemanticIdentifierMap that the converter is to use.
- setSemanticIdentifierMap(SemanticIdentifierMap) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelMatrixConverter
-
Sets the SemanticIdentifierMap that the converter is to use.
- setSemanticIdentifierMap(SemanticIdentifierMap) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelVectorCollectionConverter
-
Sets the SemanticIdentifierMap that the converter is to use.
- setSemanticIdentifierMap(SemanticIdentifierMap) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelVectorConverter
-
Sets the SemanticIdentifierMap that the converter is to use.
- setSemanticIdentifierMap(SemanticIdentifierMap) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelWeightedInputOutputPairConverter
-
Sets the SemanticIdentifierMap that the converter is to use.
- setSemanticIdentifierMap(DefaultSemanticIdentifierMap) - Method in class gov.sandia.cognition.framework.lite.AbstractCognitiveModelLite
-
Sets the semantic identifier map.
- setSemanticIdentifierMap(SemanticIdentifierMap) - Method in class gov.sandia.cognition.framework.lite.ArrayBasedPerceptionModule
-
Sets the semantic identifier map.
- setSettings(EvaluatorBasedCognitiveModuleSettings<InputType, OutputType>) - Method in class gov.sandia.cognition.framework.learning.EvaluatorBasedCognitiveModule
-
Sets the settings of the module.
- setSettings(EvaluatorBasedCognitiveModuleSettings<InputType, OutputType>) - Method in class gov.sandia.cognition.framework.learning.EvaluatorBasedCognitiveModuleFactory
-
Sets the settings of the module created by the factory.
- setShape(double) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.GammaInverseScaleBayesianEstimator
-
Sets the shape of the conditional distribution
- setShape(double) - Method in class gov.sandia.cognition.statistics.distribution.BetaBinomialDistribution
-
Setter for shape
- setShape(double) - Method in class gov.sandia.cognition.statistics.distribution.GammaDistribution
-
Setter for shape
- setShape(double) - Method in class gov.sandia.cognition.statistics.distribution.InverseGammaDistribution
-
Setter for shape
- setShape(double) - Method in class gov.sandia.cognition.statistics.distribution.NormalInverseGammaDistribution
-
Setter for shape
- setShape(double) - Method in class gov.sandia.cognition.statistics.distribution.ParetoDistribution
-
Setter for shape
- setShape(double) - Method in class gov.sandia.cognition.statistics.distribution.WeibullDistribution
-
Setter for shape
- setShape(double) - Method in class gov.sandia.cognition.statistics.distribution.YuleSimonDistribution
-
Setter for shape
- setShift(double) - Method in class gov.sandia.cognition.statistics.distribution.ParetoDistribution
-
Setter for shift.
- setSigma(double) - Method in class gov.sandia.cognition.learning.function.kernel.RadialBasisKernel
-
Sets the sigma value that controls the bandwidth of the kernel.
- setSimilarities(double[][]) - Method in class gov.sandia.cognition.learning.algorithm.clustering.AffinityPropagation
-
Sets the array of similarities.
- setSimilarities(Matrix) - Method in class gov.sandia.cognition.text.term.relation.MatrixBasedTermSimilarityNetwork
-
Gets the similarities between terms.
- setSimilarity(double) - Method in class gov.sandia.cognition.text.term.relation.IndexedTermSimilarityRelation
-
Sets the similarity between the two terms.
- setSimilarityFunction(SimilarityFunction<? super Vector, ? super Vector>) - Method in class gov.sandia.cognition.text.term.relation.TermVectorSimilarityNetworkCreator
-
Sets the similarity function between term vectors used to determine the
similarity between two terms.
- setSingularValues(Matrix) - Method in class gov.sandia.cognition.text.topic.LatentSemanticAnalysis.Transform
-
Sets the diagonal matrix of singular values.
- setSize(int) - Method in class gov.sandia.cognition.learning.data.feature.RandomSubspace
-
Sets the size of the subspace that will be created.
- setSize(int) - Method in class gov.sandia.cognition.text.term.filter.NGramFilter
-
Sets the size of the n-gram created by the filter.
- setSlope(Double) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.InputOutputSlopeTriplet
-
Setter for slope
- setSlope(double) - Method in class gov.sandia.cognition.learning.function.scalar.LinearFunction
-
Sets the slope of the function, which is the m term in: f(x) = m*x + b.
- setSlopeCondition(double) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.WolfeConditions
-
Setter for slopeCondition
- setSmoothingWindowSize(int) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractCategorizerOutOfBagStoppingCriteria
-
Sets the smoothing window size.
- setSortedROCData(ArrayList<ReceiverOperatingCharacteristic.DataPoint>) - Method in class gov.sandia.cognition.statistics.method.ReceiverOperatingCharacteristic
-
Setter for srtedROCData
- setSource(SourceType) - Method in class gov.sandia.cognition.text.relation.AbstractRelation
-
Sets the source object of the relation.
- setSplitThreshold(int) - Method in class gov.sandia.cognition.math.geometry.Quadtree
-
Sets the split threshold for the node.
- setSquashingFunction(VectorFunction) - Method in class gov.sandia.cognition.learning.function.vector.GeneralizedLinearModel
-
Setter for squashingFunction
- setSquashingFunction(DifferentiableUnivariateScalarFunction) - Method in class gov.sandia.cognition.learning.function.vector.ThreeLayerFeedforwardNeuralNetwork
-
Setter for squashingFunction
- setStart(int) - Method in class gov.sandia.cognition.text.AbstractOccurrenceInText
-
Sets the starting point of the occurrence.
- setStartNode(int) - Method in class gov.sandia.cognition.graph.GraphWalker
-
Sets the starting node (by id) for the next step (or series of steps)
- setStartNode(NodeNameType) - Method in class gov.sandia.cognition.graph.GraphWalker
-
Sets the start node (by name) for the next step (or series of steps)
- setState(StateType) - Method in class gov.sandia.cognition.evaluator.AbstractStatefulEvaluator
-
- setState(StateType) - Method in interface gov.sandia.cognition.evaluator.StatefulEvaluator
-
Sets the current state of the evaluator.
- setState(CognitiveModelState) - Method in class gov.sandia.cognition.framework.CognitiveModelStateChangeEvent
-
Sets the new state of the model.
- setStateVector(Vector) - Method in class gov.sandia.cognition.framework.lite.SimplePatternRecognizerState
-
Sets the state vector stored in the state object.
- setStatisticalTest(NullHypothesisEvaluator<Collection<? extends StatisticType>>) - Method in class gov.sandia.cognition.learning.experiment.LearnerComparisonExperiment
-
Sets the statistical test to use to determine if the two learners are
significantly different.
- setStatistics(DefaultPair<ArrayList<StatisticType>, ArrayList<StatisticType>>) - Method in class gov.sandia.cognition.learning.experiment.LearnerComparisonExperiment
-
Sets the performance evaluations for the trials of the experiment.
- setStatistics(ArrayList<StatisticType>) - Method in class gov.sandia.cognition.learning.experiment.LearnerRepeatExperiment
-
Sets the performance evaluations for the trials of the experiment.
- setStatistics(ArrayList<StatisticType>) - Method in class gov.sandia.cognition.learning.experiment.LearnerValidationExperiment
-
Sets the performance evaluations for the trials of the experiment.
- setStatistics(ArrayList<StatisticType>) - Method in class gov.sandia.cognition.learning.experiment.OnlineLearnerValidationExperiment
-
Sets the performance evaluations for the trials of the experiment.
- setStopList(StopList) - Method in class gov.sandia.cognition.text.term.filter.StopListFilter
-
Sets the stop list for the filter to use.
- setStoppingCriterion(double) - Method in class gov.sandia.cognition.learning.algorithm.clustering.MiniBatchKMeansClusterer
-
Set the stopping criterion for this clusterer.
- setSubIndices(int[]) - Method in class gov.sandia.cognition.learning.function.vector.SubVectorEvaluator
-
Sets the array of sub-indices.
- setSubLearner(DeciderLearner<Vectorizable, OutputType, Boolean, VectorElementThresholdCategorizer>) - Method in class gov.sandia.cognition.learning.algorithm.tree.RandomSubVectorThresholdLearner
-
Sets the learner used to learn a threshold function over the subspace.
- setSubMatrix(int, int, Matrix) - Method in class gov.sandia.cognition.math.matrix.AbstractMatrix
-
- setSubMatrix(int, int, Matrix) - Method in interface gov.sandia.cognition.math.matrix.Matrix
-
Sets the submatrix inside of the Matrix, specified by the zero-based
indices.
- setSufficientDecrease(double) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizerBacktracking
-
Setter for sufficientDecrease
- setSummaries(DefaultPair<SummaryType, SummaryType>) - Method in class gov.sandia.cognition.learning.experiment.LearnerComparisonExperiment.Result
-
Sets the summary of performance for the learners.
- setSummaries(DefaultPair<SummaryType, SummaryType>) - Method in class gov.sandia.cognition.learning.experiment.LearnerComparisonExperiment
-
Sets the summaries of the experiment.
- setSummarizer(Summarizer<? super StatisticType, ? extends SummaryType>) - Method in class gov.sandia.cognition.learning.experiment.LearnerComparisonExperiment
-
Sets the summarizer of the performance evaluations.
- setSummarizer(Summarizer<? super StatisticType, ? extends SummaryType>) - Method in class gov.sandia.cognition.learning.experiment.LearnerRepeatExperiment
-
Sets the summarizer of the performance evaluations.
- setSummarizer(Summarizer<? super StatisticType, ? extends SummaryType>) - Method in class gov.sandia.cognition.learning.experiment.LearnerValidationExperiment
-
Sets the summarizer of the performance evaluations.
- setSummarizer(Summarizer<? super StatisticType, ? extends SummaryType>) - Method in class gov.sandia.cognition.learning.experiment.OnlineLearnerValidationExperiment
-
Sets the summarizer of the performance evaluations.
- setSummary(SummaryType) - Method in class gov.sandia.cognition.learning.experiment.LearnerRepeatExperiment
-
Sets the summary of the experiment.
- setSummary(SummaryType) - Method in class gov.sandia.cognition.learning.experiment.LearnerValidationExperiment
-
Sets the summary of the experiment.
- setSummary(SummaryType) - Method in class gov.sandia.cognition.learning.experiment.OnlineLearnerValidationExperiment
-
Sets the summary of the experiment.
- setSupervisedLearner(SupervisedBatchLearner<InputType, OutputType, EvaluatorType>) - Method in class gov.sandia.cognition.learning.algorithm.TimeSeriesPredictionLearner
-
Setter for supervisedLearner
- setSupportsMap(LinkedHashMap<InputOutputPair<? extends InputType, Boolean>, DefaultWeightedValue<InputType>>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelAdatron
-
Gets the mapping of examples to weight objects (support vectors).
- setSupportsMap(LinkedHashMap<InputOutputPair<? extends InputType, ? extends Boolean>, DefaultWeightedValue<InputType>>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelPerceptron
-
Gets the mapping of examples to weight objects (support vectors).
- setSupportsMap(LinkedHashMap<InputOutputPair<? extends InputType, Double>, DefaultWeightedValue<InputType>>) - Method in class gov.sandia.cognition.learning.algorithm.regression.KernelBasedIterativeRegression
-
Gets the mapping of examples to weight objects (support vectors).
- setSupportsMap(LinkedHashMap<InputOutputPair<? extends InputType, ? extends Boolean>, SuccessiveOverrelaxation<InputType>.Entry>) - Method in class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation
-
Gets the mapping of examples to weight objects (support vectors).
- setSynonyms(Map<Term, Term>) - Method in class gov.sandia.cognition.text.term.filter.SynonymFilter
-
Sets the mapping of terms to their synonyms.
- setT(double) - Method in class gov.sandia.cognition.statistics.method.StudentTConfidence.Statistic
-
Setter for t
- setT(double) - Method in class gov.sandia.cognition.statistics.method.WilcoxonSignedRankConfidence.Statistic
-
Getter for T
- setTarget(double) - Method in class gov.sandia.cognition.learning.algorithm.root.SolverFunction
-
Setter for target
- setTarget(TargetType) - Method in class gov.sandia.cognition.learning.data.DefaultTargetEstimatePair
-
Sets the target, which is the ground-truth or actual value.
- setTarget(TargetType) - Method in class gov.sandia.cognition.text.relation.AbstractRelation
-
Sets the target object of the relation.
- setTargetConverter(CogxelConverter<TargetType>) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelTargetEstimatePairConverter
-
Sets the converter for the target value.
- setTargetEstimateCorrelation(double) - Method in class gov.sandia.cognition.learning.algorithm.regression.LinearRegression.Statistic
-
Setter for targetEstimateCorrelation
- setTargetInput(double) - Method in class gov.sandia.cognition.math.signals.PIDController
-
Setter for targetInput
- setTemperature(double) - Method in class gov.sandia.cognition.learning.algorithm.annealing.SimulatedAnnealer
-
Sets the current temperature of the system.
- setTerm(Term) - Method in class gov.sandia.cognition.text.term.DefaultIndexedTerm
-
Sets the term.
- setTerm(Term) - Method in class gov.sandia.cognition.text.term.DefaultTermOccurrence
-
Sets the term that occurred.
- setTermBasis(Matrix) - Method in class gov.sandia.cognition.text.topic.LatentSemanticAnalysis.Transform
-
Sets the matrix of orthogonal term column vectors.
- setTermDocumentFrequencies(Vector) - Method in class gov.sandia.cognition.text.term.vector.weighter.global.AbstractFrequencyBasedGlobalTermWeighter
-
Sets the vector containing the number of documents that each term
appears in.
- setTermEntropiesSum(Vector) - Method in class gov.sandia.cognition.text.term.vector.weighter.global.AbstractEntropyBasedGlobalTermWeighter
-
Sets the vector containing the sum of the term entropies.
- setTermGlobalFrequencies(Vector) - Method in class gov.sandia.cognition.text.term.vector.weighter.global.AbstractFrequencyBasedGlobalTermWeighter
-
Gets the vector containing the number of times that each term appears.
- setTermIndex(TermIndex) - Method in class gov.sandia.cognition.text.term.relation.MatrixBasedTermSimilarityNetwork
-
Sets the index of terms.
- setTermIndex(TermIndex) - Method in class gov.sandia.cognition.text.term.vector.BagOfWordsTransform
-
Sets the term index that the transform is to use to map terms to their
vector indices.
- setTermList(List<DefaultIndexedTerm>) - Method in class gov.sandia.cognition.text.term.DefaultTermIndex
-
Gets the list of terms, ordered by index.
