- factorCount - Variable in class gov.sandia.cognition.learning.algorithm.factor.machine.AbstractFactorizationMachineLearner
-
The number of factors to use.
- FactorizationMachine - Class in gov.sandia.cognition.learning.algorithm.factor.machine
-
Implements a Factorization Machine.
- FactorizationMachine() - Constructor for class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachine
-
- FactorizationMachine(int, int) - Constructor for class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachine
-
Creates a new, empty
FactorizationMachine
of the given
input dimensionality (d) and factor count (k).
- FactorizationMachine(double, Vector, Matrix) - Constructor for class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachine
-
- FactorizationMachineAlternatingLeastSquares - Class in gov.sandia.cognition.learning.algorithm.factor.machine
-
Implements an Alternating Least Squares (ALS) algorithm for learning a
Factorization Machine.
- FactorizationMachineAlternatingLeastSquares() - Constructor for class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachineAlternatingLeastSquares
-
- FactorizationMachineAlternatingLeastSquares(int, double, double, double, double, int, double, Random) - Constructor for class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachineAlternatingLeastSquares
-
- FactorizationMachineStochasticGradient - Class in gov.sandia.cognition.learning.algorithm.factor.machine
-
Implements a Stochastic Gradient Descent (SGD) algorithm for learning a
Factorization Machine.
- FactorizationMachineStochasticGradient() - Constructor for class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachineStochasticGradient
-
- FactorizationMachineStochasticGradient(int, double, double, double, double, double, int, Random) - Constructor for class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachineStochasticGradient
-
- factorRegularization - Variable in class gov.sandia.cognition.learning.algorithm.factor.machine.AbstractFactorizationMachineLearner
-
The regularization term for the factor matrix.
- factors - Variable in class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachine
-
The k x d factor matrix (v) with k factors for each dimension.
- Factory<CreatedType> - Interface in gov.sandia.cognition.factory
-
The Factory
interface defines a very general interface for a factory
object that can be used to create some other type of object.
- factory - Variable in class gov.sandia.cognition.learning.performance.categorization.ConfusionMatrixPerformanceEvaluator
-
The factory used to create the confusion matrix of the evaluator.
- Factory() - Constructor for class gov.sandia.cognition.learning.performance.categorization.DefaultConfusionMatrix.Factory
-
Creates a new Factory
.
- falseNegativesCount - Variable in class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrix
-
Number of false negatives.
- falsePositivesCount - Variable in class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrix
-
Number of false positives.
- falseValue - Variable in class gov.sandia.cognition.data.convert.number.DefaultBooleanToNumberConverter
-
The number to use to represent a false value.
- FeatureHashing - Class in gov.sandia.cognition.learning.data.feature
-
Implements a function that applies vector feature hashing.
- FeatureHashing() - Constructor for class gov.sandia.cognition.learning.data.feature.FeatureHashing
-
- FeatureHashing(int) - Constructor for class gov.sandia.cognition.learning.data.feature.FeatureHashing
-
- FeatureHashing(int, HashFunction, VectorFactory<?>) - Constructor for class gov.sandia.cognition.learning.data.feature.FeatureHashing
-
- featureStddev - Variable in class gov.sandia.cognition.learning.algorithm.delta.AbstractDeltaCategorizer
-
The stddev of each feature.
- FeedforwardNeuralNetwork - Class in gov.sandia.cognition.learning.function.vector
-
A feedforward neural network that can have an arbitrary number of layers,
and an arbitrary squashing (activation) function assigned to each layer.
