Skip navigation links
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

L

L - Variable in class gov.sandia.cognition.math.matrix.custom.DenseMatrix.LU
The lower triangular matrix resulting from the factorization.
labelCollection(Collection<InputType>, OutputType) - Static method in class gov.sandia.cognition.learning.data.DefaultInputOutputPair
Takes a collection of input values and a single output value and creates a new collection of default input output pairs with each of the given inputs and the given output.
lambda - Variable in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineShiftingPerceptron
The lambda parameter for controlling how much shifting occurs.
LaplaceDistribution - Class in gov.sandia.cognition.statistics.distribution
A Laplace distribution, sometimes called a double exponential distribution.
LaplaceDistribution() - Constructor for class gov.sandia.cognition.statistics.distribution.LaplaceDistribution
Creates a new instance of LaplaceDistribution
LaplaceDistribution(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.LaplaceDistribution
Creates a new instance of LaplaceDistribution
LaplaceDistribution(LaplaceDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.LaplaceDistribution
Copy Constructor
LaplaceDistribution.CDF - Class in gov.sandia.cognition.statistics.distribution
CDF of the Laplace distribution.
LaplaceDistribution.MaximumLikelihoodEstimator - Class in gov.sandia.cognition.statistics.distribution
Estimates the ML parameters of a Laplace distribution from a Collection of Numbers.
LaplaceDistribution.PDF - Class in gov.sandia.cognition.statistics.distribution
The PDF of a Laplace Distribution.
LaplaceDistribution.WeightedMaximumLikelihoodEstimator - Class in gov.sandia.cognition.statistics.distribution
Creates a UnivariateGaussian from weighted data
LAST_MODIFIED_DATE_FIELD_NAME - Static variable in class gov.sandia.cognition.text.document.AbstractDocument
The name of the last modified date field is "lastModifiedDate".
lastLogLikelihood - Variable in class gov.sandia.cognition.learning.algorithm.hmm.AbstractBaumWelchAlgorithm
Last Log Likelihood of the iterations
latentCount - Variable in class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis
The number of latent variables.
latentCount - Variable in class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis.Result
The number of latent variables.
LatentData() - Constructor for class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis.LatentData
 
LatentDirichletAllocationVectorGibbsSampler - Class in gov.sandia.cognition.text.topic
A Gibbs sampler for performing Latent Dirichlet Allocation (LDA).
LatentDirichletAllocationVectorGibbsSampler() - Constructor for class gov.sandia.cognition.text.topic.LatentDirichletAllocationVectorGibbsSampler
Creates a new LatentDirichletAllocationVectorGibbsSampler with default parameters.
LatentDirichletAllocationVectorGibbsSampler(int, double, double, int, int, int, Random) - Constructor for class gov.sandia.cognition.text.topic.LatentDirichletAllocationVectorGibbsSampler
Creates a new LatentDirichletAllocationVectorGibbsSampler with the given parameters.
LatentDirichletAllocationVectorGibbsSampler.Result - Class in gov.sandia.cognition.text.topic
Represents the result of performing Latent Dirichlet Allocation.
latents - Variable in class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis
The information about each of the latent variables.
latents - Variable in class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis.Result
The latent variable data.
LatentSemanticAnalysis - Class in gov.sandia.cognition.text.topic
Implements the Latent Semantic Analysis (LSA) algorithm using Singular Value Decomposition (SVD).
LatentSemanticAnalysis() - Constructor for class gov.sandia.cognition.text.topic.LatentSemanticAnalysis
Creates a new LatentSemanticAnalysis with default parameters.
LatentSemanticAnalysis(int) - Constructor for class gov.sandia.cognition.text.topic.LatentSemanticAnalysis
Creates a new LatentSemanticAnalysis with the given parameters.
LatentSemanticAnalysis.Transform - Class in gov.sandia.cognition.text.topic
The result from doing latent semantic analysis (LSA).
leafCountThreshold - Variable in class gov.sandia.cognition.learning.algorithm.tree.CategorizationTreeLearner
The threshold for making a node a leaf, determined by how many instances fall in the threshold.
leafCountThreshold - Variable in class gov.sandia.cognition.learning.algorithm.tree.RegressionTreeLearner
The threshold for making a node a leaf, determined by how many instances fall in the threshold.
leakage - Variable in class gov.sandia.cognition.learning.function.scalar.LeakyRectifiedLinearFunction
The amount of leakage for when the value is less than zero.
LeakyRectifiedLinearFunction - Class in gov.sandia.cognition.learning.function.scalar
A leaky rectified linear unit.
LeakyRectifiedLinearFunction() - Constructor for class gov.sandia.cognition.learning.function.scalar.LeakyRectifiedLinearFunction
Creates a new LeakyRectifiedLinearFunction with the default amount of leakage.
LeakyRectifiedLinearFunction(double) - Constructor for class gov.sandia.cognition.learning.function.scalar.LeakyRectifiedLinearFunction
Creates a new LeakyRectifiedLinearFunction with the given leakage.
learn(CognitiveModel, Collection<? extends Collection<? extends CognitiveModelInput>>) - Method in interface gov.sandia.cognition.framework.learning.CognitiveModuleFactoryLearner
Learns a new CognitiveModuleFactory for the given CognitiveModuleFactory containing all of the modules that will be used before the created module factory along with the example data used to learn the factory from.
learn(CognitiveModel, Collection<? extends Collection<? extends CognitiveModelInput>>) - Method in class gov.sandia.cognition.framework.learning.EvaluatorBasedCognitiveModuleFactoryLearner
Learns a new EvaluatorBasedCognitiveModuleFactory based on the given existing factory plus the given collection of CognitiveModelInput objects.
learn(DataType) - Method in class gov.sandia.cognition.learning.algorithm.AbstractAnytimeBatchLearner
 
learn(Collection<? extends DataType>) - Method in class gov.sandia.cognition.learning.algorithm.AbstractBatchAndIncrementalLearner
 
learn(Iterable<? extends DataType>) - Method in class gov.sandia.cognition.learning.algorithm.AbstractBatchAndIncrementalLearner
 
learn(Object) - Method in class gov.sandia.cognition.learning.algorithm.baseline.ConstantLearner
 
learn(ValueType) - Method in class gov.sandia.cognition.learning.algorithm.baseline.IdentityLearner
 
learn(Collection<? extends InputOutputPair<?, Double>>) - Method in class gov.sandia.cognition.learning.algorithm.baseline.MeanLearner
Creates a constant evaluator that returns the mean output value of the given dataset.
learn(Collection<? extends InputOutputPair<? extends Object, OutputType>>) - Method in class gov.sandia.cognition.learning.algorithm.baseline.MostFrequentLearner
Creates a constant evaluator that for the most frequent output value of the given dataset.
learn(Collection<? extends InputOutputPair<?, Double>>) - Method in class gov.sandia.cognition.learning.algorithm.baseline.WeightedMeanLearner
Creates a constant evaluator for the weighted mean output value of the given dataset.
learn(Collection<? extends InputOutputPair<? extends Object, OutputType>>) - Method in class gov.sandia.cognition.learning.algorithm.baseline.WeightedMostFrequentLearner
Creates a constant evaluator based on the most frequent output in a given collection of input-output pairs, taking the weight into account.
learn(Iterable<? extends DataType>) - Method in interface gov.sandia.cognition.learning.algorithm.BatchAndIncrementalLearner
Creates an object of ResultType using data of type DataType, using some form of "learning" algorithm.
learn(CostParametersType) - Method in interface gov.sandia.cognition.learning.algorithm.BatchCostMinimizationLearner
Invokes the minimization (learning) call using the given cost function parameters.
learn(DataType) - Method in interface gov.sandia.cognition.learning.algorithm.BatchLearner
The learn method creates an object of ResultType using data of type DataType, using some form of "learning" algorithm.
learn(Collection<? extends InputOutputPair<? extends Collection<InputType>, CategoryType>>) - Method in class gov.sandia.cognition.learning.algorithm.bayes.DiscreteNaiveBayesCategorizer.Learner
 
learn(Collection<? extends InputOutputPair<? extends Vectorizable, CategoryType>>) - Method in class gov.sandia.cognition.learning.algorithm.bayes.VectorNaiveBayesCategorizer.BatchGaussianLearner
 
learn(Collection<? extends InputOutputPair<? extends Vectorizable, CategoryType>>) - Method in class gov.sandia.cognition.learning.algorithm.bayes.VectorNaiveBayesCategorizer.Learner
 
learn(Collection<? extends Vector>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.DirichletProcessClustering
 
learn(Collection<? extends InputType>) - Method in class gov.sandia.cognition.learning.algorithm.CompositeBatchLearnerPair
Learn by calling the first learner on all the input values.
learn(Collection<? extends InputOutputPair<? extends Vector, CategoryType>>) - Method in class gov.sandia.cognition.learning.algorithm.delta.AbstractDeltaCategorizer.AbstractLearner
Method that does the training.
learn(Collection<? extends InputOutputPair<? extends Vector, CategoryType>>) - Method in class gov.sandia.cognition.learning.algorithm.delta.BurrowsDeltaCategorizer.Learner
 
learn(Collection<? extends InputOutputPair<? extends Vector, CategoryType>>) - Method in class gov.sandia.cognition.learning.algorithm.delta.CosineDeltaCategorizer.Learner
 
learn(Collection<? extends InputOutputPair<? extends InputType, Boolean>>) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.BinaryCategorizerSelector
Selects the BinaryCategorizer from its list of categorizers that minimizes the weighted error on the given set of weighted input-output pairs.
learn(MultiCollection<ObservationType>) - Method in class gov.sandia.cognition.learning.algorithm.hmm.BaumWelchAlgorithm
Allows the algorithm to learn against multiple sequences of data.
learn(Collection<? extends InputOutputPair<? extends InputType, OutputType>>) - Method in class gov.sandia.cognition.learning.algorithm.InputOutputTransformedBatchLearner
Learn by first calling the input transformation learner on all the input values and the output transformation on the output values.
learn(EvaluatorType) - Method in interface gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizer
Finds the (local) minimum of the given function
learn(Operator) - Method in class gov.sandia.cognition.learning.algorithm.minimization.matrix.IterativeMatrixSolver
Shell that solves for Ax = b (x0 and rhs passed in on initialization, A is contained in function).
learn(Collection<? extends InputOutputPair<? extends InputType, OutputType>>) - Method in class gov.sandia.cognition.learning.algorithm.nearest.KNearestNeighborExhaustive.Learner
Creates a new KNearestNeighborExhaustive from a Collection of InputType.
learn(Collection<? extends InputOutputPair<? extends InputType, OutputType>>) - Method in class gov.sandia.cognition.learning.algorithm.nearest.KNearestNeighborKDTree.Learner
Creates a new KNearestNeighbor from a Collection of InputType.
learn(Collection<? extends InputOutputPair<? extends InputType, OutputType>>) - Method in class gov.sandia.cognition.learning.algorithm.nearest.NearestNeighborExhaustive.Learner
 