- setTermMap(Map<Term, DefaultIndexedTerm>) - Method in class gov.sandia.cognition.text.term.DefaultTermIndex
-
Sets the mapping of terms to their indices.
- setTerms(Term...) - Method in class gov.sandia.cognition.text.term.DefaultTermNGram
-
Sets the terms that make up the n-gram.
- setTermToCountMap(HashMap<Term, Integer>) - Method in class gov.sandia.cognition.text.term.DefaultTermCounts
-
Gets the mapping of terms to their respective counts.
- setTestingSet(Collection<DataType>) - Method in class gov.sandia.cognition.learning.data.DefaultPartitionedDataset
-
Sets the testing set.
- setTestVector(Vector) - Method in class gov.sandia.cognition.statistics.ChiSquaredSimilarity
-
Basic setter for the test vector.
- setText(String) - Method in class gov.sandia.cognition.text.DefaultTextual
-
Sets the text value in this object.
- setText(String) - Method in class gov.sandia.cognition.text.document.DefaultTextField
-
Sets the text content for the field.
- setText(String) - Method in class gov.sandia.cognition.text.term.DefaultTerm
-
Sets the text of the term.
- setText(String) - Method in class gov.sandia.cognition.text.token.DefaultToken
-
Sets the text of the token.
- setThird(ThirdType) - Method in class gov.sandia.cognition.util.DefaultTriple
-
Sets the third object.
- setThreadPool(ThreadPoolExecutor) - Method in class gov.sandia.cognition.algorithm.AbstractParallelAlgorithm
-
- setThreadPool(ThreadPoolExecutor) - Method in interface gov.sandia.cognition.algorithm.ParallelAlgorithm
-
Sets the thread pool for the algorithm to use.
- setThreadPool(ThreadPoolExecutor) - Method in class gov.sandia.cognition.learning.algorithm.clustering.ParallelizedKMeansClusterer
-
- setThreadPool(ThreadPoolExecutor) - Method in class gov.sandia.cognition.learning.algorithm.genetic.ParallelizedGeneticAlgorithm
-
Setter for threadPool
- setThreadPool(ThreadPoolExecutor) - Method in class gov.sandia.cognition.learning.algorithm.hmm.ParallelBaumWelchAlgorithm
-
- setThreadPool(ThreadPoolExecutor) - Method in class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel
-
- setThreadPool(ThreadPoolExecutor) - Method in class gov.sandia.cognition.learning.experiment.ParallelLearnerValidationExperiment
-
- setThreadPool(ThreadPoolExecutor) - Method in class gov.sandia.cognition.learning.function.cost.ParallelClusterDistortionMeasure
-
- setThreadPool(ThreadPoolExecutor) - Method in class gov.sandia.cognition.learning.function.cost.ParallelizedCostFunctionContainer
-
- setThreadPool(ThreadPoolExecutor) - Method in class gov.sandia.cognition.learning.function.cost.ParallelNegativeLogLikelihood
-
- setThreadPool(ThreadPoolExecutor) - Method in class gov.sandia.cognition.statistics.bayesian.ParallelDirichletProcessMixtureModel
-
- setThreadPool(ThreadPoolExecutor) - Method in class gov.sandia.cognition.text.topic.ParallelLatentDirichletAllocationVectorGibbsSampler
-
- setThreshold(double) - Method in class gov.sandia.cognition.learning.function.categorization.AbstractThresholdBinaryCategorizer
-
Setter for threshold
- setThreshold(double) - Method in class gov.sandia.cognition.learning.function.categorization.KernelBinaryCategorizer
-
Sets the threshold, which is the negative of the bias.
- setThreshold(double) - Method in class gov.sandia.cognition.learning.function.categorization.LinearBinaryCategorizer
-
Sets the threshold, which is the negative of the bias.
- setThreshold(double) - Method in interface gov.sandia.cognition.learning.function.categorization.ThresholdBinaryCategorizer
-
Sets the threshold between the two categories used in binary
categorization.
- setThreshold(double) - Method in class gov.sandia.cognition.learning.function.scalar.ThresholdFunction
-
Setter for threshold
- setTime(Date) - Method in class gov.sandia.cognition.util.AbstractTemporal
-
Sets the time of the Temporal
- setTitle(String) - Method in class gov.sandia.cognition.text.document.DefaultDocument
-
Sets the title field of the document to the given string.
- setToJBlas() - Method in class gov.sandia.cognition.math.matrix.custom.NativeBlasHandler
-
Sets the BLAS library to use the Java version.
- setTokenizer(ReaderTokenizer) - Method in class gov.sandia.cognition.math.matrix.VectorReader
-
Setter for tokenizer
- setTolerance(double) - Method in class gov.sandia.cognition.graph.community.PersonalizedPageRank
-
Set the tolerance to a new value.
- setTolerance(double) - Method in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
-
Sets the tolerance value.
- setTolerance(double) - Method in class gov.sandia.cognition.learning.algorithm.minimization.AbstractAnytimeFunctionMinimizer
-
Setter for tolerance
- setTolerance(double) - Method in interface gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizer
-
Sets the tolerance of the minimization algorithm
- setTolerance(double) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.interpolator.AbstractLineBracketInterpolator
-
Setter for tolerance
- setTolerance(double) - Method in class gov.sandia.cognition.learning.algorithm.minimization.matrix.IterativeMatrixSolver
-
Sets the minimum tolerance before iterations complete (must be
non-negative).
- setTolerance(double) - Method in class gov.sandia.cognition.learning.algorithm.regression.AbstractLogisticRegression
-
Setter for tolerance
- setTolerance(double) - Method in class gov.sandia.cognition.learning.algorithm.regression.AbstractParameterCostMinimizer
-
Setter for tolerance
- setTolerance(double) - Method in class gov.sandia.cognition.learning.algorithm.regression.KernelWeightedRobustRegression
-
Setter for tolerance
- setTolerance(double) - Method in class gov.sandia.cognition.learning.algorithm.regression.LogisticRegression
-
Setter for tolerance
- setTolerance(double) - Method in class gov.sandia.cognition.learning.algorithm.root.AbstractRootFinder
-
- setTolerance(double) - Method in class gov.sandia.cognition.learning.algorithm.root.MinimizerBasedRootFinder
-
- setTolerance(double) - Method in interface gov.sandia.cognition.learning.algorithm.root.RootFinder
-
Sets the tolerance of the algorithm.
- setTolerance(double) - Method in class gov.sandia.cognition.math.LentzMethod
-
Setter for tolerance
- setTolerance(double) - Method in class gov.sandia.cognition.statistics.distribution.MixtureOfGaussians.EMLearner
-
Setter for tolerance
- setTolerance(double) - Method in class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel.EMLearner
-
Setter for tolerance
- setToNativeBlas() - Method in class gov.sandia.cognition.math.matrix.custom.NativeBlasHandler
-
If native BLAS is available, this sets the BLAS library to use the native
version.
- setTopicCount(int) - Method in class gov.sandia.cognition.text.topic.LatentDirichletAllocationVectorGibbsSampler
-
Sets the number of topics (k) created by the topic model.
- setTopicTermProbabilities(double[][]) - Method in class gov.sandia.cognition.text.topic.LatentDirichletAllocationVectorGibbsSampler.Result
-
Sets the document-topic probabilities, which are often called the
theta model parameters.
- setTotalChange(double) - Method in class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation
-
Gets the total change in weight from the most recent step of the
algorithm.
- setTotalCount(int) - Method in class gov.sandia.cognition.text.term.DefaultTermCounts
-
Sets the total count.
- setTournamentSize(int) - Method in class gov.sandia.cognition.learning.algorithm.genetic.selector.TournamentSelector
-
Sets the size for tournaments.
- setTrainingPercent(double) - Method in class gov.sandia.cognition.learning.data.RandomDataPartitioner
-
Sets the percentage of data to put in the training partition.
- setTrainingSet(Collection<DataType>) - Method in class gov.sandia.cognition.learning.data.DefaultPartitionedDataset
-
Sets the training set.
- setTransform(Matrix) - Method in class gov.sandia.cognition.text.topic.LatentSemanticAnalysis.Transform
-
Gets the cached transform matrix.
- setTransitionProbability(Matrix) - Method in class gov.sandia.cognition.learning.algorithm.hmm.MarkovChain
-
Setter for transitionProbability.
- setTreatmentCount(int) - Method in class gov.sandia.cognition.statistics.distribution.StudentizedRangeDistribution
-
Setter for treatmentCount
- setTrueNegativesCount(double) - Method in class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrix
-
Sets the number of true negatives in the matrix.
- setTrueNegativesRate(ConfidenceInterval) - Method in class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrixConfidenceInterval
-
Setter for trueNegativesRate
- setTruePositivesCount(double) - Method in class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrix
-
Sets the number of true positives in the matrix.
- setTruePositivesRate(ConfidenceInterval) - Method in class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrixConfidenceInterval
-
Setter for truePositivesRate
- setTrueValue(Number) - Method in class gov.sandia.cognition.data.convert.number.DefaultBooleanToNumberConverter
-
Sets the number that represents a true value.
- setType(ProcessLauncherEvent.EventType) - Method in class gov.sandia.cognition.io.ProcessLauncherEvent
-
Setter for type
- setU(Matrix) - Method in class gov.sandia.cognition.math.matrix.decomposition.AbstractSingularValueDecomposition
-
setter for left singular vectors
- setU(double) - Method in class gov.sandia.cognition.statistics.method.MannWhitneyUConfidence.Statistic
-
Setter for U
- setUnlabeledWeight(double) - Method in class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation.Entry
-
Sets the unlabeled weight.
- setUnpredictedErrorFraction(double) - Method in class gov.sandia.cognition.learning.algorithm.regression.LinearRegression.Statistic
-
Setter for unpredictedErrorFraction
- setUnsortedEigenDecomposition(ComplexNumber[], Matrix, Matrix) - Method in class gov.sandia.cognition.math.matrix.decomposition.AbstractEigenDecomposition
-
Creates a new eigendecomposition using the given eigenvalues and
eigenvectors...
- setUpdateBias(boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.AbstractLinearCombinationOnlineLearner
-
Sets whether or not the algorithm is updating the bias.
- setUpdater(ParticleFilter.Updater<ObservationType, ParameterType>) - Method in class gov.sandia.cognition.statistics.bayesian.AbstractParticleFilter
-
Setter for updater
- setUpdater(DirichletProcessMixtureModel.Updater<ObservationType>) - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel
-
Setter for updater
- setUpdater(ImportanceSampling.Updater<ObservationType, ParameterType>) - Method in class gov.sandia.cognition.statistics.bayesian.ImportanceSampling
-
Setter for updater
- setUpdater(MetropolisHastingsAlgorithm.Updater<ObservationType, ParameterType>) - Method in class gov.sandia.cognition.statistics.bayesian.MetropolisHastingsAlgorithm
-
Sets the object that makes proposal samples from the current location.
- setUpdater(RejectionSampling.Updater<ObservationType, ParameterType>) - Method in class gov.sandia.cognition.statistics.bayesian.RejectionSampling
-
Setter for updater
- setUpperBound(InputOutputSlopeTriplet) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.LineBracket
-
Setter for upperBound
- setUpperBound(double) - Method in class gov.sandia.cognition.statistics.method.ConfidenceInterval
-
Setter for upperBound
- setUpperLeft(Quadtree<DataType>.Node) - Method in class gov.sandia.cognition.math.geometry.Quadtree.Node
-
Sets the upper-left child.
- setUpperRight(Quadtree<DataType>.Node) - Method in class gov.sandia.cognition.math.geometry.Quadtree.Node
-
Sets the upper-right child.
- setUsePseudoInverse(boolean) - Method in class gov.sandia.cognition.learning.algorithm.regression.LinearBasisRegression
-
Setter for usePseudoInverse
- setUsePseudoInverse(boolean) - Method in class gov.sandia.cognition.learning.algorithm.regression.LinearRegression
-
Setter for usePseudoInverse
- setUsePseudoInverse(boolean) - Method in class gov.sandia.cognition.learning.algorithm.regression.MultivariateLinearRegression
-
Setter for usePseudoInverse
- setUtest(MannWhitneyUConfidence.Statistic) - Method in class gov.sandia.cognition.statistics.method.ReceiverOperatingCharacteristic
-
Setter for Utest
- setV1(double) - Method in class gov.sandia.cognition.statistics.distribution.SnedecorFDistribution
-
Setter for v1
- setV2(double) - Method in class gov.sandia.cognition.statistics.distribution.SnedecorFDistribution
-
Setter for v2
- setValid(boolean) - Method in class gov.sandia.cognition.io.ReaderTokenizer
-
Setter for valid
- setValidationData(DataType) - Method in class gov.sandia.cognition.learning.performance.AnytimeBatchLearnerValidationPerformanceReporter
-
Sets the validation dataset.
- setValidBracket(boolean) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.AbstractAnytimeLineMinimizer
-
Setter for validBracket
- setValue(double) - Method in class gov.sandia.cognition.collection.AbstractLogNumberMap.SimpleEntry
-
- setValue(double) - Method in class gov.sandia.cognition.collection.AbstractMutableDoubleMap.SimpleEntry
-
- setValue(double) - Method in interface gov.sandia.cognition.collection.ScalarMap.Entry
-
Sets the value associated with the key.
- setValue(ValueType) - Method in class gov.sandia.cognition.learning.algorithm.baseline.ConstantLearner
-
Sets the value that is the result of learning.
- setValue(double) - Method in class gov.sandia.cognition.learning.algorithm.tree.RegressionTreeNode
-
Sets the value stored at the node, which is usually the mean value.
- setValue(ValueType) - Method in class gov.sandia.cognition.learning.data.DefaultValueDiscriminantPair
-
Sets the value.
- setValue(OutputType) - Method in class gov.sandia.cognition.learning.function.ConstantEvaluator
-
Sets the constant output value for the evaluator.
- setValue(double) - Method in class gov.sandia.cognition.math.LogNumber
-
Sets the value represented by the log number.
- setValue(double) - Method in interface gov.sandia.cognition.math.matrix.MatrixEntry
-
Sets the value to which this entry points
- setValue(double) - Method in interface gov.sandia.cognition.math.matrix.VectorSpace.Entry
-
Sets the value to which this entry points
- setValue(double) - Method in class gov.sandia.cognition.math.MutableDouble
-
Sets the value stored in the object.
- setValue(int) - Method in class gov.sandia.cognition.math.MutableInteger
-
Sets the value stored in the object.