- FeedforwardNeuralNetwork(ArrayList<Integer>, ArrayList<? extends UnivariateScalarFunction>) - Constructor for class gov.sandia.cognition.learning.function.vector.FeedforwardNeuralNetwork
-
Creates a new instance of FeedforwardNeuralNetwork
- FeedforwardNeuralNetwork(int, int, int, UnivariateScalarFunction) - Constructor for class gov.sandia.cognition.learning.function.vector.FeedforwardNeuralNetwork
-
Creates a new instance of FeedforwardNeuralNetwork
- FeedforwardNeuralNetwork(ArrayList<? extends GeneralizedLinearModel>) - Constructor for class gov.sandia.cognition.learning.function.vector.FeedforwardNeuralNetwork
-
Creates a new instance of FeedforwardNeuralNetwork
- Field<FieldType extends Field<FieldType>> - Interface in gov.sandia.cognition.math
-
Defines something similar to a mathematical field.
- Field - Interface in gov.sandia.cognition.text.document
-
Defines the interface for a field in the document.
- FieldConfidenceInterval - Class in gov.sandia.cognition.statistics.method
-
This class has methods that automatically compute confidence intervals for
Double/double Fields in dataclasses.
- FieldConfidenceInterval(Field, ConfidenceInterval) - Constructor for class gov.sandia.cognition.statistics.method.FieldConfidenceInterval
-
Creates a new instance of FieldConfidenceInterval
- fieldMap - Variable in class gov.sandia.cognition.text.document.AbstractDocument
-
A mapping of field names to fields.
- fieldName - Variable in class gov.sandia.cognition.text.convert.DocumentSingleFieldConverter
-
The name of the field to extract.
- fieldNames - Variable in class gov.sandia.cognition.text.convert.DocumentFieldConcatenator
-
The list of fields to concatenate together from a document.
- fieldSeparator - Variable in class gov.sandia.cognition.text.convert.DocumentFieldConcatenator
-
The field separator.
- FileReference - Interface in gov.sandia.cognition.text.document
-
Represents a document reference that is to an actual file.
- FileSerializationHandler<SerializedType> - Interface in gov.sandia.cognition.io.serialization
-
Defines the functionality of a serialization handler that can write an object
to a file and read an object from a file.
- FileUtil - Class in gov.sandia.cognition.io
-
The FileUtil
class defines some useful utilities for dealing
with files.
- FileUtil() - Constructor for class gov.sandia.cognition.io.FileUtil
-
- fillBag(int) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractBaggingLearner
-
Fills the internal bag field by sampling the given number of samples.
- fillBag(int) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.CategoryBalancedBaggingLearner
-
- filterTerm(TermOccurrence) - Method in class gov.sandia.cognition.text.term.filter.DictionaryFilter
-
- filterTerm(TermOccurrence) - Method in class gov.sandia.cognition.text.term.filter.LowerCaseTermFilter
-
- filterTerm(TermOccurrence) - Method in interface gov.sandia.cognition.text.term.filter.SingleTermFilter
-
Takes a single term occurrence and filters that occurrence into a new
occurrence or returns null, indicating that the filter rejects that
term.
- filterTerm(TermOccurrence) - Method in class gov.sandia.cognition.text.term.filter.stem.PorterEnglishStemmingFilter
-
- filterTerm(TermOccurrence) - Method in class gov.sandia.cognition.text.term.filter.StopListFilter
-
- filterTerm(TermOccurrence) - Method in class gov.sandia.cognition.text.term.filter.StringEvaluatorSingleTermFilter
-
- filterTerm(TermOccurrence) - Method in class gov.sandia.cognition.text.term.filter.SynonymFilter
-
- filterTerm(TermOccurrence) - Method in class gov.sandia.cognition.text.term.filter.TermLengthFilter
-
- filterTerms(Iterable<? extends TermOccurrence>) - Method in class gov.sandia.cognition.text.term.filter.AbstractSingleTermFilter
-
- filterTerms(Iterable<? extends TermOccurrence>) - Method in class gov.sandia.cognition.text.term.filter.NGramFilter
-
- filterTerms(Iterable<? extends TermOccurrence>) - Method in interface gov.sandia.cognition.text.term.filter.TermFilter
-
Filters the given list of terms into a new list of terms based on some
internal criteria for what constitutes a term.