learn(Collection<? extends InputOutputPair<? extends InputType, OutputType>>) - Method in class gov.sandia.cognition.learning.algorithm.nearest.NearestNeighborKDTree.Learner
Creates a new NearestNeighbor from a Collection of InputType.
learn(Collection<? extends DataType>) - Method in class gov.sandia.cognition.learning.algorithm.pca.KernelPrincipalComponentsAnalysis
 
learn(Collection<Vector>) - Method in class gov.sandia.cognition.learning.algorithm.pca.ThinSingularValueDecomposition
Creates a PrincipalComponentsAnalysisFunction based on the number of components and the given data.
learn(Collection<Vector>, int) - Static method in class gov.sandia.cognition.learning.algorithm.pca.ThinSingularValueDecomposition
Creates a PrincipalComponentsAnalysisFunction based on the number of components and the given data.
learn(Kernel<? super InputType>, Iterable<? extends InputOutputPair<? extends InputType, Boolean>>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.AbstractKernelizableBinaryCategorizerOnlineLearner
 
learn(Kernel<? super InputType>, Iterable<? extends InputOutputPair<? extends InputType, Boolean>>) - Method in interface gov.sandia.cognition.learning.algorithm.perceptron.KernelizableBinaryCategorizerOnlineLearner
Run this algorithm on a batch of data using the given kernel function.
learn(Collection<? extends InputOutputPair<? extends Vector, Vector>>) - Method in class gov.sandia.cognition.learning.algorithm.regression.AbstractMinimizerBasedParameterCostMinimizer
 
learn(Collection<? extends InputOutputPair<? extends InputType, Double>>) - Method in class gov.sandia.cognition.learning.algorithm.regression.LinearBasisRegression
Computes the linear regression for the given Collection of InputOutputPairs.
learn(Collection<? extends InputOutputPair<? extends Vectorizable, Double>>) - Method in class gov.sandia.cognition.learning.algorithm.regression.LinearRegression
Computes the linear regression for the given Collection of InputOutputPairs.
learn(Collection<? extends InputOutputPair<? extends InputType, OutputType>>) - Method in class gov.sandia.cognition.learning.algorithm.regression.LocallyWeightedFunction.Learner
 
learn(Collection<? extends InputOutputPair<? extends Vector, Vector>>) - Method in class gov.sandia.cognition.learning.algorithm.regression.MultivariateLinearRegression
 
learn(Collection<? extends InputOutputPair<? extends Double, Double>>) - Method in class gov.sandia.cognition.learning.algorithm.regression.UnivariateLinearRegression
 
learn(Evaluator<Double, Double>) - Method in class gov.sandia.cognition.learning.algorithm.root.MinimizerBasedRootFinder
 
learn(Collection<? extends DataType>) - Method in class gov.sandia.cognition.learning.algorithm.SequencePredictionLearner
 
learn(MultiCollection<? extends DataType>) - Method in class gov.sandia.cognition.learning.algorithm.SequencePredictionLearner
Converts the given multi-collection of data sequences to create sequences of input-output pairs to learn over.
learn(Collection<? extends InputOutputPair<? extends InputType, OutputType>>) - Method in class gov.sandia.cognition.learning.algorithm.TimeSeriesPredictionLearner
 
learn(Collection<? extends InputOutputPair<? extends Vectorizable, OutputType>>) - Method in class gov.sandia.cognition.learning.algorithm.tree.AbstractVectorThresholdMaximumGainLearner
 
learn(Collection<? extends InputOutputPair<? extends InputType, OutputType>>) - Method in class gov.sandia.cognition.learning.algorithm.tree.CategorizationTreeLearner
 
learn(Collection<? extends InputOutputPair<? extends Vectorizable, OutputType>>) - Method in class gov.sandia.cognition.learning.algorithm.tree.RandomSubVectorThresholdLearner
 
learn(Collection<? extends InputOutputPair<? extends InputType, Double>>) - Method in class gov.sandia.cognition.learning.algorithm.tree.RegressionTreeLearner
 
learn(Collection<? extends InputOutputPair<? extends Vectorizable, Double>>) - Method in class gov.sandia.cognition.learning.algorithm.tree.VectorThresholdVarianceLearner
Learns a VectorElementThresholdCategorizer from the given data by picking the vector element and threshold that best maximizes information gain.
learn(Collection<? extends Vectorizable>) - Method in class gov.sandia.cognition.learning.data.feature.MultivariateDecorrelator.DiagonalCovarianceLearner
Learns a MultivariateDecorrelator from the given values by computing the mean and variance for each dimension separately.
learn(Collection<? extends Vectorizable>) - Method in class gov.sandia.cognition.learning.data.feature.MultivariateDecorrelator.FullCovarianceLearner
Learns a MultivariateDecorrelator from the given values by computing the mean and covariance of the dimensions.
learn(Collection<? extends Vectorizable>) - Method in class gov.sandia.cognition.learning.data.feature.RandomSubspace
 
learn(Collection<? extends Number>) - Static method in class gov.sandia.cognition.learning.data.feature.StandardDistributionNormalizer
Builds a StandardDistributionNormalizer by computing the mean and variance of the given collection of values.
learn(Collection<? extends Number>, double) - Static method in class gov.sandia.cognition.learning.data.feature.StandardDistributionNormalizer
Builds a StandardDistributionNormalizer by computing the mean and variance of the given collection of values.
learn(Collection<Double>) - Method in class gov.sandia.cognition.learning.data.feature.StandardDistributionNormalizer.Learner
Learns a StandardDistributionNormalizer from the given values by computing the mean and standard deviation of the values.
learn(Collection<? extends InputOutputPair<? extends InputType, CategoryType>>) - Method in class gov.sandia.cognition.learning.function.categorization.BinaryVersusCategorizer.Learner
 
learn(Collection<? extends InputOutputPair<? extends InputType, CategoryType>>) - Method in class gov.sandia.cognition.learning.function.categorization.EvaluatorToCategorizerAdapter.Learner
 
learn(Collection<? extends InputOutputPair<? extends Vector, Boolean>>) - Method in class gov.sandia.cognition.learning.function.categorization.FisherLinearDiscriminantBinaryCategorizer.ClosedFormSolver
 
learn(Collection<? extends InputOutputPair<? extends Vector, Boolean>>, double) - Static method in class gov.sandia.cognition.learning.function.categorization.FisherLinearDiscriminantBinaryCategorizer.ClosedFormSolver
Closed-form learning algorithm for a Fisher Linear Discriminant.
learn(Collection<? extends InputOutputPair<? extends ObservationType, CategoryType>>) - Method in class gov.sandia.cognition.learning.function.categorization.MaximumAPosterioriCategorizer.Learner
 
learn(Collection<? extends InputOutputPair<? extends InputType, CategoryType>>) - Method in class gov.sandia.cognition.learning.function.categorization.WinnerTakeAllCategorizer.Learner
 
learn(DataType) - Method in class gov.sandia.cognition.learning.function.distance.DivergencesEvaluator.Learner
 
learn(int, Collection<? extends InputOutputPair<Double, Double>>) - Static method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Regression
Performs LinearRegression using all integer-exponent polynomials less than or equal to the maxOrder
learn(Collection<? extends InputOutputPair<? extends Double, Double>>) - Method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Regression
 
learn(Collection<? extends InputOutputPair<? extends InputType, Double>>) - Method in class gov.sandia.cognition.learning.function.scalar.VectorFunctionToScalarFunction.Learner
 
learn(Collection<? extends Vector>) - Method in class gov.sandia.cognition.learning.function.vector.GaussianContextRecognizer.Learner
 
learn(DataType) - Method in class gov.sandia.cognition.learning.parameter.ParameterAdaptableBatchLearnerWrapper
 
learn(Collection<? extends InputOutputPair<? extends Vectorizable, Double>>) - Method in class gov.sandia.cognition.statistics.bayesian.BayesianLinearRegression.IncrementalEstimator
 
learn(Collection<? extends InputOutputPair<? extends Vectorizable, Double>>) - Method in class gov.sandia.cognition.statistics.bayesian.BayesianLinearRegression
 
learn(Collection<? extends InputOutputPair<? extends Vectorizable, Double>>) - Method in class gov.sandia.cognition.statistics.bayesian.BayesianRobustLinearRegression.IncrementalEstimator
 
learn(Collection<? extends InputOutputPair<? extends Vectorizable, Double>>) - Method in class gov.sandia.cognition.statistics.bayesian.BayesianRobustLinearRegression
 
learn(Collection<? extends InputOutputPair<? extends InputType, Double>>) - Method in class gov.sandia.cognition.statistics.bayesian.GaussianProcessRegression
 
learn(Collection<? extends ObservationType>) - Method in class gov.sandia.cognition.statistics.bayesian.ImportanceSampling
 
learn(Collection<? extends ObservationType>) - Method in class gov.sandia.cognition.statistics.bayesian.RejectionSampling
 
learn(Collection<? extends Number>) - Method in class gov.sandia.cognition.statistics.distribution.BetaBinomialDistribution.MomentMatchingEstimator
 
learn(int, double, double) - Static method in class gov.sandia.cognition.statistics.distribution.BetaBinomialDistribution.MomentMatchingEstimator
Computes the Beta-Binomial distribution describes by the given moments
learn(Collection<? extends Double>) - Method in class gov.sandia.cognition.statistics.distribution.BetaDistribution.MomentMatchingEstimator
 
learn(double, double) - Static method in class gov.sandia.cognition.statistics.distribution.BetaDistribution.MomentMatchingEstimator
Computes the Beta distribution describes by the given moments
learn(Collection<? extends WeightedValue<? extends Double>>) - Method in class gov.sandia.cognition.statistics.distribution.BetaDistribution.WeightedMomentMatchingEstimator
 
learn(Collection<? extends Number>) - Method in class gov.sandia.cognition.statistics.distribution.BinomialDistribution.MaximumLikelihoodEstimator
 
learn(Collection<? extends Double>) - Method in class gov.sandia.cognition.statistics.distribution.ExponentialDistribution.MaximumLikelihoodEstimator
 
learn(Collection<? extends WeightedValue<? extends Double>>) - Method in class gov.sandia.cognition.statistics.distribution.ExponentialDistribution.WeightedMaximumLikelihoodEstimator
 
learn(Collection<? extends Double>) - Method in class gov.sandia.cognition.statistics.distribution.GammaDistribution.MomentMatchingEstimator
 