- setValue(long) - Method in class gov.sandia.cognition.math.MutableLong
-
Sets the value stored in the object.
- setValue(double) - Method in class gov.sandia.cognition.math.UnsignedLogNumber
-
Sets the value represented by the log number.
- setValue(Double) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.BernoulliBayesianEstimator.Parameter
-
- setValue(Double) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.BinomialBayesianEstimator.Parameter
-
- setValue(Double) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.ExponentialBayesianEstimator.Parameter
-
- setValue(Double) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.GammaInverseScaleBayesianEstimator.Parameter
-
- setValue(Vector) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.MultinomialBayesianEstimator.Parameter
-
- setValue(Vector) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanBayesianEstimator.Parameter
-
- setValue(Matrix) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanCovarianceBayesianEstimator.Parameter
-
- setValue(Double) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.PoissonBayesianEstimator.Parameter
-
- setValue(Double) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.UniformDistributionBayesianEstimator.Parameter
-
- setValue(Double) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanBayesianEstimator.Parameter
-
- setValue(Vector) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanVarianceBayesianEstimator.Parameter
-
- setValue(ParameterType) - Method in class gov.sandia.cognition.statistics.DefaultDistributionParameter
-
- setValue(ParameterType) - Method in interface gov.sandia.cognition.statistics.DistributionParameter
-
Sets the value of the parameter.
- setValue(ValueType) - Method in class gov.sandia.cognition.util.DefaultIdentifiedValue
-
Sets the value.
- setValue(ValueType) - Method in class gov.sandia.cognition.util.DefaultKeyValuePair
-
Sets the value element of the pair.
- setValue(ValueType) - Method in class gov.sandia.cognition.util.DefaultNamedValue
-
Sets the value stored in the name-value pair.
- setValue(ValueType) - Method in class gov.sandia.cognition.util.DefaultTemporalValue
-
Sets the value.
- setValue(ValueType) - Method in class gov.sandia.cognition.util.DefaultWeightedValue
-
Sets the value.
- setValueMap(Map<InputType, OutputType>) - Method in class gov.sandia.cognition.evaluator.ValueMapper
-
Sets the map of input values to output values.
- setValues(List<InputType>) - Method in class gov.sandia.cognition.data.convert.vector.UniqueBooleanVectorEncoder
-
Sets the list of unique values that the encoder is to use.
- setValues(Vector) - Method in class gov.sandia.cognition.framework.lite.VectorBasedCognitiveModelInput
-
Setter for values
- setValues(Collection<ValueType>) - Method in class gov.sandia.cognition.learning.function.distance.DivergencesEvaluator
-
Sets the values that the divergence is computed from using the
divergence function to the input.
- setVariance(double) - Method in class gov.sandia.cognition.learning.data.feature.StandardDistributionNormalizer
-
Sets the variance.
- setVariance(Vector) - Method in class gov.sandia.cognition.learning.function.categorization.DiagonalConfidenceWeightedBinaryCategorizer
-
Sets the variance vector.
- setVariance(double) - Method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian
-
Setter for variance
- setVectorFactory(VectorFactory<?>) - Method in class gov.sandia.cognition.data.convert.vector.AbstractToVectorEncoder
-
Sets the vector factory used by this encoder.
- setVectorFactory(VectorFactory<?>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.AbstractOnlineLinearBinaryCategorizerLearner
-
Sets the VectorFactory used to create the weight vector.
- setVectorFactory(VectorFactory<?>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.BatchMultiPerceptron
-
Sets the VectorFactory used to create the weight vector.
- setVectorFactory(VectorFactory<?>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineMultiPerceptron
-
Sets the VectorFactory used to create the weight vector.
- setVectorFactory(VectorFactory<?>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineVotedPerceptron
-
Sets the VectorFactory used to create the weight vector.
- setVectorFactory(VectorFactory<?>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.Perceptron
-
Sets the VectorFactory used to create the weight vector.
- setVectorFactory(VectorFactory<? extends Vector>) - Method in class gov.sandia.cognition.learning.algorithm.tree.RandomSubVectorThresholdLearner
-
Sets the vector factory.
- setVectorFactory(VectorFactory<?>) - Method in class gov.sandia.cognition.learning.data.feature.FeatureHashing
-
Sets the vector factory to use.
- setVectorFactory(VectorFactory<?>) - Method in class gov.sandia.cognition.learning.data.feature.RandomSubspace
-
Sets the vector factory to use.
- setVectorFactory(VectorFactory<?>) - Method in class gov.sandia.cognition.learning.function.categorization.WinnerTakeAllCategorizer.Learner
-
Sets the vector factory.
- setVectorFactory(VectorFactory<?>) - Method in class gov.sandia.cognition.learning.function.distance.DivergencesEvaluator.Learner
-
Sets the vector factory to use.
- setVectorFactory(VectorFactory<?>) - Method in class gov.sandia.cognition.learning.function.vector.VectorizableVectorConverterWithBias
-
Sets the vector factory used to create the vector with the bias.
- setVectorFactory(VectorFactory<? extends Vector>) - Method in class gov.sandia.cognition.math.matrix.DefaultVectorFactoryContainer
-
Sets the vector factory for the object to use to create new vectors.
- setVectorFactory(VectorFactory<? extends Vector>) - Method in class gov.sandia.cognition.text.term.vector.weighter.global.AbstractGlobalTermWeighter
-
Sets the vector factory.
- setVectorFactory(VectorFactory<? extends Vector>) - Method in class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis
-
Sets the vector factory to use.
- setVectorFunction(Evaluator<? super InputType, Vector>) - Method in class gov.sandia.cognition.learning.function.scalar.VectorFunctionLinearDiscriminant
-
Setter for vectorFunction
- setVectorFunction(Evaluator<? super InputType, ? extends Vectorizable>) - Method in class gov.sandia.cognition.learning.function.scalar.VectorFunctionToScalarFunction
-
Sets the vector function with a one-dimensional output that is being
converted to a scalar function.
- setVectorOffset(Vector) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.DirectionalVectorToScalarFunction
-
Point to use as input to vectorFunction
- setVectorScalarFunction(Evaluator<? super Vector, ? extends Double>) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.DirectionalVectorToScalarFunction
-
Setter for vectorScalarFunction
- setVoteOutOfBagOnly(boolean) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner
-
Sets whether during learning ensemble members can only vote on items
that they are not in their bag (training set).
- setVtranspose(Matrix) - Method in class gov.sandia.cognition.math.matrix.decomposition.AbstractSingularValueDecomposition
-
sets the transpose of the right singular vectors matrix
- setW(double) - Method in interface gov.sandia.cognition.math.matrix.Quaternion
-
Sets the w component of the quaternion.
- setWeakLearner(BatchLearner<? super Collection<? extends InputOutputPair<? extends InputType, Boolean>>, ? extends Evaluator<? super InputType, ? extends Boolean>>) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.AdaBoost
-
Sets the weak learner that is passed the weighted training data on each
step of the algorithm.
- setWeakLearner(BatchLearner<? super Collection<? extends InputOutputPair<? extends InputType, CategoryType>>, ? extends Evaluator<? super InputType, ? extends CategoryType>>) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.MultiCategoryAdaBoost
-
Sets the weak learner that is passed the weighted training data on each
step of the algorithm.
- setWeight(double) - Method in class gov.sandia.cognition.learning.data.DefaultWeightedInputOutputPair
-
Sets the weight for the pair.
- setWeight(double) - Method in class gov.sandia.cognition.learning.data.DefaultWeightedTargetEstimatePair
-
Sets the weight.
- setWeight(double) - Method in class gov.sandia.cognition.learning.function.kernel.WeightedKernel
-
Sets the weight used to rescale the kernel's results.
- setWeight(double) - Method in class gov.sandia.cognition.util.AbstractWeighted
-
Setter for weight
- setWeight(double) - Method in class gov.sandia.cognition.util.DefaultWeightedPair
-
Gets the weight of the pair.
- setWeightConverter(CogxelConverter<Double>) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelWeightedInputOutputPairConverter
-
Setter for weightConverter
- setWeightedData(ArrayList<DefaultWeightedInputOutputPair<InputType, Boolean>>) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.AdaBoost
-
Sets the weighted version of the data.
- setWeightPrior(MultivariateGaussian) - Method in class gov.sandia.cognition.statistics.bayesian.BayesianLinearRegression
-
Setter for weightPrior
- setWeightPrior(MultivariateGaussian) - Method in class gov.sandia.cognition.statistics.bayesian.BayesianRobustLinearRegression
-
Setter for weightPrior
- setWeightRegularization(double) - Method in class gov.sandia.cognition.learning.algorithm.factor.machine.AbstractFactorizationMachineLearner
-
Sets the value for the parameter controlling the linear weight
regularization.
- setWeights(Vector) - Method in class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachine
-
Sets the weight vector.
- setWeights(Vector) - Method in class gov.sandia.cognition.learning.function.categorization.LinearBinaryCategorizer
-
Sets the weight vector.
- setWeights(Vector) - Method in class gov.sandia.cognition.learning.function.distance.WeightedEuclideanDistanceMetric
-
Sets the vector of weights for each dimension.
- setWeights(Vector) - Method in class gov.sandia.cognition.learning.function.scalar.LinearVectorScalarFunction
-
Sets the weight vector.
- setWeightsEnabled(boolean) - Method in class gov.sandia.cognition.learning.algorithm.factor.machine.AbstractFactorizationMachineLearner
-
Sets whether or not the linear weight term is enabled.
- setWeightUpdate(double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.Winnow
-
Sets the multiplicative weight update term.
- setWeightVector(Vector) - Method in class gov.sandia.cognition.learning.function.scalar.LinearDiscriminant
-
Setter for weightVector
- setWithinClusterDivergenceFunction(WithinClusterDivergence<? super ClusterType, ? super DataType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
-
Sets the metric on clusters used for partitioning.
- setWordCounts(DefaultDataDistribution<String>) - Method in class gov.sandia.cognition.text.spelling.SimpleStatisticalSpellingCorrector
-
Sets the dictionary of words counts.
- setWords(Set<String>) - Method in class gov.sandia.cognition.text.term.filter.DefaultStopList
-
Sets the set of words in the stop list.
- setWriter(Writer) - Method in class gov.sandia.cognition.math.matrix.MatrixWriter
-
Setter for writer
- setWriter(Writer) - Method in class gov.sandia.cognition.math.matrix.VectorWriter
-
Setter for writer
- setWXYZ(double, double, double, double) - Method in interface gov.sandia.cognition.math.matrix.Quaternion
-
Sets all of the elements of the quaternion in w-x-y-z order.
- setX(double) - Method in class gov.sandia.cognition.math.matrix.mtj.Vector1
-
- setX(double) - Method in class gov.sandia.cognition.math.matrix.mtj.Vector2
-
- setX(double) - Method in class gov.sandia.cognition.math.matrix.mtj.Vector3
-
- setX(double) - Method in interface gov.sandia.cognition.math.matrix.Quaternion
-
Sets the x component of the quaternion.
- setX(double) - Method in interface gov.sandia.cognition.math.matrix.Vector1D
-
Sets the value of the first (and only) dimension (x).
- setX(double) - Method in interface gov.sandia.cognition.math.matrix.Vector2D
-
Sets the value of the first dimension (x).
- setX(double) - Method in interface gov.sandia.cognition.math.matrix.Vector3D
-
Sets the value of the first dimension (x).
- setXY(double, double) - Method in class gov.sandia.cognition.math.matrix.mtj.Vector2
-
- setXY(double, double) - Method in interface gov.sandia.cognition.math.matrix.Vector2D
-
Sets the value of both dimensions of the vector.
- setXYZ(double, double, double) - Method in class gov.sandia.cognition.math.matrix.mtj.Vector3
-
- setXYZ(double, double, double) - Method in interface gov.sandia.cognition.math.matrix.Vector3D
-
Sets the value of all three dimensions of this vector.
- setXYZW(double, double, double, double) - Method in interface gov.sandia.cognition.math.matrix.Quaternion
-
Sets all of the elements of the quaternion in x-y-z-w order.
- setY(double) - Method in class gov.sandia.cognition.math.matrix.mtj.Vector2
-
- setY(double) - Method in class gov.sandia.cognition.math.matrix.mtj.Vector3
-
- setY(double) - Method in interface gov.sandia.cognition.math.matrix.Quaternion
-
Sets the y component of the quaternion.
- setY(double) - Method in interface gov.sandia.cognition.math.matrix.Vector2D
-
Sets the value of the second dimension (y).
- setY(double) - Method in interface gov.sandia.cognition.math.matrix.Vector3D
-
Sets the value of the second dimension (y).
- setZ(double) - Method in class gov.sandia.cognition.math.matrix.mtj.Vector3
-
- setZ(double) - Method in interface gov.sandia.cognition.math.matrix.Quaternion
-
Sets the z component of the quaternion.
- setZ(double) - Method in interface gov.sandia.cognition.math.matrix.Vector3D
-
Sets the value of the third dimension (z).
- setZ(double) - Method in class gov.sandia.cognition.statistics.method.GaussianConfidence.Statistic
-
Getter for z
- setZ(double) - Method in class gov.sandia.cognition.statistics.method.MannWhitneyUConfidence.Statistic
-
Setter for z
- setZ(double) - Method in class gov.sandia.cognition.statistics.method.WilcoxonSignedRankConfidence.Statistic
-
Setter for z
- SHA1Hash - Class in gov.sandia.cognition.hash
-
A Java implementation of the Secure Hash Algorithm, SHA-1, as defined
in FIPS PUB 180-1.
- SHA1Hash() - Constructor for class gov.sandia.cognition.hash.SHA1Hash
-
Default constructor
- SHA256Hash - Class in gov.sandia.cognition.hash
-
The SHA-2, 256-bit (32 byte) hash function.
- SHA256Hash() - Constructor for class gov.sandia.cognition.hash.SHA256Hash
-
Default constructor
- SHA512Hash - Class in gov.sandia.cognition.hash
-
The SHA-2 512-bit (64-byte) hash function.
- SHA512Hash() - Constructor for class gov.sandia.cognition.hash.SHA512Hash
-
Creates a new instance of SHA512Hash
- ShafferStaticCorrection - Class in gov.sandia.cognition.statistics.method
-
The Shaffer Static Correction uses logical relationships to tighten up the
Bonferroni/Sidak corrections when performing pairwise multiple hypothesis
comparisons.