- find(DataType) - Method in class gov.sandia.cognition.math.geometry.Quadtree
-
Locates the node in the tree that has the smallest bounding box that
contains the item.
- find(Vector2) - Method in class gov.sandia.cognition.math.geometry.Quadtree
-
Locates the node in the tree that has the smallest bounding box that
contains the point.
- find(double, double) - Method in class gov.sandia.cognition.math.geometry.Quadtree
-
Locates the node in the tree that has the smallest bounding box that
contains the point.
- findBest(Iterable<String>, String) - Method in class gov.sandia.cognition.text.spelling.SimpleStatisticalSpellingCorrector
-
Finds the best word from a given list of words by finding the one with
the highest count in the dictionary.
- findBestCategory(Vector) - Method in class gov.sandia.cognition.learning.function.categorization.WinnerTakeAllCategorizer
-
Finds the best category (and its output value) from the given vector
of outputs from a vector evaluator.
- findBin(ValueType) - Method in interface gov.sandia.cognition.statistics.method.Binner
-
Finds the bin for the provided value, or null if a corresponding bin
for the value does not exist.
- findBin(ValueType) - Method in class gov.sandia.cognition.statistics.method.TreeSetBinner
-
- findChild(DataType) - Method in class gov.sandia.cognition.math.geometry.Quadtree.Node
-
Finds the child corresponding to the given point.
- findChild(Vector2) - Method in class gov.sandia.cognition.math.geometry.Quadtree.Node
-
Finds the child corresponding to the given point.
- findChild(double, double) - Method in class gov.sandia.cognition.math.geometry.Quadtree.Node
-
Finds the child corresponding to the given point.
- findIdentifier(SemanticLabel) - Method in class gov.sandia.cognition.framework.DefaultSemanticIdentifierMap
-
Queries into the map to find a SemanticLabel
- findIdentifier(SemanticLabel) - Method in interface gov.sandia.cognition.framework.SemanticIdentifierMap
-
Queries into the map to find a SemanticLabel
- findIndexForIdentifier(SemanticIdentifier) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelVectorConverter
-
Finds the vector index for the given SemanticIdentifier.
- findInputIndexForIdentifier(SemanticIdentifier) - Method in class gov.sandia.cognition.framework.lite.AbstractSemanticMemoryLite
-
Finds the input vector index for a given identifier.
- findInputIndexForIdentifier(SemanticIdentifier) - Method in class gov.sandia.cognition.framework.lite.MutableSemanticMemoryLite
-
Finds the input vector index for a given identifier.
- findInputIndexForIdentifier(SemanticIdentifier) - Method in class gov.sandia.cognition.framework.lite.SharedSemanticMemoryLite
-
Finds the input vector index for a given identifier.
- findItems(Rectangle2D) - Method in class gov.sandia.cognition.math.geometry.Quadtree
-
Finds all of the items in the quadtree that are contained in the given
rectangle.
- findItems(Rectangle2D, LinkedList<DataType>) - Method in class gov.sandia.cognition.math.geometry.Quadtree.Node
-
Finds all of the items that fall within the region defined by this
node (and its children) and adds it to the given list.
- findKthLargest(int, ArrayList<? extends ComparableType>, Comparator<? super ComparableType>) - Static method in class gov.sandia.cognition.collection.CollectionUtil
-
Returns the set of indices of the data array such that
data[return[0..k-1]] ≤ data[return[k]] ≤ data[return[k+1...N-1]].
- findLineSegment(Double) - Method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.AbstractEnvelope
-
Finds the line segment that contains the input
- findMinimum(LineBracket, double, double, EvaluatorType) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.interpolator.AbstractLineBracketInterpolatorPolynomial
-
- findMinimum(LineBracket, double, double, EvaluatorType) - Method in interface gov.sandia.cognition.learning.algorithm.minimization.line.interpolator.LineBracketInterpolator
-
Finds the minimum of the bracket using the interpolation/extrapolation
routine, where the minimum must lie between the minx and maxx values on
the x-axis.