learn(double, double) - Static method in class gov.sandia.cognition.statistics.distribution.GammaDistribution.MomentMatchingEstimator
Computes the Gamma distribution describes by the given moments
learn(Collection<? extends WeightedValue<? extends Double>>) - Method in class gov.sandia.cognition.statistics.distribution.GammaDistribution.WeightedMomentMatchingEstimator
 
learn(Collection<? extends Number>) - Method in class gov.sandia.cognition.statistics.distribution.GeometricDistribution.MaximumLikelihoodEstimator
 
learn(Collection<? extends Double>) - Method in class gov.sandia.cognition.statistics.distribution.LaplaceDistribution.MaximumLikelihoodEstimator
 
learn(Collection<? extends WeightedValue<? extends Double>>) - Method in class gov.sandia.cognition.statistics.distribution.LaplaceDistribution.WeightedMaximumLikelihoodEstimator
Creates a new instance of LaplaceDistribution using a weighted Maximum Likelihood estimate based on the given data
learn(Collection<? extends Double>) - Method in class gov.sandia.cognition.statistics.distribution.LogNormalDistribution.MaximumLikelihoodEstimator
 
learn(Collection<? extends WeightedValue<? extends Double>>) - Method in class gov.sandia.cognition.statistics.distribution.LogNormalDistribution.WeightedMaximumLikelihoodEstimator
 
learn(Collection<? extends Vector>) - Method in class gov.sandia.cognition.statistics.distribution.MixtureOfGaussians.Learner
 
learn(Collection<? extends Vector>, double) - Static method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.MaximumLikelihoodEstimator
Computes the Gaussian that estimates the maximum likelihood of generating the given set of samples.
learn(Collection<? extends Vector>) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.MaximumLikelihoodEstimator
Computes the Gaussian that estimates the maximum likelihood of generating the given set of samples.
learn(Collection<? extends WeightedValue<? extends Vector>>) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.WeightedMaximumLikelihoodEstimator
Computes the Gaussian that estimates the maximum likelihood of generating the given set of weighted samples.
learn(Collection<? extends WeightedValue<? extends Vector>>, double) - Static method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.WeightedMaximumLikelihoodEstimator
Computes the Gaussian that estimates the maximum likelihood of generating the given set of weighted samples.
learn(Collection<? extends Number>) - Method in class gov.sandia.cognition.statistics.distribution.NegativeBinomialDistribution.MaximumLikelihoodEstimator
 
learn(Collection<? extends WeightedValue<? extends Number>>) - Method in class gov.sandia.cognition.statistics.distribution.NegativeBinomialDistribution.WeightedMaximumLikelihoodEstimator
 
learn(Collection<? extends Number>) - Method in class gov.sandia.cognition.statistics.distribution.PoissonDistribution.MaximumLikelihoodEstimator
 
learn(Collection<? extends WeightedValue<? extends Number>>) - Method in class gov.sandia.cognition.statistics.distribution.PoissonDistribution.WeightedMaximumLikelihoodEstimator
Creates a new instance of PoissonDistribution using a weighted Maximum Likelihood estimate based on the given data.
learn(Collection<? extends Double>) - Method in class gov.sandia.cognition.statistics.distribution.StudentTDistribution.MaximumLikelihoodEstimator
Creates a new instance of UnivariateGaussian from the given data
learn(Collection<? extends Double>, double) - Static method in class gov.sandia.cognition.statistics.distribution.StudentTDistribution.MaximumLikelihoodEstimator
Creates a new instance of UnivariateGaussian from the given data
learn(Collection<? extends WeightedValue<? extends Double>>) - Method in class gov.sandia.cognition.statistics.distribution.StudentTDistribution.WeightedMaximumLikelihoodEstimator
Creates a new instance of UnivariateGaussian using a weighted Maximum Likelihood estimate based on the given data
learn(Collection<? extends WeightedValue<? extends Double>>, double) - Static method in class gov.sandia.cognition.statistics.distribution.StudentTDistribution.WeightedMaximumLikelihoodEstimator
Creates a new instance of UnivariateGaussian using a weighted Maximum Likelihood estimate based on the given data
learn(Collection<? extends Double>) - Method in class gov.sandia.cognition.statistics.distribution.UniformDistribution.MaximumLikelihoodEstimator
 
learn(Collection<? extends Number>) - Method in class gov.sandia.cognition.statistics.distribution.UniformIntegerDistribution.MaximumLikelihoodEstimator
 
learn(Collection<? extends Double>) - Method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.MaximumLikelihoodEstimator
Creates a new instance of UnivariateGaussian from the given data
learn(Collection<? extends Number>, double) - Static method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.MaximumLikelihoodEstimator
Creates a new instance of UnivariateGaussian from the given data
learn(Collection<? extends WeightedValue<? extends Double>>) - Method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.WeightedMaximumLikelihoodEstimator
Creates a new instance of UnivariateGaussian using a weighted Maximum Likelihood estimate based on the given data
learn(Collection<? extends WeightedValue<? extends Number>>, double) - Static method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.WeightedMaximumLikelihoodEstimator
Creates a new instance of UnivariateGaussian using a weighted Maximum Likelihood estimate based on the given data
learn(Collection<? extends DataType>) - Method in class gov.sandia.cognition.statistics.method.DistributionParameterEstimator
 
learn(Collection<? extends DataType>) - Method in class gov.sandia.cognition.statistics.method.MaximumLikelihoodDistributionEstimator
 
learn(Collection<? extends Vectorizable>) - Method in class gov.sandia.cognition.text.topic.LatentSemanticAnalysis
 