- ShafferStaticCorrection() - Constructor for class gov.sandia.cognition.statistics.method.ShafferStaticCorrection
-
Default constructor
- ShafferStaticCorrection(NullHypothesisEvaluator<Collection<? extends Number>>) - Constructor for class gov.sandia.cognition.statistics.method.ShafferStaticCorrection
-
Creates a new instance of BonferroniCorrection
- ShafferStaticCorrection.Statistic - Class in gov.sandia.cognition.statistics.method
-
Test statistic from the Shaffer static multiple-comparison test
- shape - Variable in class gov.sandia.cognition.statistics.distribution.BetaBinomialDistribution
-
Shape, similar to the beta parameter shape, must be greater than zero
- shape - Variable in class gov.sandia.cognition.statistics.distribution.InverseGammaDistribution
-
Shape parameter, must be greater than zero.
- shape - Variable in class gov.sandia.cognition.statistics.distribution.ParetoDistribution
-
Scale parameter, must be greater than zero.
- shape - Variable in class gov.sandia.cognition.statistics.distribution.WeibullDistribution
-
Shape parameter, must be greater than 0.0
- shape - Variable in class gov.sandia.cognition.statistics.distribution.YuleSimonDistribution
-
Shape parameter, must be greater than zero
- ShareableCognitiveModuleSettings - Interface in gov.sandia.cognition.framework
-
The ShareableCognitiveModuleSettings is an interface for module settings
that can be shared between two instances of a CognitiveModule.
- SharedSemanticMemoryLite - Class in gov.sandia.cognition.framework.lite
-
The SharedSemanticMemoryLite class implements a semantic memory that
uses a shared piece of memory to store the settings.
- SharedSemanticMemoryLite(SemanticIdentifierMap, SharedSemanticMemoryLiteSettings) - Constructor for class gov.sandia.cognition.framework.lite.SharedSemanticMemoryLite
-
Creates a new instance of SharedSemanticMemoryLite.
- SharedSemanticMemoryLiteFactory - Class in gov.sandia.cognition.framework.lite
-
The SharedSemanticMemoryLiteFactory implements a CognitiveModuleFactory
for SharedSemanticMemoryLite modules.
- SharedSemanticMemoryLiteFactory(PatternRecognizerLite) - Constructor for class gov.sandia.cognition.framework.lite.SharedSemanticMemoryLiteFactory
-
Creates a new instance of SharedSemanticMemoryLiteFactory.
- SharedSemanticMemoryLiteSettings - Class in gov.sandia.cognition.framework.lite
-
The SharedSemanticMemoryLiteSettings class implements the settings for
the SharedSemanticMemoryLite module.
- SharedSemanticMemoryLiteSettings(PatternRecognizerLite) - Constructor for class gov.sandia.cognition.framework.lite.SharedSemanticMemoryLiteSettings
-
Creates a new instance of SharedSemanticMemoryLiteSettings.
- shift - Variable in class gov.sandia.cognition.statistics.distribution.ParetoDistribution
-
Amount to shift the distribution to the left.
- shouldSplit(Quadtree<DataType>.Node) - Method in class gov.sandia.cognition.math.geometry.Quadtree
-
Determines if a given node should be split.
- shouldStop - Variable in class gov.sandia.cognition.learning.algorithm.minimization.matrix.IterativeMatrixSolver
-
If set to true, the algorithm will stop after the current iteration
completes.
- shouldUpdate(double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Projectron.LinearSoftMargin
-
- shouldUpdate(double) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Projectron
-
Determine if an update should be made.
- shrink(Forgetron.Result<InputType>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Forgetron.Greedy
-
- shrink(Forgetron.Result<InputType>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Forgetron
-
Apply the shrinking step of the algorithm.
- SidakCorrection - Class in gov.sandia.cognition.statistics.method
-
The Sidak correction takes a pair-wise null-hypothesis test and
generalizes it to multiple comparisons by adjusting the requisite p-value
to find significance as alpha / NumComparisons.
- SidakCorrection() - Constructor for class gov.sandia.cognition.statistics.method.SidakCorrection
-
Creates a new instance of SidakCorrection
- SidakCorrection(NullHypothesisEvaluator<Collection<? extends Number>>) - Constructor for class gov.sandia.cognition.statistics.method.SidakCorrection
-
Creates a new instance of SidakCorrection
- Sigma - Variable in class gov.sandia.cognition.math.matrix.custom.DenseMatrix.SVD
-
* The singular value diagonal matrix.
- SigmoidFunction - Class in gov.sandia.cognition.learning.function.scalar
-
An implementation of a sigmoid squashing function.
- SigmoidFunction() - Constructor for class gov.sandia.cognition.learning.function.scalar.SigmoidFunction
-
Creates a new instance of SigmoidFunction
- SigmoidKernel - Class in gov.sandia.cognition.learning.function.kernel
-
The SigmoidKernel
class implements a sigmoid kernel based on the
hyperbolic tangent.
- SigmoidKernel() - Constructor for class gov.sandia.cognition.learning.function.kernel.SigmoidKernel
-
Creates a new instance of SigmoidKernel with default values of 1.0 for
kappa and 0.0 for the constant.
- SigmoidKernel(double, double) - Constructor for class gov.sandia.cognition.learning.function.kernel.SigmoidKernel
-
Creates a new instance of SigmoidKernel from its two needed parameters:
kappa and a constant.
- SigmoidKernel(SigmoidKernel) - Constructor for class gov.sandia.cognition.learning.function.kernel.SigmoidKernel
-
Creates a new copy of a SigmoidKernel.
- similarities - Variable in class gov.sandia.cognition.learning.algorithm.clustering.AffinityPropagation
-
The array of example-example similarities.
- similarities - Variable in class gov.sandia.cognition.text.term.relation.MatrixBasedTermSimilarityNetwork
-
The similarities between terms.
- similarity - Variable in class gov.sandia.cognition.text.term.relation.IndexedTermSimilarityRelation
-
The similarity between the two terms.
- SimilarityFunction<FromType,ToType> - Interface in gov.sandia.cognition.text.relation
-
Defines the functionality of a similarity function that computes the
similarity between two objects.
- similarityFunction - Variable in class gov.sandia.cognition.text.term.relation.TermVectorSimilarityNetworkCreator
-
The similarity function between term vectors used to determine the
similarity between two terms.
- SimpleEntry(KeyType, LogNumber) - Constructor for class gov.sandia.cognition.collection.AbstractLogNumberMap.SimpleEntry
-
Creates a new instance of SimpleEntry
- SimpleEntry(KeyType, MutableDouble) - Constructor for class gov.sandia.cognition.collection.AbstractMutableDoubleMap.SimpleEntry
-
Creates a new instance of SimpleEntry
- SimpleEntrySet(Map<KeyType, LogNumber>) - Constructor for class gov.sandia.cognition.collection.AbstractLogNumberMap.SimpleEntrySet
-
Creates a new instance of SimpleEntrySet
- SimpleEntrySet(Map<KeyType, MutableDouble>) - Constructor for class gov.sandia.cognition.collection.AbstractMutableDoubleMap.SimpleEntrySet
-
Creates a new instance of SimpleEntrySet
- SimpleIterator(Iterator<? extends Map.Entry<KeyType, LogNumber>>) - Constructor for class gov.sandia.cognition.collection.AbstractLogNumberMap.SimpleIterator
-
Default constructor
- SimpleIterator(Iterator<? extends Map.Entry<KeyType, MutableDouble>>) - Constructor for class gov.sandia.cognition.collection.AbstractMutableDoubleMap.SimpleIterator
-
Default constructor
- SimpleIterator() - Constructor for class gov.sandia.cognition.math.matrix.DefaultInfiniteVector.SimpleIterator
-
Default constructor
- SimplePatternRecognizer - Class in gov.sandia.cognition.framework.lite
-
The SimplePatternRecognizer class implements a simple version of the
PatternRecognizerLite interface.
- SimplePatternRecognizer() - Constructor for class gov.sandia.cognition.framework.lite.SimplePatternRecognizer
-
Creates a new, empty instance of SimplePatternRecognizer.
- SimplePatternRecognizer(SemanticNetwork) - Constructor for class gov.sandia.cognition.framework.lite.SimplePatternRecognizer
-
Creates a new instance of SimplePatternRecognizer.
- SimplePatternRecognizer(SimplePatternRecognizer) - Constructor for class gov.sandia.cognition.framework.lite.SimplePatternRecognizer
-
Creates a new instance of SimplePatternRecognizer.
- SimplePatternRecognizerState - Class in gov.sandia.cognition.framework.lite
-
The SimplePatternRecognizerState
class implements a
CognitiveModuleState
for the
SimplePatternRecognizer
.
- SimplePatternRecognizerState(Collection<SemanticLabel>) - Constructor for class gov.sandia.cognition.framework.lite.SimplePatternRecognizerState
-
Creates a new instance of SimplePatternRecognizerState.
- SimplePatternRecognizerState(Collection<SemanticLabel>, Vector) - Constructor for class gov.sandia.cognition.framework.lite.SimplePatternRecognizerState
-
Creats a new instance of SimplePatternRecognizerState.
- SimplePatternRecognizerState(Collection<SemanticLabel>, Vector, boolean) - Constructor for class gov.sandia.cognition.framework.lite.SimplePatternRecognizerState
-
Creats a new instance of SimplePatternRecognizerState.
- SimplePatternRecognizerState(SimplePatternRecognizerState) - Constructor for class gov.sandia.cognition.framework.lite.SimplePatternRecognizerState
-
Creats a new instance of SimplePatternRecognizerState.
- SimpleStatisticalSpellingCorrector - Class in gov.sandia.cognition.text.spelling
-
A simple statistical spelling corrector based on word counts that looks at
possible one and two-character edits.
- SimpleStatisticalSpellingCorrector() - Constructor for class gov.sandia.cognition.text.spelling.SimpleStatisticalSpellingCorrector
-
Creates a new, default SimpleStatisticalSpellingCorrector
with
a default alphabet.
- SimpleStatisticalSpellingCorrector(char[]) - Constructor for class gov.sandia.cognition.text.spelling.SimpleStatisticalSpellingCorrector
-
Creates a new SimpleStatisticalSpellingCorrector
with a given
alphabet.
- SimpleStatisticalSpellingCorrector(DefaultDataDistribution<String>, char[]) - Constructor for class gov.sandia.cognition.text.spelling.SimpleStatisticalSpellingCorrector
-
Creates a new SimpleStatisticalSpellingCorrector
.
- SimpleStatisticalSpellingCorrector.Learner - Class in gov.sandia.cognition.text.spelling
-
A learner for the SimpleStatisticalSpellingCorrector
.
- SimulatedAnnealer<CostParametersType,AnnealedType> - Class in gov.sandia.cognition.learning.algorithm.annealing
-
The SimulatedAnnealer class implements the simulated annealing algorithm
using the provided cost function and perturbation function.
- SimulatedAnnealer(AnnealedType, Perturber<AnnealedType>, CostFunction<? super AnnealedType, ? super CostParametersType>) - Constructor for class gov.sandia.cognition.learning.algorithm.annealing.SimulatedAnnealer
-
Creates a new instance of SimulatedAnnealer.
- SimulatedAnnealer(AnnealedType, Perturber<AnnealedType>, CostFunction<? super AnnealedType, ? super CostParametersType>, int) - Constructor for class gov.sandia.cognition.learning.algorithm.annealing.SimulatedAnnealer
-
Creates a new instance of SimulatedAnnealer.
- SimulatedAnnealer(AnnealedType, Perturber<AnnealedType>, CostFunction<? super AnnealedType, ? super CostParametersType>, int, int) - Constructor for class gov.sandia.cognition.learning.algorithm.annealing.SimulatedAnnealer
-
Creates a new instance of SimulatedAnnealer.
- SingleDocumentExtractor - Interface in gov.sandia.cognition.text.document.extractor
-
Interface for a DocumentExtractor
that only extracts a single
document from a file.
- SingleTermFilter - Interface in gov.sandia.cognition.text.term.filter
-
Interface for a term filter that looks at each term individually.
- SingleTextualConverter<InputType,OutputType extends Textual> - Interface in gov.sandia.cognition.text.convert
-
Interface for an TextConverter
that converts an input into a single
output.
- SingleToMultiTextualConverterAdapter<InputType,OutputType extends Textual> - Class in gov.sandia.cognition.text.convert
-
Adapts a SingleTextualConverter
to work within the interface of an
MultiTextualConverter
.
- SingleToMultiTextualConverterAdapter() - Constructor for class gov.sandia.cognition.text.convert.SingleToMultiTextualConverterAdapter
-
Creates a new SingleToMultiTextualConverterAdapter
with no
internal converter.
- SingleToMultiTextualConverterAdapter(SingleTextualConverter<? super InputType, ? extends OutputType>) - Constructor for class gov.sandia.cognition.text.convert.SingleToMultiTextualConverterAdapter
-
Creates a new SingleToMultiTextualConverterAdapter
with the given
internal converter.
- SingularValueDecomposition - Interface in gov.sandia.cognition.math.matrix.decomposition
-
Interface that describes the operations of all SingularValueDecompositions
- SingularValueDecompositionMTJ - Class in gov.sandia.cognition.math.matrix.mtj.decomposition
-
Full singular-value decomposition, based on MTJ's SVD.
- singularValues - Variable in class gov.sandia.cognition.text.topic.LatentSemanticAnalysis.Transform
-
The diagonal matrix of singular values.
- size() - Method in class gov.sandia.cognition.collection.AbstractLogNumberMap.SimpleEntrySet
-
- size() - Method in class gov.sandia.cognition.collection.AbstractMutableDoubleMap.SimpleEntrySet
-
- size() - Method in class gov.sandia.cognition.collection.AbstractScalarMap
-
- size(Collection<?>) - Static method in class gov.sandia.cognition.collection.CollectionUtil
-
Determines the size of the given collection, checking for null.
- size(Iterable<?>) - Static method in class gov.sandia.cognition.collection.CollectionUtil
-
Determines the size of the given iterable.
- size() - Method in class gov.sandia.cognition.collection.DefaultIndexer
-
- size() - Method in class gov.sandia.cognition.collection.DefaultMultiCollection
-
- size() - Method in class gov.sandia.cognition.collection.DynamicArrayMap
-
Runs in O(1).
- size() - Method in class gov.sandia.cognition.collection.FiniteCapacityBuffer
-
- size() - Method in interface gov.sandia.cognition.collection.Indexer
-
Gets the number of items in the index.
- size() - Method in class gov.sandia.cognition.collection.IntegerSpan
-
- size() - Method in interface gov.sandia.cognition.collection.NumericMap
-
Gets the number of items in the map.