- findMinimum(LineBracket, double, double, Evaluator<Double, Double>) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.interpolator.LineBracketInterpolatorBrent
-
- findMinimum(LineBracket, double, double, Evaluator<Double, Double>) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.interpolator.LineBracketInterpolatorGoldenSection
-
- findMostLikelyState(int, Vector) - Method in class gov.sandia.cognition.learning.algorithm.hmm.HiddenMarkovModel
-
Finds the most-likely next state given the previous "delta" in the
Viterbi algorithm.
- findNearest(VectorType, int, Metric<? super VectorType>) - Method in class gov.sandia.cognition.math.geometry.KDTree
-
Finds the "num" nearest neighbors to the given "key" stored in the
KDTree.
- findNearest(VectorType, int, KDTree.Neighborhood<VectorType, DataType, PairType>, Metric<? super VectorType>) - Method in class gov.sandia.cognition.math.geometry.KDTree
-
Finds the "num" nearest neighbors to the given "key" stored in the
KDTree.
- findNearestWithinRadius(VectorType, double, Metric<? super VectorType>) - Method in class gov.sandia.cognition.math.geometry.KDTree
-
Finds the neighbors within a given distance to the given "key" stored in
the KDTree.
- findNearestWithinRadius(VectorType, double, KDTree.Neighborhood<VectorType, DataType, PairType>, Metric<? super VectorType>) - Method in class gov.sandia.cognition.math.geometry.KDTree
-
Finds the neighbors within a given distance to the given "key" stored in
the KDTree.
- findNodes(Rectangle2D) - Method in class gov.sandia.cognition.math.geometry.Quadtree
-
Finds the list of nodes that overlap with the given rectangle, chosing
the highest-level nodes in the tree that are contained in the rectangle.
- findTerminalNode(InputType) - Method in class gov.sandia.cognition.learning.algorithm.tree.DecisionTree
-
Finds the terminal node for the given input.
- findTerminalNode(InputType, DecisionTreeNode<InputType, OutputType>) - Method in class gov.sandia.cognition.learning.algorithm.tree.DecisionTree
-
Finds the terminal node for the given input, starting from the given
node.
- findUniqueOutputs(Iterable<? extends InputOutputPair<?, ? extends OutputType>>) - Static method in class gov.sandia.cognition.learning.data.DatasetUtil
-
Creates a set containing the unique output values from the given data.
- FiniteCapacityBuffer<DataType> - Class in gov.sandia.cognition.collection
-
A finite capacity buffer backed by a fixed array.
- FiniteCapacityBuffer() - Constructor for class gov.sandia.cognition.collection.FiniteCapacityBuffer
-
Default constructor with capacity of one.
- FiniteCapacityBuffer(int) - Constructor for class gov.sandia.cognition.collection.FiniteCapacityBuffer
-
Creates a new instance of FiniteCapacityBuffer.
- FiniteCapacityBuffer(FiniteCapacityBuffer<DataType>) - Constructor for class gov.sandia.cognition.collection.FiniteCapacityBuffer
-
Copy constructor.
- FiniteCapacityBuffer.InternalIterator - Class in gov.sandia.cognition.collection
-
Iterator for FiniteCapacityBuffer
- fireAlgorithmEnded() - Method in class gov.sandia.cognition.algorithm.AbstractIterativeAlgorithm
-
Fires off a algorithm ended event for the algorithm, which notifies all
the listeners that the algorithm has ended.
- fireAlgorithmStarted() - Method in class gov.sandia.cognition.algorithm.AbstractIterativeAlgorithm
-
Fires off a algorithm started event for this algorithm, which notifies
all of the listeners that the algorithm has started.
- fireExperimentEnded() - Method in class gov.sandia.cognition.learning.experiment.AbstractLearningExperiment
-
Fires the experimentEnded event for all listeners.