learnChildNodes(AbstractDecisionTreeNode<InputType, OutputType, DecisionType>, Collection<? extends InputOutputPair<? extends InputType, OutputType>>, Categorizer<? super InputType, ? extends DecisionType>) - Method in class gov.sandia.cognition.learning.algorithm.tree.AbstractDecisionTreeLearner
Learns the child nodes for a node using the given data at the node plus the decision function for the node.
learnDiagonalCovariance(Collection<? extends Vectorizable>, double) - Static method in class gov.sandia.cognition.learning.data.feature.MultivariateDecorrelator
Learns a normalization based on a mean and covariance where the covariance matrix is diagonal.
learner - Variable in class gov.sandia.cognition.learning.algorithm.AbstractBatchLearnerContainer
The wrapped learner.
Learner() - Constructor for class gov.sandia.cognition.learning.algorithm.bayes.DiscreteNaiveBayesCategorizer.Learner
Default constructor.
Learner() - Constructor for class gov.sandia.cognition.learning.algorithm.bayes.VectorNaiveBayesCategorizer.Learner
Creates a new BatchLearner with a null estimator.
Learner(DistributionEstimator<? super Double, ? extends DistributionType>) - Constructor for class gov.sandia.cognition.learning.algorithm.bayes.VectorNaiveBayesCategorizer.Learner
Creates a new BatchLearner with the given distribution estimator.
learner - Variable in class gov.sandia.cognition.learning.algorithm.delta.AbstractDeltaCategorizer
The learner that was used to train this categorizer.
Learner() - Constructor for class gov.sandia.cognition.learning.algorithm.delta.BurrowsDeltaCategorizer.Learner
Default constructor.
Learner() - Constructor for class gov.sandia.cognition.learning.algorithm.delta.CosineDeltaCategorizer.Learner
Default constructor.
learner - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractBaggingLearner
The learner to use to create the categorizer for each iteration.
learner - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractCategorizerOutOfBagStoppingCriteria
The learner the stopping criteria is for.
learner - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner
The learner used to produce each ensemble member.
learner - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner.OutOfBagErrorStoppingCriteria
The learner the stopping criteria is for.
learner - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.OnlineBaggingCategorizerLearner
The base learner used for each ensemble member.
Learner() - Constructor for class gov.sandia.cognition.learning.algorithm.nearest.KNearestNeighborExhaustive.Learner
Default constructor.
Learner(int, DivergenceFunction<? super InputType, ? super InputType>, Summarizer<? super OutputType, OutputType>) - Constructor for class gov.sandia.cognition.learning.algorithm.nearest.KNearestNeighborExhaustive.Learner
Creates a new instance of Learner
Learner() - Constructor for class gov.sandia.cognition.learning.algorithm.nearest.KNearestNeighborKDTree.Learner
Default constructor.
Learner(Summarizer<? super OutputType, ? extends OutputType>) - Constructor for class gov.sandia.cognition.learning.algorithm.nearest.KNearestNeighborKDTree.Learner
Creates a new instance of Learner.
Learner(int, Metric<? super Vectorizable>, Summarizer<? super OutputType, ? extends OutputType>) - Constructor for class gov.sandia.cognition.learning.algorithm.nearest.KNearestNeighborKDTree.Learner
Creates a new instance of Learner
Learner() - Constructor for class gov.sandia.cognition.learning.algorithm.nearest.NearestNeighborExhaustive.Learner
Creates a new instance of NearestNeighborExhaustive.Learner.
Learner(DivergenceFunction<? super InputType, ? super InputType>) - Constructor for class gov.sandia.cognition.learning.algorithm.nearest.NearestNeighborExhaustive.Learner
Creates a new instance of NearestNeighborExhaustive.Learner.
Learner() - Constructor for class gov.sandia.cognition.learning.algorithm.nearest.NearestNeighborKDTree.Learner
Default constructor.
Learner(Metric<? super Vectorizable>) - Constructor for class gov.sandia.cognition.learning.algorithm.nearest.NearestNeighborKDTree.Learner
Creates a new instance of Learner
learner - Variable in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelBinaryCategorizerOnlineLearnerAdapter
The wrapped kernelizable learner.
Learner(Kernel<? super InputType>, SupervisedBatchLearner<InputType, OutputType, ?>) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.LocallyWeightedFunction.Learner
Creates a new instance of LocallyWeightedFunction
Learner() - Constructor for class gov.sandia.cognition.learning.data.feature.StandardDistributionNormalizer.Learner
Creates a new StandardDistributionNormalizer.Learner.
Learner(double) - Constructor for class gov.sandia.cognition.learning.data.feature.StandardDistributionNormalizer.Learner
Creates a new StandardDistributionNormalizer.Learner.
Learner() - Constructor for class gov.sandia.cognition.learning.function.categorization.BinaryVersusCategorizer.Learner
Creates a new BinaryVersusCategorizer.Learner with no initial binary categorizer learner.
Learner(BatchLearner<? super Collection<? extends InputOutputPair<? extends InputType, Boolean>>, ? extends Evaluator<? super InputType, Boolean>>) - Constructor for class gov.sandia.cognition.learning.function.categorization.BinaryVersusCategorizer.Learner
Creates a new BinaryVersusCategorizer.Learner with an binary categorizer learner to learn category versus category.
Learner() - Constructor for class gov.sandia.cognition.learning.function.categorization.EvaluatorToCategorizerAdapter.Learner
Creates a new EvaluatorToCategorizerAdapter.
Learner(BatchLearner<? super Collection<? extends InputOutputPair<? extends InputType, CategoryType>>, ? extends Evaluator<? super InputType, ? extends CategoryType>>) - Constructor for class gov.sandia.cognition.learning.function.categorization.EvaluatorToCategorizerAdapter.Learner
Creates a new EvaluatorToCategorizerAdapter.
Learner() - Constructor for class gov.sandia.cognition.learning.function.categorization.MaximumAPosterioriCategorizer.Learner
Default constructor
Learner(BatchLearner<Collection<? extends ObservationType>, ? extends ComputableDistribution<ObservationType>>) - Constructor for class gov.sandia.cognition.learning.function.categorization.MaximumAPosterioriCategorizer.Learner
Creates a new instance of Learner
Learner() - Constructor for class gov.sandia.cognition.learning.function.categorization.WinnerTakeAllCategorizer.Learner
Creates a new learner adapter.
Learner(BatchLearner<? super Collection<? extends InputOutputPair<? extends InputType, Vector>>, Evaluator<? super InputType, ? extends Vectorizable>>) - Constructor for class gov.sandia.cognition.learning.function.categorization.WinnerTakeAllCategorizer.Learner
Creates a new learner adapter with the given internal learner.
Learner() - Constructor for class gov.sandia.cognition.learning.function.distance.DivergencesEvaluator.Learner
Creates a new DivergenceFunction.Learner with null base learner and divergence functions.
Learner(BatchLearner<DataType, ? extends Collection<ValueType>>, DivergenceFunction<? super ValueType, ? super InputType>) - Constructor for class gov.sandia.cognition.learning.function.distance.DivergencesEvaluator.Learner
Creates a new DivergenceFunction.Learner with the given properties.
Learner(BatchLearner<DataType, ? extends Collection<ValueType>>, DivergenceFunction<? super ValueType, ? super InputType>, VectorFactory<?>) - Constructor for class gov.sandia.cognition.learning.function.distance.DivergencesEvaluator.Learner
Creates a new DivergenceFunction.Learner with the given properties.
Learner() - Constructor for class gov.sandia.cognition.learning.function.scalar.VectorFunctionToScalarFunction.Learner
Creates a new VectorFunctionToScalarFunction.Learner.
Learner(BatchLearner<Collection<? extends InputOutputPair<? extends InputType, Vector>>, ? extends Evaluator<? super InputType, ? extends Vectorizable>>) - Constructor for class gov.sandia.cognition.learning.function.scalar.VectorFunctionToScalarFunction.Learner
Creates a new VectorFunctionToScalarFunction.Learner.
Learner() - Constructor for class gov.sandia.cognition.learning.function.vector.GaussianContextRecognizer.Learner
Creates a new Learner.
Learner(KMeansClusterer<Vector, GaussianCluster>) - Constructor for class gov.sandia.cognition.learning.function.vector.GaussianContextRecognizer.Learner
Creates a new instance of Learner
Learner(KMeansClusterer<Vector, GaussianCluster>) - Constructor for class gov.sandia.cognition.statistics.distribution.MixtureOfGaussians.Learner
Creates a new Learner
Learner() - Constructor for class gov.sandia.cognition.text.spelling.SimpleStatisticalSpellingCorrector.Learner
Creates a new simple statistical spelling corrector learner with the default alphabet.
Learner(char[]) - Constructor for class gov.sandia.cognition.text.spelling.SimpleStatisticalSpellingCorrector.Learner
Creates a new simple statistical spelling corrector learner with the default alphabet.
LearnerComparisonExperiment<InputDataType,FoldDataType,LearnedType,StatisticType,SummaryType> - Class in gov.sandia.cognition.learning.experiment
The LearnerComparisonExperiment compares the performance of two machine learning algorithms to determine (using a statistical test) if the two algorithms have significantly different performance.
LearnerComparisonExperiment() - Constructor for class gov.sandia.cognition.learning.experiment.LearnerComparisonExperiment
Creates a new instance of LearnerComparisonExperiment.
LearnerComparisonExperiment(ValidationFoldCreator<InputDataType, FoldDataType>, PerformanceEvaluator<? super LearnedType, ? super Collection<? extends FoldDataType>, ? extends StatisticType>, NullHypothesisEvaluator<Collection<? extends StatisticType>>, Summarizer<? super StatisticType, ? extends SummaryType>) - Constructor for class gov.sandia.cognition.learning.experiment.LearnerComparisonExperiment
Creates a new instance of LearnerComparisonExperiment.
LearnerComparisonExperiment.Result<SummaryType> - Class in gov.sandia.cognition.learning.experiment
Encapsulates the results of the comparison experiment.
LearnerRepeatExperiment<InputDataType,LearnedType,StatisticType,SummaryType> - Class in gov.sandia.cognition.learning.experiment
Runs an experiment where the same learner is evaluated multiple times on the same data.
LearnerRepeatExperiment() - Constructor for class gov.sandia.cognition.learning.experiment.LearnerRepeatExperiment
Creates a new instance of LearnerRepeatExperiment.
LearnerRepeatExperiment(int, PerformanceEvaluator<? super LearnedType, ? super Collection<? extends InputDataType>, ? extends StatisticType>, Summarizer<? super StatisticType, ? extends SummaryType>) - Constructor for class gov.sandia.cognition.learning.experiment.LearnerRepeatExperiment
Creates a new instance of LearnerRepeatExperiment.
learners - Variable in class gov.sandia.cognition.learning.experiment.LearnerComparisonExperiment
The learners that the experiment is being performed on.
LearnerValidationExperiment<InputDataType,FoldDataType,LearnedType,StatisticType,SummaryType> - Class in gov.sandia.cognition.learning.experiment
The LearnerValidationExperiment class implements an experiment where a supervised machine learning algorithm is evaluated by applying it to a set of folds created from a given set of data.
LearnerValidationExperiment() - Constructor for class gov.sandia.cognition.learning.experiment.LearnerValidationExperiment
Creates a new instance of SupervisedLearnerExperiment.
LearnerValidationExperiment(ValidationFoldCreator<InputDataType, FoldDataType>, PerformanceEvaluator<? super LearnedType, ? super Collection<? extends FoldDataType>, ? extends StatisticType>, Summarizer<? super StatisticType, ? extends SummaryType>) - Constructor for class gov.sandia.cognition.learning.experiment.LearnerValidationExperiment
Creates a new instance of SupervisedLearnerExperiment.
learnFullCovariance(Collection<? extends Vectorizable>, double) - Static method in class gov.sandia.cognition.learning.data.feature.MultivariateDecorrelator
Learns a normalization based on a mean and full covariance matrix from the given data.
LearningExperiment - Interface in gov.sandia.cognition.learning.experiment
The LearningExperiment interface defines the general functionality of an object that implements an experiment regarding machine learning algorithms.
LearningExperimentListener - Interface in gov.sandia.cognition.learning.experiment
The LearningExperimentListener interface defines the functionality of an object that listens to events from a LearningExperiment.
learningRate - Variable in class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachineStochasticGradient
The learning rate for the algorithm.
learnNode(Collection<? extends InputOutputPair<? extends InputType, OutputType>>, AbstractDecisionTreeNode<InputType, OutputType, ?>) - Method in class gov.sandia.cognition.learning.algorithm.tree.AbstractDecisionTreeLearner
Recursively learns the decision tree using the given collection of data, returning the created node.
learnNode(Collection<? extends InputOutputPair<? extends InputType, OutputType>>, AbstractDecisionTreeNode<InputType, OutputType, ?>) - Method in class gov.sandia.cognition.learning.algorithm.tree.CategorizationTreeLearner
Recursively learns the categorization tree using the given collection of data, returning the created node.
learnNode(Collection<? extends InputOutputPair<? extends InputType, Double>>, AbstractDecisionTreeNode<InputType, Double, ?>) - Method in class gov.sandia.cognition.learning.algorithm.tree.RegressionTreeLearner
Recursively learns the regression tree using the given collection of data, returning the created node.
learnUsingCachedClusters(Collection<? extends DataType>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
Perform clustering by extending the existing cluster hierarchy, if one exists.
LeastSquaresEstimator - Class in gov.sandia.cognition.learning.algorithm.regression
Abstract implementation of iterative least-squares estimators.
LeastSquaresEstimator(int, double) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.LeastSquaresEstimator
Creates a new instance of LeastSquaresEstimator
LeaveOneOutFoldCreator<DataType> - Class in gov.sandia.cognition.learning.experiment
The LeaveOneOutFoldCreator class implements the leave-one-out method for creating training-testing folds for a cross-validation experiment.
LeaveOneOutFoldCreator() - Constructor for class gov.sandia.cognition.learning.experiment.LeaveOneOutFoldCreator
Creates a new instance of LeaveOneOutCreator
leftChild - Variable in class gov.sandia.cognition.math.geometry.KDTree
Left child of this subtree
leftIterator - Variable in class gov.sandia.cognition.math.geometry.KDTree.InOrderKDTreeIterator
Iterator for the left subtree.
length() - Method in class gov.sandia.cognition.collection.DoubleArrayList
 
length() - Method in class gov.sandia.cognition.collection.IntArrayList
Returns the number of elements in the vector
LENGTH - Static variable in class gov.sandia.cognition.hash.Eva32Hash
A 32-bit, 4-byte hash, 4.
length() - Method in class gov.sandia.cognition.hash.Eva32Hash
 
LENGTH - Static variable in class gov.sandia.cognition.hash.Eva64Hash
Length of the hash in bytes, 8.
length() - Method in class gov.sandia.cognition.hash.Eva64Hash
 
LENGTH - Static variable in class gov.sandia.cognition.hash.FNV1a32Hash
Length of the hash is 32-bits (4-bytes), 4.
length() - Method in class gov.sandia.cognition.hash.FNV1a32Hash
 
LENGTH - Static variable in class gov.sandia.cognition.hash.FNV1a64Hash
Length of the hash is 64-bits (8-bytes), 8.
length() - Method in class gov.sandia.cognition.hash.FNV1a64Hash
 
length() - Method in interface gov.sandia.cognition.hash.HashFunction
Returns the number of bytes in the output hash code.
LENGTH - Static variable in class gov.sandia.cognition.hash.MD5Hash
MD5 is a 128-bit (16-byte) length hash.
length() - Method in class gov.sandia.cognition.hash.MD5Hash
 
LENGTH - Static variable in class gov.sandia.cognition.hash.Murmur32Hash
Length of the hash function is 32-bits or 4 bytes, 4.
length() - Method in class gov.sandia.cognition.hash.Murmur32Hash
 