- size() - Method in class gov.sandia.cognition.collection.RangeExcludedArrayList
-
- size - Variable in class gov.sandia.cognition.learning.data.feature.RandomSubspace
-
The size of the random subspace to create, which is the number of
dimensions that are chosen.
- size - Variable in class gov.sandia.cognition.math.Combinations.AbstractCombinationsIterator
-
- size() - Method in class gov.sandia.cognition.math.Combinations
-
- size() - Method in class gov.sandia.cognition.math.geometry.KDTree.Neighborhood
-
- size() - Method in class gov.sandia.cognition.math.geometry.KDTree
-
- size() - Method in class gov.sandia.cognition.statistics.distribution.MultinomialDistribution.Domain
-
- size - Variable in class gov.sandia.cognition.text.term.filter.NGramFilter
-
The size of the n-gram.
- slope - Variable in class gov.sandia.cognition.learning.function.scalar.LinearFunction
-
The slope (m).
- SmoothCumulativeDistributionFunction - Interface in gov.sandia.cognition.statistics
-
This defines a CDF that has an associated derivative, which is its PDF.
- smoothedErrorRates - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractCategorizerOutOfBagStoppingCriteria
-
The smoothed out-of-bag error rates, per iteration.
- smoothingBuffer - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractCategorizerOutOfBagStoppingCriteria
-
The buffer used for smoothing.
- smoothingWindowSize - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractCategorizerOutOfBagStoppingCriteria
-
The size of window of data to look at to determine if learning has
hit a minimum.
- SmoothUnivariateDistribution - Interface in gov.sandia.cognition.statistics
-
A closed-form scalar distribution that is also smooth.
- SnedecorFDistribution - Class in gov.sandia.cognition.statistics.distribution
-
CDF of the Snedecor F-distribution (also known as Fisher F-distribution,
Fisher-Snedecor F-distribution, or just plain old F-distribution).
- SnedecorFDistribution() - Constructor for class gov.sandia.cognition.statistics.distribution.SnedecorFDistribution
-
Default constructor
- SnedecorFDistribution(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.SnedecorFDistribution
-
Creates a new instance of CumulativeDistribution
- SnedecorFDistribution(SnedecorFDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.SnedecorFDistribution
-
Copy Constructor
- SnedecorFDistribution.CDF - Class in gov.sandia.cognition.statistics.distribution
-
CDF of the F-distribution.
- SoftPlusFunction - Class in gov.sandia.cognition.learning.function.scalar
-
A smoothed approximation for rectified linear unit.
- SoftPlusFunction() - Constructor for class gov.sandia.cognition.learning.function.scalar.SoftPlusFunction
-
- SoftwareLicenseType - Enum in gov.sandia.cognition.annotation
-
An enumeration of common types of software licenses.
- SoftwareReference - Annotation Type in gov.sandia.cognition.annotation
-
Describes a reference to software.
- SoftwareReferences - Annotation Type in gov.sandia.cognition.annotation
-
The SoftwareReferences
annotation defines a container for one or
more references to a publication.
- solve() - Method in interface gov.sandia.cognition.graph.inference.EnergyFunctionSolver
-
Solves for the energy function passed in during initialize, e.g., compute
the beliefs.
- solve() - Method in class gov.sandia.cognition.graph.inference.SumProductInferencingAlgorithm
-
- solve(Matrix) - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
-
- solve(Vector) - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
-
- solve(Matrix) - Method in class gov.sandia.cognition.math.matrix.custom.DiagonalMatrix
-
- solve(Vector) - Method in class gov.sandia.cognition.math.matrix.custom.DiagonalMatrix
-
- solve(Matrix) - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
Solves for "X" in the equation: this*X = B
- solve(Vector) - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
Solves for "x" in the equation: this*x = b
- solve(Matrix) - Method in interface gov.sandia.cognition.math.matrix.Matrix
-
Solves for "X" in the equation: this*X = B
- solve(Vector) - Method in interface gov.sandia.cognition.math.matrix.Matrix
-
Solves for "x" in the equation: this*x = b
- solve(Matrix) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJMatrix
-
- solve(Vector) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJMatrix
-
- solve(AbstractMTJMatrix) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJMatrix
-
Solves for "X" in the equation this * X = B, where X is a DenseMatrix,
"this" and "B" will be converted to a DenseMatrix (if not already)
- solve(AbstractMTJVector) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJMatrix
-
Solves for "x" in the equation: this*x = b
- solve(AbstractMTJVector) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractSparseMatrix
-
This sparse-vector solver performs iterative solving for "x" in the
equation: this*x = b, and the AbstractSparseMatrix "this" can be
unstructured (e.g., asymmetric, indefinite, etc.)
- solve(AbstractMTJVector) - Method in class gov.sandia.cognition.math.matrix.mtj.DiagonalMatrixMTJ
-
- solve(Matrix) - Method in class gov.sandia.cognition.math.matrix.mtj.DiagonalMatrixMTJ
-
- solve(Vector) - Method in class gov.sandia.cognition.math.matrix.mtj.DiagonalMatrixMTJ
-
- solveCommunities() - Method in class gov.sandia.cognition.graph.community.Louvain
-
Solves for community detection of the graph passed in during the
constructor.
- solveCommunities() - Method in class gov.sandia.cognition.graph.community.Permanence
-
Performs the actual permanence-maximization computation and returns the
resulting partitioning.
- solveInto(DenseMatrix, DenseMatrix) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseMatrix
-
Solve for "X" in the equation: this*X = B
- solveInto(DenseVector, DenseVector) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseMatrix
-
Solve for "x" in the equation: this*x = b
- SolverFunction - Class in gov.sandia.cognition.learning.algorithm.root
-
Evaluator that allows RootFinders to solve for nonzero values by setting
a "target" parameter.
- SolverFunction() - Constructor for class gov.sandia.cognition.learning.algorithm.root.SolverFunction
-
Creates a new instance of SolverFunction
- SolverFunction(double, Evaluator<Double, Double>) - Constructor for class gov.sandia.cognition.learning.algorithm.root.SolverFunction
-
Creates a new instance of SolverFunction
- sortAndSetEigenDecomposition(ComplexNumber[], Matrix, Matrix) - Method in class gov.sandia.cognition.math.matrix.decomposition.AbstractEigenDecomposition
-
Sorts the eigendecomposition in descending order of the value of the
magnitudes of the eigenvalues
- sortArrayAscending(double[]) - Static method in class gov.sandia.cognition.util.ArrayIndexSorter
-
Returns the indices of the array sorted in ascending order
- sortArrayDescending(double[]) - Static method in class gov.sandia.cognition.util.ArrayIndexSorter
-
Returns the indices of the array sorted in ascending order.
- Sorter() - Constructor for class gov.sandia.cognition.statistics.method.ReceiverOperatingCharacteristic.DataPoint.Sorter
-
- source - Variable in class gov.sandia.cognition.text.relation.AbstractRelation
-
The source object of the relation.
- sourceVectorPrior - Variable in class gov.sandia.cognition.statistics.TransferEntropy.TransferEntropyDistributionObject
-
The prior for the source vector.
- SparseColumnMatrix - Class in gov.sandia.cognition.math.matrix.mtj
-
A sparse matrix, represented as a collection of sparse column vectors.
- SparseColumnMatrix(int, int) - Constructor for class gov.sandia.cognition.math.matrix.mtj.SparseColumnMatrix
-
Creates a new empty instance of SparseColumnMatrix.
- SparseColumnMatrix(SparseColumnMatrix) - Constructor for class gov.sandia.cognition.math.matrix.mtj.SparseColumnMatrix
-
Copy constructor for SparseColumnMatrix matrices.
- SparseColumnMatrix(Matrix) - Constructor for class gov.sandia.cognition.math.matrix.mtj.SparseColumnMatrix
-
Copy constructor for general matrices, copies over nonzero values.
- SparseColumnMatrix(FlexCompColMatrix) - Constructor for class gov.sandia.cognition.math.matrix.mtj.SparseColumnMatrix
-
Creates a SparseColumnMatrix based on the appropriate MTJ matrix,
does NOT create a copy of internalMatrix.
- SparseMatrix - Class in gov.sandia.cognition.math.matrix.custom
-
A sparse matrix implementation.
- SparseMatrix(int, int) - Constructor for class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
Creates a new sparse matrix with the specified number of rows and
columns.
- SparseMatrix(SparseMatrix) - Constructor for class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
Creates a new sparse matrix with the same dimensions and data as m
(performs a deep copy).
- SparseMatrix(DenseMatrix) - Constructor for class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
Creates a new sparse matrix with the same dimensions and data as d
(performs a deep copy).
- SparseMatrix(DiagonalMatrix) - Constructor for class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
Creates a new sparse matrix with the same dimensions and data as d
(performs a deep copy).
- SparseMatrix() - Constructor for class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
This should never be called by anything or anyone other than Java's
serialization code.
- SparseMatrix - Class in gov.sandia.cognition.math.matrix.mtj
-
A sparse matrix, represented as a collection of sparse row vectors.
- SparseMatrix(int, int) - Constructor for class gov.sandia.cognition.math.matrix.mtj.SparseMatrix
-
Creates a new empty instance of SparseMatrix.
- SparseMatrix(Matrix) - Constructor for class gov.sandia.cognition.math.matrix.mtj.SparseMatrix
-
Converts the given matrix to a SparseMatrix.
- SparseMatrixFactoryMTJ - Class in gov.sandia.cognition.math.matrix.mtj
-
Factory for MTJ's flexible sparse row matrix
- SparseMatrixFactoryMTJ() - Constructor for class gov.sandia.cognition.math.matrix.mtj.SparseMatrixFactoryMTJ
-
Creates a new instance of SparseMatrixFactoryMTJ
- SparseRowMatrix - Class in gov.sandia.cognition.math.matrix.mtj
-
A sparse matrix, represented as a collection of sparse row vectors.
- SparseRowMatrix(int, int) - Constructor for class gov.sandia.cognition.math.matrix.mtj.SparseRowMatrix
-
Creates a new empty instance of SparseRowMatrix.
- SparseRowMatrix(SparseRowMatrix) - Constructor for class gov.sandia.cognition.math.matrix.mtj.SparseRowMatrix
-
Copy constructor for SparseRowMatrix matrices
- SparseRowMatrix(Matrix) - Constructor for class gov.sandia.cognition.math.matrix.mtj.SparseRowMatrix
-
Copy constructor for general matrices, copies over nonzero values.
- SparseRowMatrix(FlexCompRowMatrix) - Constructor for class gov.sandia.cognition.math.matrix.mtj.SparseRowMatrix
-
Creates a SparseRowMatrix based on the appropriate MTJ matrix,
does NOT create a copy of internalMatrix.
- SparseVector - Class in gov.sandia.cognition.math.matrix.custom
-
Our sparse vector implementation.
- SparseVector(int) - Constructor for class gov.sandia.cognition.math.matrix.custom.SparseVector
-
Create a new sparse vector.
- SparseVector(SparseVector) - Constructor for class gov.sandia.cognition.math.matrix.custom.SparseVector
-
Copy constructor -- creates a deep copy of the input sparse vector.
- SparseVector(DenseVector) - Constructor for class gov.sandia.cognition.math.matrix.custom.SparseVector
-
Copy constructor -- creates a deep copy of the input sparse vector.
- SparseVector() - Constructor for class gov.sandia.cognition.math.matrix.custom.SparseVector
-
This should never be called by anything or anyone other than Java's
serialization code.
- SparseVector - Class in gov.sandia.cognition.math.matrix.mtj
-
A vector that only stores the nonzero elements, relies on MTJ's
SparseVector.
- SparseVector(int) - Constructor for class gov.sandia.cognition.math.matrix.mtj.SparseVector
-
Creates a new instance of SparseVector with no initial size.
- SparseVector(int, int) - Constructor for class gov.sandia.cognition.math.matrix.mtj.SparseVector
-
Creates a new instance of SparseVector with a specified initial size.
- SparseVector(SparseVector) - Constructor for class gov.sandia.cognition.math.matrix.mtj.SparseVector
-
Creates a new copy of SparseVector.
- SparseVector(Vector) - Constructor for class gov.sandia.cognition.math.matrix.mtj.SparseVector
-
Creates a new copy of SparseVector.
- SparseVectorFactory<VectorType extends Vector> - Class in gov.sandia.cognition.math.matrix
-
Abstract factory class for creating sparse vectors.
- SparseVectorFactory() - Constructor for class gov.sandia.cognition.math.matrix.SparseVectorFactory
-
- SparseVectorFactoryMTJ - Class in gov.sandia.cognition.math.matrix.mtj
-
Factory for MTJ's SparseVector
- SparseVectorFactoryMTJ() - Constructor for class gov.sandia.cognition.math.matrix.mtj.SparseVectorFactoryMTJ
-
Creates a new instance of SparseVectorFactoryMTJ
- split(String, char) - Static method in class gov.sandia.cognition.io.CSVUtility
-
Splits the given line into the array of character-separated values.
- split(Quadtree<DataType>.Node) - Method in class gov.sandia.cognition.math.geometry.Quadtree
-
Splits the given node.
- splitCommas(String) - Static method in class gov.sandia.cognition.io.CSVUtility
-
Splits the given line into the array of comma-separated values.
- splitData(Collection<? extends InputOutputPair<? extends InputType, OutputType>>, Categorizer<? super InputType, ? extends DecisionType>) - Method in class gov.sandia.cognition.learning.algorithm.tree.AbstractDecisionTreeLearner
-
Splits the data into new lists based on the given decision function.
- splitDatasets(Collection<? extends InputOutputPair<? extends DataType, Boolean>>) - Static method in class gov.sandia.cognition.learning.data.DatasetUtil
-
Splits a dataset of input-output pair into two datasets, one for the
inputs that have a "true" output and another for the inputs that have
a "false" output
- splitOnOutput(Iterable<? extends InputOutputPair<? extends InputType, ? extends CategoryType>>) - Static method in class gov.sandia.cognition.learning.data.DatasetUtil
-
Splits a dataset according to its output value (usually a category) so
that all the inputs for that category are given in a list.
- splitThreshold - Variable in class gov.sandia.cognition.math.geometry.Quadtree
-
The minimum number of items allowed in a leaf node.
- spreadValence() - Method in class gov.sandia.cognition.text.algorithm.ValenceSpreader
-
This method solves the system of equations to determine the valence for
all documents input and for all terms in those documents.
- spreadValence(int) - Method in class gov.sandia.cognition.text.algorithm.ValenceSpreader
-
This method solves the system of equations to determine the valence for
all documents input and for all terms in those documents.