- fireExperimentStarted() - Method in class gov.sandia.cognition.learning.experiment.AbstractLearningExperiment
-
Fires the experimentStarted event for all listeners.
- fireModelStateChangedEvent() - Method in class gov.sandia.cognition.framework.AbstractCognitiveModel
-
Triggers the CognitiveModelStateChangeEvent on all the registered
CognitiveModelListners.
- fireModelStateChangedEvent(CognitiveModelStateChangeEvent) - Method in class gov.sandia.cognition.framework.AbstractCognitiveModel
-
Triggers the CognitiveModelStateChangeEvent on all the registered
CognitiveModelListners.
- fireSemanticIdentifierAddedEvent(SemanticIdentifier) - Method in class gov.sandia.cognition.framework.DefaultSemanticIdentifierMap
-
Fires off a SemanticIdentifierMapEvent of type SemanticIdentifierAdded
for the given identifier.
- fireStepEnded() - Method in class gov.sandia.cognition.algorithm.AbstractIterativeAlgorithm
-
Fires off a algorithm ended event for the algorithm, which notifies all
the listeners that a step has ended.
- fireStepStarted() - Method in class gov.sandia.cognition.algorithm.AbstractIterativeAlgorithm
-
Fires off a algorithm started event for the algorithm, which notifies
all the listeners that a step has started.
- fireTrialEnded() - Method in class gov.sandia.cognition.learning.experiment.AbstractLearningExperiment
-
Fires the trialEnded event for all listeners.
- fireTrialStarted() - Method in class gov.sandia.cognition.learning.experiment.AbstractLearningExperiment
-
Fires the trialStarted event for all listeners.
- first - Variable in class gov.sandia.cognition.util.DefaultPair
-
The first object.
- first - Variable in class gov.sandia.cognition.util.DefaultTriple
-
The first object.
- firstChild - Variable in class gov.sandia.cognition.learning.algorithm.clustering.hierarchy.BinaryClusterHierarchyNode
-
The first child node.
- firstIndicesForRows - Variable in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
Part of the compressed Yale format.
- firstLearner - Variable in class gov.sandia.cognition.learning.algorithm.CompositeBatchLearnerPair
-
The first learner that is trained on the input data.
- FisherLinearDiscriminantBinaryCategorizer - Class in gov.sandia.cognition.learning.function.categorization
-
A Fisher Linear Discriminant classifier, which creates an optimal linear
separating plane between two Gaussian classes of different covariances.
- FisherLinearDiscriminantBinaryCategorizer() - Constructor for class gov.sandia.cognition.learning.function.categorization.FisherLinearDiscriminantBinaryCategorizer
-
Default constructor
- FisherLinearDiscriminantBinaryCategorizer(Vector, double) - Constructor for class gov.sandia.cognition.learning.function.categorization.FisherLinearDiscriminantBinaryCategorizer
-
Creates a new of FisherLinearDiscriminantBinaryCategorizer
.
- FisherLinearDiscriminantBinaryCategorizer(LinearDiscriminant, double) - Constructor for class gov.sandia.cognition.learning.function.categorization.FisherLinearDiscriminantBinaryCategorizer
-
Creates a new of FisherLinearDiscriminantBinaryCategorizer
.
- FisherLinearDiscriminantBinaryCategorizer.ClosedFormSolver - Class in gov.sandia.cognition.learning.function.categorization
-
This class implements a closed form solver for the Fisher linear
discriminant binary categorizer.
- FisherSignConfidence - Class in gov.sandia.cognition.statistics.method
-
This is an implementation of the Fisher Sign Test, which is a robust
nonparameteric test to determine if two groups have a different mean.