LENGTH - Static variable in class gov.sandia.cognition.hash.Prime32Hash
Length of the hash is 32 bits (4 bytes), 4.
length() - Method in class gov.sandia.cognition.hash.Prime32Hash
 
LENGTH - Static variable in class gov.sandia.cognition.hash.Prime64Hash
Length of the hash is 64 bits (8 bytes), 8.
length() - Method in class gov.sandia.cognition.hash.Prime64Hash
 
LENGTH - Static variable in class gov.sandia.cognition.hash.SHA1Hash
SHA-1 hash function output is 160-bits or 20-bytes, 20.
length() - Method in class gov.sandia.cognition.hash.SHA1Hash
 
LENGTH - Static variable in class gov.sandia.cognition.hash.SHA256Hash
Length of the hash is 256 bits (32 bytes), 32.
length() - Method in class gov.sandia.cognition.hash.SHA256Hash
 
LENGTH - Static variable in class gov.sandia.cognition.hash.SHA512Hash
Length of the hash is 512 bits (64 bytes), 64.
length() - Method in class gov.sandia.cognition.hash.SHA512Hash
 
length - Variable in class gov.sandia.cognition.text.AbstractOccurrenceInText
The length of the occurrence.
LentzMethod - Class in gov.sandia.cognition.math
This class implements Lentz's method for evaluating continued fractions.
LentzMethod() - Constructor for class gov.sandia.cognition.math.LentzMethod
Creates a new instance of LentzMethod
LentzMethod(int, double, double) - Constructor for class gov.sandia.cognition.math.LentzMethod
Creates a new instance of LentzMethod
LetterNumberTokenizer - Class in gov.sandia.cognition.text.token
A tokenizer that creates tokens from sequences of letters and numbers, treating everything else as a delimiter.
LetterNumberTokenizer() - Constructor for class gov.sandia.cognition.text.token.LetterNumberTokenizer
Creates a new LetterNumberTokenizer.
LevenbergMarquardtEstimation - Class in gov.sandia.cognition.learning.algorithm.regression
Implementation of the nonlinear regression algorithm, known as Levenberg-Marquardt Estimation (or LMA).
LevenbergMarquardtEstimation() - Constructor for class gov.sandia.cognition.learning.algorithm.regression.LevenbergMarquardtEstimation
Creates a new instance of LevenbergMarquardtEstimation
LevenbergMarquardtEstimation(double, double, int, int, double) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.LevenbergMarquardtEstimation
Creates a new instance of LevenbergMarquardtEstimation
line(int, ArrayList<AdaptiveRejectionSampling.Point>) - Static method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.Point
Connects the points at index and index + 1 with a straight line.
Linear(double, double) - Constructor for class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Linear
Creates a new instance of Linear
LinearBasisRegression<InputType> - Class in gov.sandia.cognition.learning.algorithm.regression
Computes the least-squares regression for a LinearCombinationFunction given a dataset.
LinearBasisRegression(Collection<? extends Evaluator<? super InputType, Double>>) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.LinearBasisRegression
Creates a new instance of LinearRegression
LinearBasisRegression(ScalarBasisSet<InputType>) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.LinearBasisRegression
Creates a new instance of LinearRegression
LinearBasisRegression(Evaluator<? super InputType, Vector>) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.LinearBasisRegression
Creates a new instance of LinearRegression
LinearBinaryCategorizer - Class in gov.sandia.cognition.learning.function.categorization
The LinearBinaryCategorizer class implements a binary categorizer that is implemented by a linear function.
LinearBinaryCategorizer() - Constructor for class gov.sandia.cognition.learning.function.categorization.LinearBinaryCategorizer
Creates a new instance of LinearBinaryCategorizer.
LinearBinaryCategorizer(Vector, double) - Constructor for class gov.sandia.cognition.learning.function.categorization.LinearBinaryCategorizer
Creates a new instance of LinearBinaryCategorizer with the given weights and bias.
LinearBinaryCategorizer(LinearBinaryCategorizer) - Constructor for class gov.sandia.cognition.learning.function.categorization.LinearBinaryCategorizer
Creates a new copy of a LinearBinaryCategorizer.
LinearCombinationFunction<InputType,OutputType> - Class in gov.sandia.cognition.learning.function
A function whose output is a weighted linear combination of (potentially) nonlinear basis function.
LinearCombinationFunction(ArrayList<? extends Evaluator<? super InputType, ? extends OutputType>>, Vector) - Constructor for class gov.sandia.cognition.learning.function.LinearCombinationFunction
Creates a new instance of LinearCombinationFunction
LinearCombinationScalarFunction<InputType> - Class in gov.sandia.cognition.learning.function.scalar
A weighted linear combination of scalar functions.
LinearCombinationScalarFunction(Collection<? extends Evaluator<InputType, Double>>) - Constructor for class gov.sandia.cognition.learning.function.scalar.LinearCombinationScalarFunction
Creates a new instance of LinearCombinationFunction
LinearCombinationScalarFunction(ArrayList<? extends Evaluator<InputType, Double>>, Vector) - Constructor for class gov.sandia.cognition.learning.function.scalar.LinearCombinationScalarFunction
Creates a new instance of LinearCombinationFunction
LinearCombinationVectorFunction - Class in gov.sandia.cognition.learning.function.vector
A weighted linear combination of scalar functions.
LinearCombinationVectorFunction(VectorFunction...) - Constructor for class gov.sandia.cognition.learning.function.vector.LinearCombinationVectorFunction
Creates a new instance of LinearCombinationFunction
LinearCombinationVectorFunction(Collection<? extends Evaluator<? super Vector, ? extends Vector>>) - Constructor for class gov.sandia.cognition.learning.function.vector.LinearCombinationVectorFunction
Creates a new instance of LinearCombinationFunction
LinearCombinationVectorFunction(ArrayList<? extends Evaluator<? super Vector, ? extends Vector>>, Vector) - Constructor for class gov.sandia.cognition.learning.function.vector.LinearCombinationVectorFunction
Creates a new instance of LinearCombinationFunction
LinearDiscriminant - Class in gov.sandia.cognition.learning.function.scalar
LinearDiscriminant takes the dot product between the weight Vector and the input Vector.
LinearDiscriminant() - Constructor for class gov.sandia.cognition.learning.function.scalar.LinearDiscriminant
Creates a new instance of LinearClassifier
LinearDiscriminant(Vector) - Constructor for class gov.sandia.cognition.learning.function.scalar.LinearDiscriminant
Creates a new instance of LinearClassifier
LinearDiscriminantWithBias - Class in gov.sandia.cognition.learning.function.scalar
A LinearDiscriminant with an additional bias term that gets added to the output of the dot product.
LinearDiscriminantWithBias() - Constructor for class gov.sandia.cognition.learning.function.scalar.LinearDiscriminantWithBias
Creates a new instance of LinearDiscriminantWithBias
LinearDiscriminantWithBias(Vector) - Constructor for class gov.sandia.cognition.learning.function.scalar.LinearDiscriminantWithBias
Creates a new instance of LinearClassifier
LinearDiscriminantWithBias(Vector, double) - Constructor for class gov.sandia.cognition.learning.function.scalar.LinearDiscriminantWithBias
Creates a new instance of LinearClassifier
LinearDynamicalSystem - Class in gov.sandia.cognition.math.signals
A generic Linear Dynamical System of the form
x_n = A*x_(n-1) + B*u_n
y_n = C*x_n,
where x_(n-1) is the previous state, x_n is the current state, u_n is the current input, y_n is the current output, A is the system matrix, B is the input-gain matrix, and C is the output-selector matrix
LinearDynamicalSystem() - Constructor for class gov.sandia.cognition.math.signals.LinearDynamicalSystem
Default constructor.
LinearDynamicalSystem(int, int) - Constructor for class gov.sandia.cognition.math.signals.LinearDynamicalSystem
Creates a new instance of LinearDynamicalSystem.
LinearDynamicalSystem(int, int, int) - Constructor for class gov.sandia.cognition.math.signals.LinearDynamicalSystem
Creates a new instance of LinearDynamicalSystem.
LinearDynamicalSystem(Matrix, Matrix) - Constructor for class gov.sandia.cognition.math.signals.LinearDynamicalSystem
Creates a new instance of LinearDynamicalSystem
LinearDynamicalSystem(Matrix, Matrix, Matrix) - Constructor for class gov.sandia.cognition.math.signals.LinearDynamicalSystem
Creates a new instance of LinearDynamicalSystem
LinearFunction - Class in gov.sandia.cognition.learning.function.scalar
This function acts as a simple linear function of the form f(x) = m*x + b.
LinearFunction() - Constructor for class gov.sandia.cognition.learning.function.scalar.LinearFunction
Creates a new LinearFunction with a slope of 1 and offset of 0.
LinearFunction(double, double) - Constructor for class gov.sandia.cognition.learning.function.scalar.LinearFunction
Creates a new LinearFunction with the given slope and offset.
LinearFunction(LinearFunction) - Constructor for class gov.sandia.cognition.learning.function.scalar.LinearFunction
Creates a copy of a given LinearFunction.
LinearizableBinaryCategorizerOnlineLearner<InputType> - Interface in gov.sandia.cognition.learning.algorithm.perceptron
Interface for an online learner of a kernel binary categorizer that can also be used for learning a linear categorizer.
LinearKernel - Class in gov.sandia.cognition.learning.function.kernel
The LinearKernel class implements the most basic kernel: it just does the actual inner product between two vectors.
LinearKernel() - Constructor for class gov.sandia.cognition.learning.function.kernel.LinearKernel
Creates a new instance of LinearKernel.
LinearMixtureModel<DataType,DistributionType extends Distribution<DataType>> - Class in gov.sandia.cognition.statistics.distribution
A linear mixture of RandomVariables, with a prior probability distribution.
LinearMixtureModel(Collection<? extends DistributionType>) - Constructor for class gov.sandia.cognition.statistics.distribution.LinearMixtureModel
Creates a new instance of LinearMixtureModel
LinearMixtureModel(Collection<? extends DistributionType>, double[]) - Constructor for class gov.sandia.cognition.statistics.distribution.LinearMixtureModel
Creates a new instance of LinearMixtureModel
LinearMultiCategorizer<CategoryType> - Class in gov.sandia.cognition.learning.function.categorization
A multi-category version of the LinearBinaryCategorizer that keeps a separate LinearBinaryCategorizer for each category.
LinearMultiCategorizer() - Constructor for class gov.sandia.cognition.learning.function.categorization.LinearMultiCategorizer
Creates a new, empty LinearMultiCategorizer.
LinearMultiCategorizer(Map<CategoryType, LinearBinaryCategorizer>) - Constructor for class gov.sandia.cognition.learning.function.categorization.LinearMultiCategorizer
Creates a new LinearMultiCategorizer with the given prototypes.
LinearRegression - Class in gov.sandia.cognition.learning.algorithm.regression
Computes the least-squares regression for a LinearCombinationFunction given a dataset.
LinearRegression() - Constructor for class gov.sandia.cognition.learning.algorithm.regression.LinearRegression
Creates a new instance of LinearRegression
LinearRegression(double, boolean) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.LinearRegression
Creates a new instance of LinearRegression
LinearRegression.Statistic - Class in gov.sandia.cognition.learning.algorithm.regression
Computes regression statistics using a chi-square measure of the statistical significance of the learned approximator
LinearRegressionCoefficientExtractor - Class in gov.sandia.cognition.learning.data.feature
Takes a sampled sequence of equal-dimension vectors as input and computes the linear regression coefficients for each dimension in the vectors.
LinearRegressionCoefficientExtractor() - Constructor for class gov.sandia.cognition.learning.data.feature.LinearRegressionCoefficientExtractor
Default constructor.
LinearRegressionCoefficientExtractor(int) - Constructor for class gov.sandia.cognition.learning.data.feature.LinearRegressionCoefficientExtractor
Creates new instance of LinearRegressionEvaluator
LinearResult() - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlineShiftingPerceptron.LinearResult
Creates a new, empty LinearResult.
LinearSoftMargin() - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Projectron.LinearSoftMargin
Creates a new Projectron.LinearSoftMargin with a null kernel and default parameters.
LinearSoftMargin(Kernel<? super InputType>) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Projectron.LinearSoftMargin
Creates a new Projectron.LinearSoftMargin with the given kernel and default parameters.
LinearSoftMargin(Kernel<? super InputType>, double) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Projectron.LinearSoftMargin
Creates a new Projectron.LinearSoftMargin with the given parameters.
LinearSoftMargin() - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlinePassiveAggressivePerceptron.LinearSoftMargin
Creates a new LinearSoftMargin with default parameters.
LinearSoftMargin(double) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlinePassiveAggressivePerceptron.LinearSoftMargin
Creates a new LinearSoftMargin with the given aggressiveness.
LinearSoftMargin(double, VectorFactory<?>) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlinePassiveAggressivePerceptron.LinearSoftMargin
Creates a new LinearSoftMargin with the given parameters.
LinearVectorFunction - Class in gov.sandia.cognition.learning.function.vector
The LinearFunction class is a simple VectorFunction that just scales the given input vector by a scalar value.
LinearVectorFunction() - Constructor for class gov.sandia.cognition.learning.function.vector.LinearVectorFunction
Creates a new instance of LinearVectorFunction with the default scale factor.
LinearVectorFunction(double) - Constructor for class gov.sandia.cognition.learning.function.vector.LinearVectorFunction
Creates a new instance of LinearFunction.
LinearVectorScalarFunction - Class in gov.sandia.cognition.learning.function.scalar
The LinearVectorScalarFunction class implements a scalar function that is implemented by a linear function.