- SQRT2 - Static variable in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian
-
Square root of 2.0, 0.707...
- SQRT2PI - Static variable in class gov.sandia.cognition.statistics.distribution.LogNormalDistribution
-
Constant value of Math.sqrt(2*Math.PI)
- stack(Vector) - Method in class gov.sandia.cognition.math.matrix.AbstractVector
-
- stack(DenseVector) - Method in class gov.sandia.cognition.math.matrix.custom.DenseVector
-
- stack(SparseVector) - Method in class gov.sandia.cognition.math.matrix.custom.DenseVector
-
- stack(DenseVector) - Method in class gov.sandia.cognition.math.matrix.custom.SparseVector
-
- stack(SparseVector) - Method in class gov.sandia.cognition.math.matrix.custom.SparseVector
-
- stack(Vector) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseVector
-
- stack(Vector) - Method in class gov.sandia.cognition.math.matrix.mtj.SparseVector
-
- stack(Vector) - Method in interface gov.sandia.cognition.math.matrix.Vector
-
Stacks "other" below "this" and returns the stacked Vector
- standardDeviation - Variable in class gov.sandia.cognition.learning.data.feature.StandardDistributionNormalizer
-
The cached value of the standard deviation for normalization.
- StandardDistributionNormalizer - Class in gov.sandia.cognition.learning.data.feature
-
The StandardDistributionNormalizer
class implements a normalization
method where a real value is converted onto a standard distribution.
- StandardDistributionNormalizer() - Constructor for class gov.sandia.cognition.learning.data.feature.StandardDistributionNormalizer
-
Creates a new instance of StandardNormalization with a mean of 0.0 and
a variance of 1.0.
- StandardDistributionNormalizer(double, double) - Constructor for class gov.sandia.cognition.learning.data.feature.StandardDistributionNormalizer
-
Creates a new instance of StandardDistributionNormalizer with the given
mean and variance.
- StandardDistributionNormalizer(UnivariateGaussian) - Constructor for class gov.sandia.cognition.learning.data.feature.StandardDistributionNormalizer
-
Creates a new instance of StandardDistributionNormalizer from the given
Gaussian.
- StandardDistributionNormalizer(StandardDistributionNormalizer) - Constructor for class gov.sandia.cognition.learning.data.feature.StandardDistributionNormalizer
-
Creates a new copy of a StandardDistributionNormalizer.
- StandardDistributionNormalizer.Learner - Class in gov.sandia.cognition.learning.data.feature
-
The Learner
class implements a BatchLearner
object for
a StandardDistributionNormalizer
.
- standardErrors - Variable in class gov.sandia.cognition.statistics.method.TukeyKramerConfidence.Statistic
-
Gets the standard errors in the experiment
- start - Variable in class gov.sandia.cognition.text.AbstractOccurrenceInText
-
The starting point of the occurrence.
- state - Variable in class gov.sandia.cognition.framework.lite.AbstractCognitiveModelLite
-
The current state of the model.
- State() - Constructor for class gov.sandia.cognition.math.signals.PIDController.State
-
Default constructor.
- State(double, double) - Constructor for class gov.sandia.cognition.math.signals.PIDController.State
-
Creates a new instance of State
- state - Variable in class gov.sandia.cognition.statistics.TransferEntropy.TransferEntropyPartialSumObject
-
The state.
- stateBeliefs(Collection<? extends ObservationType>) - Method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
Computes the probability distribution over all states for each
observation.
- StatefulEvaluator<InputType,OutputType,StateType extends CloneableSerializable> - Interface in gov.sandia.cognition.evaluator
-
The StatefulEvaluator
interface defines the functionality of an
Evaluator
that maintains an internal state.
- StatefulEvaluatorBasedCognitiveModule<InputType,OutputType> - Class in gov.sandia.cognition.framework.learning
-
The StatefulEvaluatorBasedCognitiveModule implements a CognitiveModule that
wraps a StatefulEvaluator object.
- StatefulEvaluatorBasedCognitiveModule(CognitiveModel, EvaluatorBasedCognitiveModuleSettings<InputType, OutputType>, String) - Constructor for class gov.sandia.cognition.framework.learning.StatefulEvaluatorBasedCognitiveModule
-
Creates a new instance of StatefulEvaluatorBasedCognitiveModule.
- StateObservationLikelihoodTask() - Constructor for class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel.StateObservationLikelihoodTask
-
Default constructor.
- stateObservationLikelihoodTasks - Variable in class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel
-
StateObservationLikelihoodTasks
- stationaryPoints() - Method in interface gov.sandia.cognition.learning.function.scalar.PolynomialFunction.ClosedForm
-
Finds the real-valued stationary points (zero slope) maxima or minima
of the polynomial
- stationaryPoints() - Method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Cubic
-
- stationaryPoints(double, double, double, double) - Static method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Cubic
-
Finds the stationary point of the quadratic equation.
- stationaryPoints() - Method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Linear
-
- stationaryPoints() - Method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Quadratic
-
Finds the real-valued stationary points (zero-derivatives) of the
quadratic.
- stationaryPoints(double, double, double) - Static method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Quadratic
-
Finds the stationary point of the quadratic equation.
- Statistic(Collection<Double>, Collection<Double>, int) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.LinearRegression.Statistic
-
Creates a new instance of Statistic
- Statistic(Collection<Double>, Collection<Double>, Collection<Double>, int) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.LinearRegression.Statistic
-
Creates a new instance of Statistic
- Statistic() - Constructor for class gov.sandia.cognition.statistics.method.AbstractMultipleHypothesisComparison.Statistic
-
Default constructor
- Statistic(Collection<? extends Collection<? extends Number>>, double, NullHypothesisEvaluator<Collection<? extends Number>>) - Constructor for class gov.sandia.cognition.statistics.method.AbstractPairwiseMultipleHypothesisComparison.Statistic
-
Creates a new instance of StudentizedMultipleComparisonStatistic
- Statistic(double, double, double) - Constructor for class gov.sandia.cognition.statistics.method.AnalysisOfVarianceOneWay.Statistic
-
Creates a new instance of Statistic
- Statistic(double, double) - Constructor for class gov.sandia.cognition.statistics.method.ChiSquareConfidence.Statistic
-
Creates a new instance of chiSquare
- Statistic(int, int) - Constructor for class gov.sandia.cognition.statistics.method.FisherSignConfidence.Statistic
-
Creates a new instance of Statistic
- Statistic(int, int, ArrayList<Double>) - Constructor for class gov.sandia.cognition.statistics.method.FriedmanConfidence.Statistic
-
Creates a new instance of Statistic
- Statistic(int, int, ArrayList<Double>, double) - Constructor for class gov.sandia.cognition.statistics.method.FriedmanConfidence.Statistic
-
Creates a new instance of Statistic
- Statistic(int, int, ArrayList<Double>, double, double) - Constructor for class gov.sandia.cognition.statistics.method.FriedmanConfidence.Statistic
-
Creates a new instance of Statistic
- Statistic(double) - Constructor for class gov.sandia.cognition.statistics.method.GaussianConfidence.Statistic
-
Creates a new instance of Statistic
- Statistic(Collection<? extends Collection<? extends Number>>, double, NullHypothesisEvaluator<Collection<? extends Number>>) - Constructor for class gov.sandia.cognition.statistics.method.HolmCorrection.Statistic
-
Creates a new instance of Statistic
- Statistic(double, double) - Constructor for class gov.sandia.cognition.statistics.method.KolmogorovSmirnovConfidence.Statistic
-
Creates a new instance of Statistic
- Statistic(double, int, double, int) - Constructor for class gov.sandia.cognition.statistics.method.MannWhitneyUConfidence.Statistic
-
Creates a new instance of Statistic
- Statistic(MannWhitneyUConfidence.Statistic) - Constructor for class gov.sandia.cognition.statistics.method.MannWhitneyUConfidence.Statistic
-
Copy Constructor
- Statistic(ConfidenceStatistic, MultipleHypothesisComparison.Statistic) - Constructor for class gov.sandia.cognition.statistics.method.MultipleComparisonExperiment.Statistic
-
Creates a new instance of Statistic
- Statistic(double, int, ArrayList<Double>, double) - Constructor for class gov.sandia.cognition.statistics.method.NemenyiConfidence.Statistic
-
Creates a new instance of StudentizedMultipleComparisonStatistic
- Statistic(ReceiverOperatingCharacteristic) - Constructor for class gov.sandia.cognition.statistics.method.ReceiverOperatingCharacteristic.Statistic
-
Creates a new instance of Statistic
- Statistic(Collection<? extends Collection<? extends Number>>, double, NullHypothesisEvaluator<Collection<? extends Number>>) - Constructor for class gov.sandia.cognition.statistics.method.ShafferStaticCorrection.Statistic
-
Creates a new instance of Statistic
- Statistic(double, double) - Constructor for class gov.sandia.cognition.statistics.method.StudentTConfidence.Statistic
-
Creates a new instance of Statistic
- Statistic(StudentTConfidence.Statistic) - Constructor for class gov.sandia.cognition.statistics.method.StudentTConfidence.Statistic
-
Copy Constructor
- Statistic(double, ArrayList<Integer>, ArrayList<Double>, double) - Constructor for class gov.sandia.cognition.statistics.method.TukeyKramerConfidence.Statistic
-
Creates a new instance of Statistic
- Statistic(double, int) - Constructor for class gov.sandia.cognition.statistics.method.WilcoxonSignedRankConfidence.Statistic
-
Creates a new instance of Statistic
- statistics - Variable in class gov.sandia.cognition.learning.experiment.LearnerComparisonExperiment
-
The performance evaluations made during the experiment.
- statistics - Variable in class gov.sandia.cognition.learning.experiment.LearnerRepeatExperiment
-
The performance evaluations made during the experiment.
- statistics - Variable in class gov.sandia.cognition.learning.experiment.LearnerValidationExperiment
-
The performance evaluations made during the experiment.
- statistics - Variable in class gov.sandia.cognition.learning.experiment.OnlineLearnerValidationExperiment
-
The performance evaluations made during the experiment.
- StatusPrinter() - Constructor for class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis.StatusPrinter
-
Creates a new StatusPrinter
writing to System.out
.
- StatusPrinter(PrintStream) - Constructor for class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis.StatusPrinter
-
Creates a new StatusPrinter
writing to the given stream.
- SteepestDescentMatrixSolver - Class in gov.sandia.cognition.learning.algorithm.minimization.matrix
-
Implements a basic Steepest Descent iterative solver for linear systems of
equations.
- SteepestDescentMatrixSolver(Vector, Vector) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.matrix.SteepestDescentMatrixSolver
-
Initializes a steepest-descent solver with the minimum values
- SteepestDescentMatrixSolver(Vector, Vector, double) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.matrix.SteepestDescentMatrixSolver
-
Initializes a steepest-descent solver with some additional parameters
- SteepestDescentMatrixSolver(Vector, Vector, double, int) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.matrix.SteepestDescentMatrixSolver
-
Initializes a steepest-descent solver with all user-definable parameters
- stem(String) - Static method in class gov.sandia.cognition.text.term.filter.stem.PorterEnglishStemmingFilter
-
Stems the given String according to the Porter stemming algorithm for
English words.
- step() - Method in class gov.sandia.cognition.learning.algorithm.AbstractAnytimeBatchLearner
-
Called to take a single step of the learning algorithm.
- step() - Method in class gov.sandia.cognition.learning.algorithm.annealing.SimulatedAnnealer
-
Takes one step in the Simulated Annealing process.
- step() - Method in class gov.sandia.cognition.learning.algorithm.clustering.AffinityPropagation
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.clustering.AgglomerativeClusterer
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.clustering.DBSCANClusterer
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.clustering.KMeansClusterer
-
Do a step of the clustering algorithm.
- step() - Method in class gov.sandia.cognition.learning.algorithm.clustering.KMeansClustererWithRemoval
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.clustering.MiniBatchKMeansClusterer
-
Do a step of the clustering algorithm.
- step() - Method in class gov.sandia.cognition.learning.algorithm.clustering.OptimizedKMeansClusterer
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractBaggingLearner
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.ensemble.AdaBoost
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.ensemble.MultiCategoryAdaBoost
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachineAlternatingLeastSquares
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachineStochasticGradient
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.genetic.GeneticAlgorithm
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.hmm.BaumWelchAlgorithm
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerConjugateGradient
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerDirectionSetPowell
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerGradientDescent
-
Called to take a single step of the learning algorithm.
- step() - Method in class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerNelderMead
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerQuasiNewton
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.AbstractAnytimeLineMinimizer
-
- step(InputOutputPair<Double, Double>, InputOutputPair<Double, Double>, double) - Static method in class gov.sandia.cognition.learning.algorithm.minimization.line.interpolator.LineBracketInterpolatorGoldenSection
-
Takes a Golden Section step between the two points
- step() - Method in class gov.sandia.cognition.learning.algorithm.pca.GeneralizedHebbianAlgorithm
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.perceptron.BatchMultiPerceptron
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelAdatron
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelPerceptron
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.perceptron.Perceptron
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.regression.FletcherXuHybridEstimation
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.regression.GaussNewtonAlgorithm
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.regression.KernelBasedIterativeRegression
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.regression.KernelWeightedRobustRegression
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.regression.LevenbergMarquardtEstimation
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.regression.LogisticRegression
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.root.RootBracketExpander
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.root.RootFinderBisectionMethod
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.root.RootFinderFalsePositionMethod
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.root.RootFinderNewtonsMethod
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.root.RootFinderRiddersMethod
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.root.RootFinderSecantMethod
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.svm.PrimalEstimatedSubGradient
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.svm.SequentialMinimalOptimization
-
- step() - Method in class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation
-
- step() - Method in class gov.sandia.cognition.statistics.bayesian.AbstractMarkovChainMonteCarlo
-
- step() - Method in class gov.sandia.cognition.statistics.distribution.MixtureOfGaussians.EMLearner
-
- step() - Method in class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel.EMLearner
-
- step() - Method in class gov.sandia.cognition.text.topic.LatentDirichletAllocationVectorGibbsSampler
-
- step() - Method in class gov.sandia.cognition.text.topic.ParallelLatentDirichletAllocationVectorGibbsSampler
-
- step(Vector, Matrix, Vector) - Method in class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis.Result
-
Take a step of the expectation-maximization algorithm for computing
the probability of the query given each latent variable.
- step() - Method in class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis
-
- STEP_MAX - Static variable in class gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizerBacktracking
-
Maximum step size allowed by a parabolic fit, 100.0
- STEP_MAX - Static variable in class gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizerDerivativeFree
-
Maximum step size allowed by a parabolic fit, 100.0.