- FisherSignConfidence() - Constructor for class gov.sandia.cognition.statistics.method.FisherSignConfidence
-
Default Constructor
- FisherSignConfidence.Statistic - Class in gov.sandia.cognition.statistics.method
-
Contains the parameters from the Sign Test null-hypothesis evaluation
- fit(InputOutputSlopeTriplet, InputOutputSlopeTriplet) - Static method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Cubic
-
Fits a cubic to two InputOutputSlopeTriplets using a closed-form
solution
- fit(InputOutputPair<Double, Double>, InputOutputPair<Double, Double>) - Static method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Linear
-
Fits a linear (straight-line) curve to the given data points
- fit(InputOutputSlopeTriplet) - Static method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Linear
-
Fits a linear (stright-line) curve to the given data point
- fit(InputOutputPair<Double, Double>, InputOutputPair<Double, Double>, InputOutputPair<Double, Double>) - Static method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Quadratic
-
Fits a quadratic to three points
- fit(InputOutputSlopeTriplet, InputOutputPair<Double, Double>) - Static method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Quadratic
-
Fits a quadratic to two points, one of which has slope information.
- fitSingleGaussian() - Method in class gov.sandia.cognition.statistics.distribution.MixtureOfGaussians.PDF
-
Fits a single MultivariateGaussian to the given MixtureOfGaussians
- FixedClusterInitializer<ClusterType extends Cluster<DataType>,DataType> - Interface in gov.sandia.cognition.learning.algorithm.clustering.initializer
-
The FixedClusterInitializer interface defines the functionality of a class
that can initialize a given number of clusters from a set of elements.
- FletcherXuHybridEstimation - Class in gov.sandia.cognition.learning.algorithm.regression
-
The Fletcher-Xu hybrid estimation for solving the nonlinear least-squares
parameters.
- FletcherXuHybridEstimation() - Constructor for class gov.sandia.cognition.learning.algorithm.regression.FletcherXuHybridEstimation
-
Creates a new instance of FletcherXuHybridEstimation
- FletcherXuHybridEstimation(LineMinimizer<?>) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.FletcherXuHybridEstimation
-
Creates a new instance of FletcherXuHybridEstimation
- FletcherXuHybridEstimation(LineMinimizer<?>, double) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.FletcherXuHybridEstimation
-
Creates a new instance of FletcherXuHybridEstimation
- FletcherXuHybridEstimation(LineMinimizer<?>, double, double) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.FletcherXuHybridEstimation
-
Creates a new instance of FletcherXuHybridEstimation
- FletcherXuHybridEstimation(LineMinimizer<?>, double, double, int, double) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.FletcherXuHybridEstimation
-
Creates a new instance of FletcherXuHybridEstimation
- floatValue() - Method in class gov.sandia.cognition.math.LogNumber
-
- floatValue() - Method in class gov.sandia.cognition.math.MutableDouble
-
- floatValue() - Method in class gov.sandia.cognition.math.MutableInteger
-
- floatValue() - Method in class gov.sandia.cognition.math.MutableLong
-
- floatValue() - Method in class gov.sandia.cognition.math.UnsignedLogNumber
-
- fn - Variable in class gov.sandia.cognition.graph.inference.SumProductInferencingAlgorithm
-
The input energy function to learn against
- FNV1a32Hash - Class in gov.sandia.cognition.hash
-
Implementation of the 32-bit (4-byte) Fowler-Noll-Vo (FNV-1a) hash function.
- FNV1a32Hash() - Constructor for class gov.sandia.cognition.hash.FNV1a32Hash
-
Creates a new instance of FNV1a32Hash
- FNV1a64Hash - Class in gov.sandia.cognition.hash
-
Implementation of the 32-bit (4-byte) Fowler-Noll-Vo (FNV-1a) hash function.
- FNV1a64Hash() - Constructor for class gov.sandia.cognition.hash.FNV1a64Hash
-
Creates a new instance of FNV1a32Hash
- foldCreator - Variable in class gov.sandia.cognition.learning.experiment.AbstractValidationFoldExperiment
-
The method to use to create the validation folds.