LinearVectorScalarFunction() - Constructor for class gov.sandia.cognition.learning.function.scalar.LinearVectorScalarFunction
Creates a new instance of LinearVectorScalarFunction.
LinearVectorScalarFunction(Vector) - Constructor for class gov.sandia.cognition.learning.function.scalar.LinearVectorScalarFunction
Creates a new instance of LinearVectorScalarFunction.
LinearVectorScalarFunction(Vector, double) - Constructor for class gov.sandia.cognition.learning.function.scalar.LinearVectorScalarFunction
Creates a new instance of LinearVectorScalarFunction with the given weights and bias.
LinearVectorScalarFunction(LinearVectorScalarFunction) - Constructor for class gov.sandia.cognition.learning.function.scalar.LinearVectorScalarFunction
Creates a new copy of a LinearVectorScalarFunction.
LineBracket - Class in gov.sandia.cognition.learning.algorithm.minimization.line
Class that defines a bracket for a scalar function.
LineBracket() - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.line.LineBracket
Creates a new instance of LineBracket
LineBracket(InputOutputSlopeTriplet, InputOutputSlopeTriplet, InputOutputSlopeTriplet) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.line.LineBracket
Creates a new instance of LineBracket
LineBracket(LineBracket) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.line.LineBracket
Copy Constructor
LineBracketInterpolator<EvaluatorType extends Evaluator<java.lang.Double,java.lang.Double>> - Interface in gov.sandia.cognition.learning.algorithm.minimization.line.interpolator
Definition of an interpolator/extrapolator for a LineBracket.
LineBracketInterpolatorBrent - Class in gov.sandia.cognition.learning.algorithm.minimization.line.interpolator
Implements Brent's method of function interpolation to find a minimum.
LineBracketInterpolatorBrent() - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.line.interpolator.LineBracketInterpolatorBrent
Creates a new instance of LineBracketInterpolatorBrent
LineBracketInterpolatorGoldenSection - Class in gov.sandia.cognition.learning.algorithm.minimization.line.interpolator
Interpolates between the two bound points of a LineBracket using the golden-section step rule, if that step fails, then the interpolator uses a linear (secant) interpolation.
LineBracketInterpolatorGoldenSection() - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.line.interpolator.LineBracketInterpolatorGoldenSection
Creates a new instance of LineBracketInterpolatorGoldenSection
LineBracketInterpolatorHermiteCubic - Class in gov.sandia.cognition.learning.algorithm.minimization.line.interpolator
Interpolates using a cubic with two points, both of which must have slope information.
LineBracketInterpolatorHermiteCubic() - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.line.interpolator.LineBracketInterpolatorHermiteCubic
Creates a new instance of LineBracketInterpolatorHermiteCubic
LineBracketInterpolatorHermiteParabola - Class in gov.sandia.cognition.learning.algorithm.minimization.line.interpolator
Interpolates using a parabola with two points, at least one of which must have slope information.
LineBracketInterpolatorHermiteParabola() - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.line.interpolator.LineBracketInterpolatorHermiteParabola
Creates a new instance of LineBracketInterpolatorHermiteParabola
LineBracketInterpolatorLinear - Class in gov.sandia.cognition.learning.algorithm.minimization.line.interpolator
Interpolates using a linear (stright-line) curve between two points, neither of which need slope information.
LineBracketInterpolatorLinear() - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.line.interpolator.LineBracketInterpolatorLinear
Creates a new instance of LineBracketInterpolatorLinear
LineBracketInterpolatorParabola - Class in gov.sandia.cognition.learning.algorithm.minimization.line.interpolator
Interpolates using a parabola based on three points without slope information.
LineBracketInterpolatorParabola() - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.line.interpolator.LineBracketInterpolatorParabola
Creates a new instance of LineBracketInterpolatorParabola
lineFunction - Variable in class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerConjugateGradient
Function that maps a Evaluator onto a Evaluator using a set point, direction and scale factor
LineMinimizer<EvaluatorType extends Evaluator<java.lang.Double,java.lang.Double>> - Interface in gov.sandia.cognition.learning.algorithm.minimization.line
Defines the functionality of a line-minimization algorithm, often called a "line search" algorithm.
LineMinimizerBacktracking - Class in gov.sandia.cognition.learning.algorithm.minimization.line
Implementation of the backtracking line-minimization algorithm.
LineMinimizerBacktracking() - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizerBacktracking
Creates a new instance of LineMinimizerBacktracking
LineMinimizerBacktracking(double) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizerBacktracking
Creates a new instance of LineMinimizerBacktracking
LineMinimizerBacktracking(double, boolean) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizerBacktracking
Creates a new instance of LineMinimizerBacktracking
LineMinimizerBacktracking(double, boolean, double) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizerBacktracking
Creates a new instance of LineMinimizerBacktracking
LineMinimizerDerivativeBased - Class in gov.sandia.cognition.learning.algorithm.minimization.line
This is an implementation of a line-minimization algorithm proposed by Fletcher that makes extensive use of first-order derivative information.
LineMinimizerDerivativeBased() - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizerDerivativeBased
Default constructor
LineMinimizerDerivativeBased(double) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizerDerivativeBased
Creates a new instance of LineMinimizerDerivativeBased
LineMinimizerDerivativeBased(LineBracketInterpolator<? super DifferentiableUnivariateScalarFunction>, double) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizerDerivativeBased
Creates a new instance of LineMinimizerDerivativeBased
LineMinimizerDerivativeBased.InternalFunction - Class in gov.sandia.cognition.learning.algorithm.minimization.line
Internal function used to map/remap/unmap the search direction.
LineMinimizerDerivativeFree - Class in gov.sandia.cognition.learning.algorithm.minimization.line
This is an implementation of a LineMinimizer that does not require derivative information.
LineMinimizerDerivativeFree() - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizerDerivativeFree
Creates a new instance of LineMinimizerDerivativeFree
LineMinimizerDerivativeFree(LineBracketInterpolator<? super Evaluator<Double, Double>>) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizerDerivativeFree
Creates a new instance of LineMinimizerDerivativeFree
lines - Variable in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.AbstractEnvelope
Line segments that comprise the envelope
LineSegment(PolynomialFunction.Linear, double, double) - Constructor for class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.LineSegment
Creates a new instance of LineSegment
listeners - Variable in class gov.sandia.cognition.learning.algorithm.minimization.matrix.IterativeMatrixSolver
Listeners to the algorithms progress have the opportunity to stop the algorithm after a specified number of iterations.
listeners - Variable in class gov.sandia.cognition.learning.experiment.AbstractLearningExperiment
The listeners for the experiment.
loadFromText(File) - Static method in class gov.sandia.cognition.text.term.filter.DefaultStopList
Loads a stop list by reading in a given file and treating each line as a word.
loadFromText(URI) - Static method in class gov.sandia.cognition.text.term.filter.DefaultStopList
Loads a stop list by reading in a given file and treating each line as a word.
loadFromText(URL) - Static method in class gov.sandia.cognition.text.term.filter.DefaultStopList
Loads a stop list by reading in a given file and treating each line as a word.
loadFromText(URLConnection) - Static method in class gov.sandia.cognition.text.term.filter.DefaultStopList
Loads a stop list by reading in a given file and treating each line as a word.
loadFromText(BufferedReader) - Static method in class gov.sandia.cognition.text.term.filter.DefaultStopList
Loads a stop list by reading in from the given reader and treating each line as a word.
localItems - Variable in class gov.sandia.cognition.math.geometry.Quadtree.Node
The local items stored at this node.
LocallyWeightedFunction<InputType,OutputType> - Class in gov.sandia.cognition.learning.algorithm.regression
LocallyWeightedFunction is a generalization of the k-nearest neighbor concept, also known as "Instance-Based Learning", "Memory-Based Learning", "Nonparametric Regression", "Case-Based Regression", or "Kernel-Based Regression".
LocallyWeightedFunction(Kernel<? super InputType>, Collection<? extends InputOutputPair<? extends InputType, OutputType>>, SupervisedBatchLearner<InputType, OutputType, ?>) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.LocallyWeightedFunction
Evaluator that implements the concept of LocallyWeightedLearning.
LocallyWeightedFunction.Learner<InputType,OutputType> - Class in gov.sandia.cognition.learning.algorithm.regression
Learning algorithm for creating LocallyWeightedFunctions.
LocallyWeightedKernelScalarFunction<InputType> - Class in gov.sandia.cognition.learning.function.scalar
The LocallyWeightedKernelScalarFunction class implements a scalar function that uses kernels and does local weighting on them to get the result value.
LocallyWeightedKernelScalarFunction() - Constructor for class gov.sandia.cognition.learning.function.scalar.LocallyWeightedKernelScalarFunction
Creates a new instance of LocallyWeightedKernelScalarFunction.
LocallyWeightedKernelScalarFunction(Kernel<? super InputType>) - Constructor for class gov.sandia.cognition.learning.function.scalar.LocallyWeightedKernelScalarFunction
Creates a new instance of LocallyWeightedKernelScalarFunction with the given kernel.
LocallyWeightedKernelScalarFunction(Kernel<? super InputType>, Collection<? extends WeightedValue<? extends InputType>>) - Constructor for class gov.sandia.cognition.learning.function.scalar.LocallyWeightedKernelScalarFunction
Creates a new instance of LocallyWeightedKernelScalarFunction with the given kernel and weighted examples.
LocallyWeightedKernelScalarFunction(Kernel<? super InputType>, Collection<? extends WeightedValue<? extends InputType>>, double) - Constructor for class gov.sandia.cognition.learning.function.scalar.LocallyWeightedKernelScalarFunction
Creates a new instance of LocallyWeightedKernelScalarFunction with the given kernel, weighted examples, and bias.
LocallyWeightedKernelScalarFunction(Kernel<? super InputType>, Collection<? extends WeightedValue<? extends InputType>>, double, double, double) - Constructor for class gov.sandia.cognition.learning.function.scalar.LocallyWeightedKernelScalarFunction
Creates a new instance of LocallyWeightedKernelScalarFunction with the given kernel, weighted examples, and bias.
LocallyWeightedKernelScalarFunction(LocallyWeightedKernelScalarFunction<InputType>) - Constructor for class gov.sandia.cognition.learning.function.scalar.LocallyWeightedKernelScalarFunction
Creates a new instance copy of LocallyWeightedKernelScalarFunction.
LocalTermWeighter - Interface in gov.sandia.cognition.text.term.vector.weighter.local
Defines the functionality of a local term weighting scheme.
localWeighter - Variable in class gov.sandia.cognition.text.term.vector.weighter.CompositeLocalGlobalTermWeighter
The weighting scheme for the local weights.
location - Variable in class gov.sandia.cognition.statistics.distribution.CauchyDistribution
Central location (also the median and mode) of the distribution.
log(double, double) - Static method in class gov.sandia.cognition.math.MathUtil
Returns the log of the given base of the given value, y=log_b(x) such that x=b^y
log1MinusExp(double) - Static method in class gov.sandia.cognition.math.MathUtil
Computes log(1 - exp(x)).
log1Plus(double) - Static method in class gov.sandia.cognition.math.MathUtil
Computes log(1 + x).
log1PlusExp(double) - Static method in class gov.sandia.cognition.math.MathUtil
Computes log(1 + exp(x)).
log2(double) - Static method in class gov.sandia.cognition.math.MathUtil
Returns the base-2 logarithm of the given value.
LOG_0 - Static variable in class gov.sandia.cognition.math.LogMath
The natural logarithm of 0 (log(0)), which is negative infinity.
LOG_1 - Static variable in class gov.sandia.cognition.math.LogMath
The natural logarithm of 1 (log(1)), which is 0.
LOG_10 - Static variable in class gov.sandia.cognition.math.LogMath
The natural logarithm of 10 (log(10)).
LOG_2 - Static variable in class gov.sandia.cognition.math.LogMath
The natural logarithm of 2 (log(2)).
LOG_E - Static variable in class gov.sandia.cognition.math.LogMath
The natural logarithm of e (log(e)), which is 1.
LOG_OF_2 - Static variable in class gov.sandia.cognition.statistics.distribution.InverseWishartDistribution.PDF
The natural logarithm of 2.0.
LOG_PI - Static variable in class gov.sandia.cognition.statistics.distribution.InverseWishartDistribution.MultivariateGammaFunction
Natural logarithm of pi.
LOG_TWO_PI - Static variable in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian
Natural logarithm of 2pi.
logBetaFunction(double, double) - Static method in class gov.sandia.cognition.math.MathUtil
Compute the natural logarithm of the Beta Function.
logBinomialCoefficient(int, int) - Static method in class gov.sandia.cognition.math.MathUtil
Computes the natural logarithm of the binomial coefficient.
logConditional - Variable in class gov.sandia.cognition.statistics.bayesian.ParallelDirichletProcessMixtureModel.DPMMAssignments
Log conditional likelihood of the previous sample
logConjunctive(Double) - Method in class gov.sandia.cognition.statistics.bayesian.RejectionSampling.ScalarEstimator
Computes the logarithm of the conjunctive likelihood for the given parameter
logDeterminant() - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
 