- STEP_MAX - Static variable in class gov.sandia.cognition.learning.algorithm.regression.GaussNewtonAlgorithm
-
Maximum step norm allowed under a Gauss-Newton step, 100.0
- stepEnded(IterativeAlgorithm) - Method in class gov.sandia.cognition.algorithm.AnytimeAlgorithmWrapper
-
- stepEnded(IterativeAlgorithm) - Method in class gov.sandia.cognition.algorithm.event.AbstractIterativeAlgorithmListener
-
- stepEnded(IterativeAlgorithm) - Method in class gov.sandia.cognition.algorithm.event.IterationMeasurablePerformanceReporter
-
- stepEnded(IterativeAlgorithm) - Method in interface gov.sandia.cognition.algorithm.IterativeAlgorithmListener
-
This method is called when the algorithm has ended a step of its
execution.
- stepEnded(IterativeAlgorithm) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractCategorizerOutOfBagStoppingCriteria
-
- stepEnded(IterativeAlgorithm) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.BaggingCategorizerLearner.OutOfBagErrorStoppingCriteria
-
- stepEnded(IterativeAlgorithm) - Method in class gov.sandia.cognition.learning.performance.AnytimeBatchLearnerValidationPerformanceReporter
-
- stepEnded(IterativeAlgorithm) - Method in class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis.StatusPrinter
-
- stepStarted(IterativeAlgorithm) - Method in class gov.sandia.cognition.algorithm.AnytimeAlgorithmWrapper
-
- stepStarted(IterativeAlgorithm) - Method in class gov.sandia.cognition.algorithm.event.AbstractIterativeAlgorithmListener
-
- stepStarted(IterativeAlgorithm) - Method in class gov.sandia.cognition.algorithm.event.IterationStartReporter
-
- stepStarted(IterativeAlgorithm) - Method in interface gov.sandia.cognition.algorithm.IterativeAlgorithmListener
-
This method is called when the algorithm has started a step in its
execution.
- stepStarted(IterativeAlgorithm) - Method in class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis.StatusPrinter
-
- stop() - Method in class gov.sandia.cognition.algorithm.AnytimeAlgorithmWrapper
-
- stop() - Method in interface gov.sandia.cognition.algorithm.StoppableAlgorithm
-
Requests that the algorithm stop at the next appropriate point.
- stop() - Method in class gov.sandia.cognition.learning.algorithm.AbstractAnytimeBatchLearner
-
- stop() - Method in class gov.sandia.cognition.learning.algorithm.minimization.matrix.IterativeMatrixSolver
-
Execution will stop after the current iteration completes.
- stop() - Method in class gov.sandia.cognition.math.LentzMethod
-
- StopList - Interface in gov.sandia.cognition.text.term.filter
-
Interface for a list of stop words.
- stopList - Variable in class gov.sandia.cognition.text.term.filter.StopListFilter
-
The stop list for the filter to use.
- StopListFilter - Class in gov.sandia.cognition.text.term.filter
-
A term filter that rejects any term that appears in a given stop list.
- StopListFilter() - Constructor for class gov.sandia.cognition.text.term.filter.StopListFilter
-
Creates a new StopListFilter
.
- StopListFilter(StopList) - Constructor for class gov.sandia.cognition.text.term.filter.StopListFilter
-
Creates a new StopListFilter
with the given stop list.
- StoppableAlgorithm - Interface in gov.sandia.cognition.algorithm
-
Defines methods for an algorithm that can be stopped early during its
execution.
- stopProcess() - Method in class gov.sandia.cognition.io.ProcessLauncher
-
Stops the process.
- Stoptron<InputType> - Class in gov.sandia.cognition.learning.algorithm.perceptron.kernel
-
An online, budgeted, kernel version of the Perceptron algorithm that stops
learning once it has reached its budget.
- Stoptron() - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Stoptron
-
Creates a new Stoptron
with default parameters and a null kernel.
- Stoptron(Kernel<? super InputType>, int) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Stoptron
-
Creates a new Stoptron
with the given parameters.
- StreamSerializationHandler<SerializedType> - Interface in gov.sandia.cognition.io.serialization
-
Interface for an object that can be used to serialize and deserialize
objects.
- StringEvaluatorSingleTermFilter - Class in gov.sandia.cognition.text.term.filter
-
Adapts an evaluator from string to string to be a term filter on individual
terms.
- StringEvaluatorSingleTermFilter() - Constructor for class gov.sandia.cognition.text.term.filter.StringEvaluatorSingleTermFilter
-
Creates a new StringEvaluatorSingleTermFilter
with a null
evaluator.
- StringEvaluatorSingleTermFilter(Evaluator<String, String>) - Constructor for class gov.sandia.cognition.text.term.filter.StringEvaluatorSingleTermFilter
-
Creates a new StringEvaluatorSingleTermFilter
with a given
evaluator.
- StringToDoubleConverter - Class in gov.sandia.cognition.data.convert.number
-
Converts a String
to a Double
using the
Double.valueOf
method.
- StringToDoubleConverter() - Constructor for class gov.sandia.cognition.data.convert.number.StringToDoubleConverter
-
Creates a new StringToDoubleConverter
.
- StringToIntegerConverter - Class in gov.sandia.cognition.data.convert.number
-
Converts a String
to a Integer
using the
Integer.valueOf
method.
- StringToIntegerConverter() - Constructor for class gov.sandia.cognition.data.convert.number.StringToIntegerConverter
-
Creates a new StringToIntegerConverter
.
- StringUtil - Class in gov.sandia.cognition.util
-
The Strings
class implements static utility methods for dealing with
String
objects.
- StringUtil() - Constructor for class gov.sandia.cognition.util.StringUtil
-
- StudentizedRangeDistribution - Class in gov.sandia.cognition.statistics.distribution
-
Implementation of the Studentized Range distribution, which defines the
population correction factor when performing multiple comparisons.
- StudentizedRangeDistribution() - Constructor for class gov.sandia.cognition.statistics.distribution.StudentizedRangeDistribution
-
Default constructor
- StudentizedRangeDistribution(int, double) - Constructor for class gov.sandia.cognition.statistics.distribution.StudentizedRangeDistribution
-
Creates a new instance of StudentizedRangeDistribution
- StudentizedRangeDistribution(StudentizedRangeDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.StudentizedRangeDistribution
-
Copy constructor
- StudentizedRangeDistribution.APStat - Class in gov.sandia.cognition.statistics.distribution
-
This is a translation of Fortran code taken from
http://lib.stat.cmu.edu/apstat/, and the comments on the individual functions
in this class are taken directly from the original.
- StudentizedRangeDistribution.CDF - Class in gov.sandia.cognition.statistics.distribution
-
CDF of the StudentizedRangeDistribution
- StudentizedRangeDistribution.SampleRange - Class in gov.sandia.cognition.statistics.distribution
-
Computes the estimate of the Studentized Range for a single sample
- StudentTConfidence - Class in gov.sandia.cognition.statistics.method
-
This class implements Student's t-tests for different uses.
- StudentTConfidence() - Constructor for class gov.sandia.cognition.statistics.method.StudentTConfidence
-
Creates a new instance of StudentTConfidence
- StudentTConfidence.Statistic - Class in gov.sandia.cognition.statistics.method
-
Confidence statistics for a Student-t test
- StudentTConfidence.Summary - Class in gov.sandia.cognition.statistics.method
-
An implementation of the Summarizer
interface for creating a
ConfidenceInterval
- StudentTDistribution - Class in gov.sandia.cognition.statistics.distribution
-
Defines a noncentral Student-t Distribution.
- StudentTDistribution() - Constructor for class gov.sandia.cognition.statistics.distribution.StudentTDistribution
-
Default degrees of freedom.
- StudentTDistribution(double) - Constructor for class gov.sandia.cognition.statistics.distribution.StudentTDistribution
-
Creates a new instance of StudentTDistribution
- StudentTDistribution(double, double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.StudentTDistribution
-
Creates a new instance of StudentTDistribution
- StudentTDistribution(StudentTDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.StudentTDistribution
-
Copy constructor
- StudentTDistribution.CDF - Class in gov.sandia.cognition.statistics.distribution
-
Evaluator that computes the Cumulative Distribution Function (CDF) of
a Student-t distribution with a fixed number of degrees of freedom
- StudentTDistribution.MaximumLikelihoodEstimator - Class in gov.sandia.cognition.statistics.distribution
-
Estimates the parameters of the Student-t distribution from the given
data, where the degrees of freedom are estimated from the Kurtosis
of the sample data.
- StudentTDistribution.PDF - Class in gov.sandia.cognition.statistics.distribution
-
Evaluator that computes the Probability Density Function (CDF) of
a Student-t distribution with a fixed number of degrees of freedom
- StudentTDistribution.WeightedMaximumLikelihoodEstimator - Class in gov.sandia.cognition.statistics.distribution
-
Creates a UnivariateGaussian from weighted data
- subCollections() - Method in class gov.sandia.cognition.collection.DefaultMultiCollection
-
- subCollections() - Method in interface gov.sandia.cognition.collection.MultiCollection
-
Returns the sub-collections of the multi-collection.
- subCollections() - Method in class gov.sandia.cognition.collection.RangeExcludedArrayList
-
- SubCostEvaluate(ParallelizableCostFunction, Evaluator<? super Vector, ? extends Vector>) - Constructor for class gov.sandia.cognition.learning.function.cost.ParallelizedCostFunctionContainer.SubCostEvaluate
-
Creates a new instance of SubCostEvaluate
- SubCostGradient(ParallelizableCostFunction, GradientDescendable) - Constructor for class gov.sandia.cognition.learning.function.cost.ParallelizedCostFunctionContainer.SubCostGradient
-
Creates a new instance of SubCostGradient
- subIndices - Variable in class gov.sandia.cognition.learning.function.vector.SubVectorEvaluator
-
The indices to pull out of an input vector to create a new vector from.
- subjectCounts - Variable in class gov.sandia.cognition.statistics.method.TukeyKramerConfidence.Statistic
-
Number of subjects in each treatment
- subLearner - Variable in class gov.sandia.cognition.learning.algorithm.tree.RandomSubVectorThresholdLearner
-
The decider learner for the subspace.
- SubsetIterator(int, int, ArrayList<ClassType>) - Constructor for class gov.sandia.cognition.math.Combinations.SubsetIterator
-
Creates a new instance of SubsetIterator
- subtract(double, double) - Static method in class gov.sandia.cognition.math.LogMath
-
Subtracts two log-domain values.
- subVector(int, int) - Method in class gov.sandia.cognition.math.matrix.custom.DenseVector
-
- subVector(int, int) - Method in class gov.sandia.cognition.math.matrix.custom.SparseVector
-
- subVector(int, int) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseVector
-
Gets a subvector of "this", specified by the inclusive indices
- subVector(int, int) - Method in class gov.sandia.cognition.math.matrix.mtj.SparseVector
-
- subVector(int, int) - Method in interface gov.sandia.cognition.math.matrix.Vector
-
Gets a subvector of "this", specified by the inclusive indices
- SubVectorEvaluator - Class in gov.sandia.cognition.learning.function.vector
-
Extracts the given set of indices from an input vector to create a new
vector containing the input vector's elements at those indices.
- SubVectorEvaluator() - Constructor for class gov.sandia.cognition.learning.function.vector.SubVectorEvaluator
-
Creates a new SubVectorEvaluator
.
- SubVectorEvaluator(int, int[]) - Constructor for class gov.sandia.cognition.learning.function.vector.SubVectorEvaluator
-
Creates a new SubVectorEvaluator
with the given parameters.
- SubVectorEvaluator(int, int[], VectorFactory<? extends Vector>) - Constructor for class gov.sandia.cognition.learning.function.vector.SubVectorEvaluator
-
Creates a new SubVectorEvaluator
with the given parameters.
- SuccessiveOverrelaxation<InputType> - Class in gov.sandia.cognition.learning.algorithm.svm
-
The SuccessiveOverrelaxation
class implements the Successive
Overrelaxation (SOR) algorithm for learning a Support Vector Machine (SVM).
- SuccessiveOverrelaxation() - Constructor for class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation
-
Creates a new instance of SuccessiveOverrelaxation
.
- SuccessiveOverrelaxation(Kernel<? super InputType>) - Constructor for class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation
-
Creates a new instance of SuccessiveOverrelaxation
.
- SuccessiveOverrelaxation(Kernel<? super InputType>, double, double, double, int) - Constructor for class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation
-
Creates a new instance of SuccessiveOverrelaxation
.
- SuccessiveOverrelaxation.Entry - Class in gov.sandia.cognition.learning.algorithm.svm
-
The Entry
class represents the data that the algorithm keeps
about each training example.
- successorIds(int) - Method in class gov.sandia.cognition.graph.GraphMetrics
-
Returns the id for all direct successors for the input node.
- successorIds(NodeNameType) - Method in class gov.sandia.cognition.graph.GraphMetrics
-
Returns the ids of the direct successors for the input node.
- successors(int) - Method in class gov.sandia.cognition.graph.GraphMetrics
-
Returns the node names for all direct successors to the input node.
- successors(NodeNameType) - Method in class gov.sandia.cognition.graph.GraphMetrics
-
Returs the node names for all direct successors to the input node.
- SufficientStatistic(MultivariateGaussian) - Constructor for class gov.sandia.cognition.statistics.bayesian.BayesianLinearRegression.IncrementalEstimator.SufficientStatistic
-
Creates a new instance of SufficientStatistic
- SufficientStatistic(MultivariateGaussianInverseGammaDistribution) - Constructor for class gov.sandia.cognition.statistics.bayesian.BayesianRobustLinearRegression.IncrementalEstimator.SufficientStatistic
-
Creates a new instance of SufficientStatistic
- SufficientStatistic() - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.SufficientStatistic
-
Default constructor
- SufficientStatistic(double) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.SufficientStatistic
-
Creates a new instance of SufficientStatistic
- SufficientStatistic() - Constructor for class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.SufficientStatistic
-
Creates a new, empty SufficientStatistic
.
- SufficientStatistic(double) - Constructor for class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.SufficientStatistic
-
Creates a new SufficientStatistic
with the given value
to initialize the variance.
- SufficientStatistic<DataType,DistributionType> - Interface in gov.sandia.cognition.statistics
-
Sufficient statistics are the data which are sufficient to store all
information to create an underlying parameter, such as a Distribution.