- forEachElement(Vector.IndexValueConsumer) - Method in class gov.sandia.cognition.math.matrix.AbstractVector
-
- forEachElement(Vector.IndexValueConsumer) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseVector
-
- forEachElement(Vector.IndexValueConsumer) - Method in class gov.sandia.cognition.math.matrix.mtj.SparseVector
-
- forEachElement(Vector.IndexValueConsumer) - Method in interface gov.sandia.cognition.math.matrix.Vector
-
Applies the given function to each element in this vector.
- forEachEntry(Vector.IndexValueConsumer) - Method in class gov.sandia.cognition.math.matrix.AbstractVector
-
- forEachEntry(InfiniteVector.KeyValueConsumer<? super KeyType>) - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
-
- forEachEntry(InfiniteVector.KeyValueConsumer<? super KeyType>) - Method in interface gov.sandia.cognition.math.matrix.InfiniteVector
-
Applies the given function to each active entry in this vector.
- forEachEntry(Vector.IndexValueConsumer) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseVector
-
- forEachEntry(Vector.IndexValueConsumer) - Method in class gov.sandia.cognition.math.matrix.mtj.SparseVector
-
- forEachEntry(Vector.IndexValueConsumer) - Method in interface gov.sandia.cognition.math.matrix.Vector
-
Applies the given function to each active entry in this vector.
- forEachNonZero(Vector.IndexValueConsumer) - Method in class gov.sandia.cognition.math.matrix.AbstractVector
-
- forEachNonZero(InfiniteVector.KeyValueConsumer<? super KeyType>) - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
-
- forEachNonZero(InfiniteVector.KeyValueConsumer<? super KeyType>) - Method in interface gov.sandia.cognition.math.matrix.InfiniteVector
-
Applies the given function to each non-zero entry in this vector.
- forEachNonZero(Vector.IndexValueConsumer) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseVector
-
- forEachNonZero(Vector.IndexValueConsumer) - Method in class gov.sandia.cognition.math.matrix.mtj.SparseVector
-
- forEachNonZero(Vector.IndexValueConsumer) - Method in interface gov.sandia.cognition.math.matrix.Vector
-
Applies the given function to each non-zero entry in this vector.
- Forgetron<InputType> - Class in gov.sandia.cognition.learning.algorithm.perceptron.kernel
-
An implementation of the "self-tuned" Forgetron algorithm, which is an online
budgeted kernel binary categorizer learner.
- Forgetron() - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Forgetron
-
Creates a new Forgetron
with a null kernel and the default
budget.
- Forgetron(Kernel<? super InputType>, int) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Forgetron
-
Creates a new Forgetron
with the given kernel and budget.
- Forgetron.Basic<InputType> - Class in gov.sandia.cognition.learning.algorithm.perceptron.kernel
-
An implementation of the "basic" Forgetron algorithm, which is an online
budgeted kernel binary categorizer learner.
- Forgetron.Greedy<InputType> - Class in gov.sandia.cognition.learning.algorithm.perceptron.kernel
-
An implementation of the "greedy" Forgetron algorithm, which is an online
budgeted kernel binary categorizer learner.
- Forgetron.Result<InputType> - Class in gov.sandia.cognition.learning.algorithm.perceptron.kernel
-
The result object learned by the Forgetron
, which extends
the DefaultKernelBinaryCategorizer
with some additional state
information needed in the update step.
- format - Variable in class gov.sandia.cognition.algorithm.event.IterationMeasurablePerformanceReporter
-
The format for the performance report, passed to String.format.
- format - Variable in class gov.sandia.cognition.algorithm.event.IterationStartReporter
-
The format for the performance report, passed to String.format.
- format - Variable in class gov.sandia.cognition.learning.performance.AnytimeBatchLearnerValidationPerformanceReporter
-
The format for the performance report, passed to String.format.
- FORMAT_NAME - Static variable in class gov.sandia.cognition.framework.io.CSVDefaultCognitiveModelLiteHandler
-
The name of the format that the file parses.