logDeterminant() - Method in class gov.sandia.cognition.math.matrix.custom.DiagonalMatrix
 
logDeterminant() - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
Computes the natural logarithm of the determinant of this.
logDeterminant() - Method in interface gov.sandia.cognition.math.matrix.Matrix
Computes the natural logarithm of the determinant of this.
logDeterminant() - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJMatrix
 
logDeterminant() - Method in class gov.sandia.cognition.math.matrix.mtj.DiagonalMatrixMTJ
 
logEvaluate(Double) - Method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.AbstractEnvelope
Evaluates the logarithm of the Envelope
logEvaluate(Number) - Method in class gov.sandia.cognition.statistics.distribution.BernoulliDistribution.PMF
 
logEvaluate(Number) - Method in class gov.sandia.cognition.statistics.distribution.BetaBinomialDistribution.PMF
 
logEvaluate(Double) - Method in class gov.sandia.cognition.statistics.distribution.BetaDistribution.PDF
 
logEvaluate(double) - Method in class gov.sandia.cognition.statistics.distribution.BetaDistribution.PDF
 
logEvaluate(double, double, double) - Static method in class gov.sandia.cognition.statistics.distribution.BetaDistribution.PDF
Evaluate the Beta-distribution PDF for beta(x;alpha,beta)
logEvaluate(Number) - Method in class gov.sandia.cognition.statistics.distribution.BinomialDistribution.PMF
 
logEvaluate(int, int, double) - Static method in class gov.sandia.cognition.statistics.distribution.BinomialDistribution.PMF
Computes the natural logarithm of the PMF.
logEvaluate(Vector) - Method in class gov.sandia.cognition.statistics.distribution.CategoricalDistribution.PMF
 
logEvaluate(Double) - Method in class gov.sandia.cognition.statistics.distribution.CauchyDistribution.PDF
 
logEvaluate(double) - Method in class gov.sandia.cognition.statistics.distribution.CauchyDistribution.PDF
 
logEvaluate(Vector) - Method in class gov.sandia.cognition.statistics.distribution.ChineseRestaurantProcess.PMF
 
logEvaluate(Double) - Method in class gov.sandia.cognition.statistics.distribution.ChiSquareDistribution.PDF
 
logEvaluate(double) - Method in class gov.sandia.cognition.statistics.distribution.ChiSquareDistribution.PDF
 
logEvaluate(double, double) - Static method in class gov.sandia.cognition.statistics.distribution.ChiSquareDistribution.PDF
Computes the natural logarithm of the PDF.
logEvaluate(KeyType) - Method in class gov.sandia.cognition.statistics.distribution.DefaultDataDistribution.PMF
 
logEvaluate(Double) - Method in class gov.sandia.cognition.statistics.distribution.DeterministicDistribution.PMF
 
logEvaluate(Vector) - Method in class gov.sandia.cognition.statistics.distribution.DirichletDistribution.PDF
 
logEvaluate(Double) - Method in class gov.sandia.cognition.statistics.distribution.ExponentialDistribution.PDF
 
logEvaluate(double) - Method in class gov.sandia.cognition.statistics.distribution.ExponentialDistribution.PDF
 
logEvaluate(Double) - Method in class gov.sandia.cognition.statistics.distribution.GammaDistribution.PDF
 
logEvaluate(double) - Method in class gov.sandia.cognition.statistics.distribution.GammaDistribution.PDF
 
logEvaluate(double, double, double) - Static method in class gov.sandia.cognition.statistics.distribution.GammaDistribution.PDF
Evaluates the natural logarithm of the PDF.
logEvaluate(Number) - Method in class gov.sandia.cognition.statistics.distribution.GeometricDistribution.PMF
 
logEvaluate(Double) - Method in class gov.sandia.cognition.statistics.distribution.InverseGammaDistribution.PDF
 
logEvaluate(double) - Method in class gov.sandia.cognition.statistics.distribution.InverseGammaDistribution.PDF
 
logEvaluate(double, int) - Static method in class gov.sandia.cognition.statistics.distribution.InverseWishartDistribution.MultivariateGammaFunction
Evaluates the logarithm of the Multivariate Gamma Function
logEvaluate(Matrix) - Method in class gov.sandia.cognition.statistics.distribution.InverseWishartDistribution.PDF
 
logEvaluate(Double) - Method in class gov.sandia.cognition.statistics.distribution.LaplaceDistribution.PDF
 
logEvaluate(double) - Method in class gov.sandia.cognition.statistics.distribution.LaplaceDistribution.PDF
 
logEvaluate(double) - Method in class gov.sandia.cognition.statistics.distribution.LogisticDistribution.PDF
 
logEvaluate(Double) - Method in class gov.sandia.cognition.statistics.distribution.LogisticDistribution.PDF
 
logEvaluate(Double) - Method in class gov.sandia.cognition.statistics.distribution.LogNormalDistribution.PDF
 
logEvaluate(double) - Method in class gov.sandia.cognition.statistics.distribution.LogNormalDistribution.PDF
 
logEvaluate(double, double, double) - Static method in class gov.sandia.cognition.statistics.distribution.LogNormalDistribution.PDF
Computes the natural logarithm of the PDF.
logEvaluate(Vector) - Method in class gov.sandia.cognition.statistics.distribution.MultinomialDistribution.PMF
 
logEvaluate(Vector) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.PDF
 
logEvaluate(Vector) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateMixtureDensityModel.PDF
 
logEvaluate(Vector) - Method in class gov.sandia.cognition.statistics.distribution.MultivariatePolyaDistribution.PMF
 