- SufficientStatisticCovarianceInverse() - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.SufficientStatisticCovarianceInverse
-
Default constructor
- SufficientStatisticCovarianceInverse(double) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.SufficientStatisticCovarianceInverse
-
Creates a new instance of SufficientStatisticCovarianceInverse
- sum() - Method in class gov.sandia.cognition.math.matrix.AbstractVectorSpace
-
- sum() - Method in class gov.sandia.cognition.math.matrix.custom.DenseVector
-
- sum() - Method in class gov.sandia.cognition.math.matrix.custom.SparseVector
-
- sum() - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
-
- sum() - Method in class gov.sandia.cognition.math.matrix.mtj.DenseVector
-
- sum() - Method in class gov.sandia.cognition.math.matrix.mtj.SparseVector
-
- sum() - Method in interface gov.sandia.cognition.math.matrix.VectorSpace
-
Computes the sum of the elements in the vector.
- SumKernel<InputType> - Class in gov.sandia.cognition.learning.function.kernel
-
The SumKernel
class implements a kernel that adds together
the result of applying multiple kernels to the same pair of inputs.
- SumKernel() - Constructor for class gov.sandia.cognition.learning.function.kernel.SumKernel
-
Creates a new instance of SumKernel.
- SumKernel(Collection<? extends Kernel<? super InputType>>) - Constructor for class gov.sandia.cognition.learning.function.kernel.SumKernel
-
Creates a new instance of SumKernel with the given collection of
kernels.
- summaries - Variable in class gov.sandia.cognition.learning.experiment.LearnerComparisonExperiment
-
The summaries of performance.
- summarize(Collection<? extends TargetEstimatePair<? extends TargetType, ? extends TargetType>>) - Method in class gov.sandia.cognition.learning.function.cost.AbstractSupervisedCostFunction
-
- summarize(Collection<? extends DataType>) - Method in class gov.sandia.cognition.learning.function.summarizer.MostFrequentSummarizer
-
Summarizes the given data by returning the most frequent value.
- summarize(Collection<? extends TargetEstimatePair<? extends TargetType, ? extends EstimateType>>) - Method in class gov.sandia.cognition.learning.performance.AbstractSupervisedPerformanceEvaluator
-
- summarize(Collection<? extends Pair<? extends Boolean, ? extends Boolean>>) - Method in class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrix.ActualPredictedPairSummarizer
-
- summarize(Collection<? extends ConfusionMatrix<Boolean>>) - Method in class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrix.CombineSummarizer
-
- summarize(Collection<? extends DefaultBinaryConfusionMatrix>) - Method in class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrixConfidenceInterval.Summary
-
- summarize(Collection<? extends Pair<? extends CategoryType, ? extends CategoryType>>) - Method in class gov.sandia.cognition.learning.performance.categorization.DefaultConfusionMatrix.ActualPredictedPairSummarizer
-
- summarize(Collection<? extends ConfusionMatrix<CategoryType>>) - Method in class gov.sandia.cognition.learning.performance.categorization.DefaultConfusionMatrix.CombineSummarizer
-
- summarize(Collection<? extends Number>) - Method in class gov.sandia.cognition.math.NumberAverager
-
Returns the average (arithmetic mean) of a Collection of Numbers,
or null if the collection of Numbers are null
- summarize(Collection<? extends RingType>) - Method in class gov.sandia.cognition.math.RingAverager
-
- summarize(Collection<? extends WeightedValue<? extends Number>>) - Method in class gov.sandia.cognition.math.WeightedNumberAverager
-
- summarize(Collection<? extends WeightedValue<RingType>>) - Method in class gov.sandia.cognition.math.WeightedRingAverager
-
- summarize(Collection<? extends Number>) - Method in class gov.sandia.cognition.statistics.method.StudentTConfidence.Summary
-
- summarize(Collection<? extends DataType>) - Method in interface gov.sandia.cognition.util.Summarizer
-
Creates a summary of the given collection of data.
- summarizer - Variable in class gov.sandia.cognition.learning.experiment.LearnerComparisonExperiment
-
The summarizer for summarizing the result of the performance evaluator
from all the folds.
- summarizer - Variable in class gov.sandia.cognition.learning.experiment.LearnerRepeatExperiment
-
The summarizer for summarizing the result of the performance evaluator
from all the folds.
- summarizer - Variable in class gov.sandia.cognition.learning.experiment.LearnerValidationExperiment
-
The summarizer for summarizing the result of the performance evaluator
from all the folds.
- summarizer - Variable in class gov.sandia.cognition.learning.experiment.OnlineLearnerValidationExperiment
-
The summarizer for summarizing the result of the performance evaluator
from all the folds.
- Summarizer<DataType,SummaryType> - Interface in gov.sandia.cognition.util
-
The Summarizer
interface defines the functionality of an object that
can take a collection of some data and return a summary of that data.
- summary - Variable in class gov.sandia.cognition.learning.experiment.LearnerRepeatExperiment
-
The summary of the performance evaluations made at the end of the
experiment.
- summary - Variable in class gov.sandia.cognition.learning.experiment.LearnerValidationExperiment
-
The summary of the performance evaluations made at the end of the
experiment.
- summary - Variable in class gov.sandia.cognition.learning.experiment.OnlineLearnerValidationExperiment
-
The summary of the performance evaluations made at the end of the
experiment.
- Summary(double) - Constructor for class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrixConfidenceInterval.Summary
-
Creates a new Summarizer.
- Summary(double) - Constructor for class gov.sandia.cognition.statistics.method.StudentTConfidence.Summary
-
Creates a new Summarizer.
- sumOfColumns() - Method in class gov.sandia.cognition.math.matrix.AbstractMatrix
-
- sumOfColumns() - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
- sumOfColumns() - Method in interface gov.sandia.cognition.math.matrix.Matrix
-
Returns a new vector containing the sum across the columns.
- sumOfRows() - Method in class gov.sandia.cognition.math.matrix.AbstractMatrix
-
- sumOfRows() - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
- sumOfRows() - Method in interface gov.sandia.cognition.math.matrix.Matrix
-
Returns a new vector containing the sum across the rows.
- SumProductBeliefPropagation<LabelType> - Class in gov.sandia.cognition.graph.inference
-
This class implements the sum-product belief propagation algorithm for
arbitrary energy functions.
- SumProductBeliefPropagation(int, double, int) - Constructor for class gov.sandia.cognition.graph.inference.SumProductBeliefPropagation
-
Creates a new BP solver with the specified settings.
- SumProductBeliefPropagation(int) - Constructor for class gov.sandia.cognition.graph.inference.SumProductBeliefPropagation
-
Creates a new BP solver with the default settings excepting max number of
iterations.
- SumProductBeliefPropagation() - Constructor for class gov.sandia.cognition.graph.inference.SumProductBeliefPropagation
-
Creates a new BP solver with the default settings.
- SumProductDirectedPropagation<LabelType> - Class in gov.sandia.cognition.graph.inference
-
This class implements a Bayes Net -- but only allowing for pairwise influence
along edges.
- SumProductDirectedPropagation(int, double, int) - Constructor for class gov.sandia.cognition.graph.inference.SumProductDirectedPropagation
-
Creates a new pairwise Bayes Net solver with the specified settings.
- SumProductDirectedPropagation(int) - Constructor for class gov.sandia.cognition.graph.inference.SumProductDirectedPropagation
-
Creates a new pairwise Bayes Net solver with the default settings
excepting max number of iterations.
- SumProductDirectedPropagation() - Constructor for class gov.sandia.cognition.graph.inference.SumProductDirectedPropagation
-
Creates a new pairwise Bayes Net solver with the default settings.
- SumProductInferencingAlgorithm<LabelType> - Class in gov.sandia.cognition.graph.inference
-
Base class for Sum-Product inferencing algorithms on graphs/energy functions
- SumProductInferencingAlgorithm(int, double, int) - Constructor for class gov.sandia.cognition.graph.inference.SumProductInferencingAlgorithm
-
Creates a new solver with the specified settings.
- SumProductInferencingAlgorithm(int) - Constructor for class gov.sandia.cognition.graph.inference.SumProductInferencingAlgorithm
-
Creates a new solver with the default settings excepting max number of
iterations.
- SumProductInferencingAlgorithm() - Constructor for class gov.sandia.cognition.graph.inference.SumProductInferencingAlgorithm
-
Creates a new solver with the default settings.
- sumSquaredDifferences - Variable in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.SufficientStatistic
-
This is the sum-squared differences
- SumSquaredErrorCostFunction - Class in gov.sandia.cognition.learning.function.cost
-
This is the sum-squared error cost function
- SumSquaredErrorCostFunction() - Constructor for class gov.sandia.cognition.learning.function.cost.SumSquaredErrorCostFunction
-
Creates a new instance of SumSquaredErrorCostFunction
- SumSquaredErrorCostFunction(Collection<? extends InputOutputPair<? extends Vector, Vector>>) - Constructor for class gov.sandia.cognition.learning.function.cost.SumSquaredErrorCostFunction
-
Creates a new instance of MeanSquaredErrorCostFunction
- SumSquaredErrorCostFunction.Cache - Class in gov.sandia.cognition.learning.function.cost
-
Caches often-used values for the Cost Function
- SumSquaredErrorCostFunction.GradientPartialSSE - Class in gov.sandia.cognition.learning.function.cost
-
Partial result from the SSE gradient computation
- sumWeights(Collection<? extends InputOutputPair<?, ?>>) - Static method in class gov.sandia.cognition.learning.data.DatasetUtil
-
Gets the sum of the weights of the weights of the elements of the
dataset.
- SupervisedBatchAndIncrementalLearner<InputType,OutputType,ResultType extends Evaluator<? super InputType,? extends OutputType>> - Interface in gov.sandia.cognition.learning.algorithm
-
Interface for a class that is a supervised learning algorithm that can be
used both batch and incremental contexts.
- SupervisedBatchLearner<InputType,OutputType,ResultType extends Evaluator<? super InputType,? extends OutputType>> - Interface in gov.sandia.cognition.learning.algorithm
-
The BatchSupervisedLearner
interface is an extension of the
BatchLearner
interface that contains the typical generic definition
conventions for a batch, supervised learning algorithm.
- SupervisedCostFunction<InputType,TargetType> - Interface in gov.sandia.cognition.learning.function.cost
-
A type of CostFunction normally used in supervised-learning applications.
- SupervisedIncrementalLearner<InputType,OutputType,ResultType extends Evaluator<? super InputType,? extends OutputType>> - Interface in gov.sandia.cognition.learning.algorithm
-
Interface for supervised incremental learning algorithms.
- SupervisedLearnerComparisonExperiment<InputType,OutputType,StatisticType,SummaryType> - Class in gov.sandia.cognition.learning.experiment
-
A comparison experiment for supervised learners.
- SupervisedLearnerComparisonExperiment() - Constructor for class gov.sandia.cognition.learning.experiment.SupervisedLearnerComparisonExperiment
-
Creates a new instance of SupervisedLearnerComparisonExperiment
.
- SupervisedLearnerComparisonExperiment(ValidationFoldCreator<InputOutputPair<InputType, OutputType>, InputOutputPair<InputType, OutputType>>, PerformanceEvaluator<? super Evaluator<? super InputType, OutputType>, ? super Collection<? extends InputOutputPair<InputType, OutputType>>, ? extends StatisticType>, NullHypothesisEvaluator<Collection<? extends StatisticType>>, Summarizer<? super StatisticType, ? extends SummaryType>) - Constructor for class gov.sandia.cognition.learning.experiment.SupervisedLearnerComparisonExperiment
-
Creates a new instance of SupervisedLearnerComparisonExperiment
.
- SupervisedLearnerValidationExperiment<InputType,OutputType,StatisticType,SummaryType> - Class in gov.sandia.cognition.learning.experiment
-
The SupervisedLearnerValidationExperiment
class extends the
LearnerValidationExperiment
class to provide a easy way to create
a learner validation experiment for supervised learning.
- SupervisedLearnerValidationExperiment() - Constructor for class gov.sandia.cognition.learning.experiment.SupervisedLearnerValidationExperiment
-
Creates a new instance of SupervisedLearnerValidationExperiment
.
- SupervisedLearnerValidationExperiment(ValidationFoldCreator<InputOutputPair<InputType, OutputType>, InputOutputPair<InputType, OutputType>>, PerformanceEvaluator<? super Evaluator<? super InputType, ? extends OutputType>, ? super Collection<? extends InputOutputPair<InputType, OutputType>>, ? extends StatisticType>, Summarizer<? super StatisticType, ? extends SummaryType>) - Constructor for class gov.sandia.cognition.learning.experiment.SupervisedLearnerValidationExperiment
-
Creates a new instance of SupervisedLearnerValidationExperiment
.
- SupervisedPerformanceEvaluator<InputType,TargetType,EstimateType,ResultType> - Interface in gov.sandia.cognition.learning.performance
-
The SupervisedPerformanceEvaluator
interface extends the
PerformanceEvaluator
interface for performance evaluations of
supervised machine learning algorithms where the target type is evaluated
against the estimated type produced by the evaluator.
- supportInserted - Variable in class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation.Entry
-
Indicates if the support vector has been inserted into the map of
support vectors or not.
- supportsMap - Variable in class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation
-
The mapping of weight objects to non-zero weighted examples
(support vectors).
- svdDecompose() - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
-
Leverages LAPACK to compute the Singular Value Decomposition (SVD) of
this.
- swap(int, int) - Method in class gov.sandia.cognition.collection.DoubleArrayList
-
Swaps the values stored at p1 and p2.
- swap(int, int) - Method in class gov.sandia.cognition.collection.IntArrayList
-
Swaps the values stored at p1 and p2.
- swap(int, int) - Method in class gov.sandia.cognition.graph.DenseMemoryGraph
-
Helper that swaps the values at i and j in the edge list (handles the
fact that the edge list is 2 values in a row for each edge).
- swap(int, int) - Method in class gov.sandia.cognition.graph.WeightedDenseMemoryGraph
-
Overrides the parent's version to ensure the weights swap at the same
time the edges do
- SynonymFilter - Class in gov.sandia.cognition.text.term.filter
-
A term filter that uses a mapping of synonyms to replace a word with its
synonym.
- SynonymFilter() - Constructor for class gov.sandia.cognition.text.term.filter.SynonymFilter
-
Creates a new, empty SynonymFilter
.
- SynonymFilter(Map<Term, Term>) - Constructor for class gov.sandia.cognition.text.term.filter.SynonymFilter
-
Creates a new SynonymFilter
with the given synonyms.
- synonyms - Variable in class gov.sandia.cognition.text.term.filter.SynonymFilter
-
The mapping of terms to the synonym to replace them with.