logEvaluate(Vector) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateStudentTDistribution.PDF
 
logEvaluate(Number) - Method in class gov.sandia.cognition.statistics.distribution.NegativeBinomialDistribution.PMF
 
logEvaluate(Vector) - Method in class gov.sandia.cognition.statistics.distribution.NormalInverseGammaDistribution.PDF
 
logEvaluate(Matrix) - Method in class gov.sandia.cognition.statistics.distribution.NormalInverseWishartDistribution.PDF
 
logEvaluate(Double) - Method in class gov.sandia.cognition.statistics.distribution.ParetoDistribution.PDF
 
logEvaluate(double) - Method in class gov.sandia.cognition.statistics.distribution.ParetoDistribution.PDF
 
logEvaluate(Number) - Method in class gov.sandia.cognition.statistics.distribution.PoissonDistribution.PMF
 
logEvaluate(Double) - Method in class gov.sandia.cognition.statistics.distribution.ScalarDataDistribution.PMF
 
logEvaluate(Double) - Method in class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel.PDF
 
logEvaluate(double) - Method in class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel.PDF
 
logEvaluate(Double) - Method in class gov.sandia.cognition.statistics.distribution.StudentTDistribution.PDF
 
logEvaluate(double) - Method in class gov.sandia.cognition.statistics.distribution.StudentTDistribution.PDF
 
logEvaluate(Double) - Method in class gov.sandia.cognition.statistics.distribution.UniformDistribution.PDF
 
logEvaluate(double) - Method in class gov.sandia.cognition.statistics.distribution.UniformDistribution.PDF
 
logEvaluate(Number) - Method in class gov.sandia.cognition.statistics.distribution.UniformIntegerDistribution.PMF
 
logEvaluate(int, int, int) - Static method in class gov.sandia.cognition.statistics.distribution.UniformIntegerDistribution.PMF
Evaluates the log of the probability mass function of the discrete uniform distribution.
logEvaluate(Double) - Method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.PDF
 
logEvaluate(double) - Method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.PDF
 
logEvaluate(double, double, double) - Static method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.PDF
Computes the natural logarithm of the pdf.
logEvaluate(Double) - Method in class gov.sandia.cognition.statistics.distribution.WeibullDistribution.PDF
 
logEvaluate(double) - Method in class gov.sandia.cognition.statistics.distribution.WeibullDistribution.PDF
 
logEvaluate(Number) - Method in class gov.sandia.cognition.statistics.distribution.YuleSimonDistribution.PMF
 
logEvaluate(DataType) - Method in interface gov.sandia.cognition.statistics.ProbabilityFunction
Evaluate the natural logarithm of the distribution function.
logEvaluate(double) - Method in interface gov.sandia.cognition.statistics.UnivariateProbabilityDensityFunction
Evaluate the natural logarithm of the distribution function.
LogEvaluator(EvaluatorType) - Constructor for class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.LogEvaluator
Creates a new instance of LogEvaluator
logFactorial(int) - Static method in class gov.sandia.cognition.math.MathUtil
Returns the natural logarithm of n factorial log(n!) = log(n*(n-1)*...*3*2*1)
logGammaFunction(double) - Static method in class gov.sandia.cognition.math.MathUtil
Computes the logarithm of the Gamma function.
logistic(double) - Static method in class gov.sandia.cognition.learning.function.scalar.SigmoidFunction
Utility method to evaluate a logistic sigmoid.
LogisticDistribution - Class in gov.sandia.cognition.statistics.distribution
A implementation of the scalar logistic distribution, which measures the log-odds of a binary event.
LogisticDistribution() - Constructor for class gov.sandia.cognition.statistics.distribution.LogisticDistribution
Default constructor
LogisticDistribution(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.LogisticDistribution
Creates a new instance of LogisticDistribution
LogisticDistribution(LogisticDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.LogisticDistribution
Copy constructor
LogisticDistribution.CDF - Class in gov.sandia.cognition.statistics.distribution
CDF of the LogisticDistribution
LogisticDistribution.PDF - Class in gov.sandia.cognition.statistics.distribution
PDF of the LogisticDistribution
LogisticRegression - Class in gov.sandia.cognition.learning.algorithm.regression
Performs Logistic Regression by means of the iterative reweighted least squares (IRLS) algorithm, where the logistic function has an explicit bias term, and a diagonal L2 regularization term.
LogisticRegression() - Constructor for class gov.sandia.cognition.learning.algorithm.regression.LogisticRegression
Default constructor, with no regularization.
LogisticRegression(double) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.LogisticRegression
Creates a new instance of LogisticRegression
LogisticRegression(double, double, int) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.LogisticRegression
Creates a new instance of LogisticRegression
LogisticRegression.Function - Class in gov.sandia.cognition.learning.algorithm.regression
Class that is a linear discriminant, followed by a sigmoid function.
logLikelihood(ComputableDistribution<? super ObservationType>, Iterable<? extends ObservationType>) - Static method in class gov.sandia.cognition.statistics.bayesian.BayesianUtil
Computes the log likelihood of the i.i.d.
logLikelihood - Variable in class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis
The current log-likelihood of the algorithm.
LogLikelihoodTask(Collection<? extends ObservationType>) - Constructor for class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel.LogLikelihoodTask
Creates a new instance of LogLikelihoodTask
LogLocalTermWeighter - Class in gov.sandia.cognition.text.term.vector.weighter.local
Implements the log-based local term weighting scheme.
LogLocalTermWeighter() - Constructor for class gov.sandia.cognition.text.term.vector.weighter.local.LogLocalTermWeighter
Creates a new LogLocalTermWeighter.
LogLocalTermWeighter(VectorFactory<? extends Vector>) - Constructor for class gov.sandia.cognition.text.term.vector.weighter.local.LogLocalTermWeighter
Creates a new LogLocalTermWeighter.
LogMath - Class in gov.sandia.cognition.math
A utility class for doing math with numbers represented as logarithms.
LogMath() - Constructor for class gov.sandia.cognition.math.LogMath
 
logMultinomialBetaFunction(Vector) - Static method in class gov.sandia.cognition.math.MathUtil
Evaluates the natural logarithm of the multinomial beta function for the given input vector.
LogNormalDistribution - Class in gov.sandia.cognition.statistics.distribution
Log-Normal distribution PDF and CDF implementations.
LogNormalDistribution() - Constructor for class gov.sandia.cognition.statistics.distribution.LogNormalDistribution
Default constructor.
LogNormalDistribution(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.LogNormalDistribution
Creates a new instance of LogNormalDistribution
LogNormalDistribution(LogNormalDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.LogNormalDistribution
Copy Constructor
LogNormalDistribution.CDF - Class in gov.sandia.cognition.statistics.distribution
CDF of the Log-Normal Distribution
LogNormalDistribution.MaximumLikelihoodEstimator - Class in gov.sandia.cognition.statistics.distribution
Maximum Likelihood Estimator of a log-normal distribution.
LogNormalDistribution.PDF - Class in gov.sandia.cognition.statistics.distribution
PDF of a Log-normal distribution
LogNormalDistribution.WeightedMaximumLikelihoodEstimator - Class in gov.sandia.cognition.statistics.distribution
Maximum Likelihood Estimator from weighted data
LogNumber - Class in gov.sandia.cognition.math
Represents a number in log-space, storing the log of the absolute value log(|value|) and the sign of the value sign(value).
LogNumber() - Constructor for class gov.sandia.cognition.math.LogNumber
Creates the LogNumber representing zero.
LogNumber(boolean, double) - Constructor for class gov.sandia.cognition.math.LogNumber
Creates a new LogNumber from the given value in log-space.
LogNumber(LogNumber) - Constructor for class gov.sandia.cognition.math.LogNumber
Copies a given LogNumber.
logSize() - Method in class gov.sandia.cognition.statistics.distribution.MultinomialDistribution.Domain
The log of the size.
logValue - Variable in class gov.sandia.cognition.math.LogNumber
The log of the absolute value represented by this object, log(|value|).
logValue - Variable in class gov.sandia.cognition.math.UnsignedLogNumber
The log of the value represented by this object, log(value).
longValue() - Method in class gov.sandia.cognition.math.LogNumber
 
longValue() - Method in class gov.sandia.cognition.math.MutableDouble
 
longValue() - Method in class gov.sandia.cognition.math.MutableInteger
 
longValue() - Method in class gov.sandia.cognition.math.MutableLong
 
longValue() - Method in class gov.sandia.cognition.math.UnsignedLogNumber
 
Louvain<NodeNameType> - Class in gov.sandia.cognition.graph.community
This class performs community detection using the Louvain method.
Louvain(DirectedNodeEdgeGraph<NodeNameType>) - Constructor for class gov.sandia.cognition.graph.community.Louvain
Initializes the internal Louvain datatypes that store the necessaries to run Louvain on the input graph.
Louvain(DirectedNodeEdgeGraph<NodeNameType>, int, double) - Constructor for class gov.sandia.cognition.graph.community.Louvain
Initializes the internal Louvain datatypes that store the necessaries to run Louvain on the input graph.
Louvain.LouvainHierarchy<NodeNameType> - Class in gov.sandia.cognition.graph.community
The return type from running Louvain.
lowerBounds - Variable in class gov.sandia.cognition.learning.algorithm.clustering.OptimizedKMeansClusterer
The lower bounds on the distances to the clusters.
LowerCaseTermFilter - Class in gov.sandia.cognition.text.term.filter
A term filter that converts all terms to lower case.
LowerCaseTermFilter() - Constructor for class gov.sandia.cognition.text.term.filter.LowerCaseTermFilter
Creates a new LowerCaseTermFilter.
LowerEnvelope() - Constructor for class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.LowerEnvelope
Default constructor
lowerIncompleteGammaFunction(double, double) - Static method in class gov.sandia.cognition.math.MathUtil
Computes the Lower incomplete gamma function.
lowerLeft - Variable in class gov.sandia.cognition.math.geometry.Quadtree.Node
The child for the lower-left quadrant of this node.
lowerRight - Variable in class gov.sandia.cognition.math.geometry.Quadtree.Node
The child for the lower-right quadrant of this node.
lowestIndex(EntryType, EntryType) - Method in interface gov.sandia.cognition.math.matrix.EntryIndexComparator
Determines which iterator has the lowest index
lowestIndex(MatrixEntry, MatrixEntry) - Method in class gov.sandia.cognition.math.matrix.mtj.MatrixEntryIndexComparatorMTJ
Determines which iterator has the lowest index
lowestIndex(VectorEntry, VectorEntry) - Method in class gov.sandia.cognition.math.matrix.VectorEntryIndexComparator
Determines which iterator has the lowest index
luDecompose() - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
Leverages LAPACK to create the LU decomposition of this.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Skip navigation links