- FORMAT_VERSION - Static variable in class gov.sandia.cognition.framework.io.CSVDefaultCognitiveModelLiteHandler
-
The current version that is parsed.
- forward - Variable in class gov.sandia.cognition.evaluator.ForwardReverseEvaluatorPair
-
The forward evaluator from input type to output type.
- FORWARD_DIFFERENCE - Static variable in class gov.sandia.cognition.learning.algorithm.minimization.line.DirectionalVectorToScalarFunction
-
Value used in the forward-difference derivative approximation
- ForwardReverseEvaluatorPair<InputType,OutputType,ForwardType extends Evaluator<? super InputType,? extends OutputType>,ReverseType extends Evaluator<? super OutputType,? extends InputType>> - Class in gov.sandia.cognition.evaluator
-
Represents a both a (normal) forward evaluator and its reverse as a pair.
- ForwardReverseEvaluatorPair() - Constructor for class gov.sandia.cognition.evaluator.ForwardReverseEvaluatorPair
-
- ForwardReverseEvaluatorPair(ForwardType, ReverseType) - Constructor for class gov.sandia.cognition.evaluator.ForwardReverseEvaluatorPair
-
- FourierTransform - Class in gov.sandia.cognition.math.signals
-
Computes the Fast Fourier Transform, or brute-force discrete Fourier
transform, of a discrete input sequence.
- FourierTransform() - Constructor for class gov.sandia.cognition.math.signals.FourierTransform
-
Creates a new instance of FourierTransform
- FourierTransform.Inverse - Class in gov.sandia.cognition.math.signals
-
Evaluator that inverts a Fourier transform.
- FriedmanConfidence - Class in gov.sandia.cognition.statistics.method
-
The Friedman test determines if the rankings associated with various
treatments are equal.
- FriedmanConfidence() - Constructor for class gov.sandia.cognition.statistics.method.FriedmanConfidence
-
Creates a new instance of FriedmanConfidence
- FriedmanConfidence.Statistic - Class in gov.sandia.cognition.statistics.method
-
Confidence statistic associated with the Friedman test using the tighter
F-statistic.
- fromCogxels(CogxelState) - Method in class gov.sandia.cognition.framework.learning.converter.AbstractCogxelPairConverter
-
- fromCogxels(CogxelState) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelBooleanConverter
-
- fromCogxels(CogxelState) - Method in interface gov.sandia.cognition.framework.learning.converter.CogxelConverter
-
Converts from a CogxelState object to an object of type DataType.
- fromCogxels(CogxelState) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelDoubleConverter
-
Converts from a CogxelState object to an object of type DataType.
- fromCogxels(CogxelState) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelMatrixConverter
-
Converts from a CogxelState object to an object of type DataType.
- fromCogxels(CogxelState) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelVectorCollectionConverter
-
Converts from a CogxelState object to an object of type DataType.
- fromCogxels(CogxelState) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelVectorConverter
-
Converts from a CogxelState object to an object of type DataType.
- fromCogxels(CogxelState) - Method in class gov.sandia.cognition.framework.learning.converter.CogxelWeightedInputOutputPairConverter
-
Converts from a CogxelState object to an object of type DataType.
- fromDays(double) - Static method in class gov.sandia.cognition.time.DefaultDuration
-
Creates a new DefaultDuration
from the given number of
days.
- fromHexString(String) - Static method in class gov.sandia.cognition.hash.HashFunctionUtil
-
Converts the hex-string back into an array of bytes
- fromHours(double) - Static method in class gov.sandia.cognition.time.DefaultDuration
-
Creates a new DefaultDuration
from the given number of
hours.
- fromInfiniteVector(InfiniteVector<? extends KeyType>) - Method in class gov.sandia.cognition.statistics.AbstractDataDistribution
-
- fromInfiniteVector(InfiniteVector<? extends DataType>) - Method in interface gov.sandia.cognition.statistics.DataDistribution
-
Replaces the entries in this data distribution with the entries in the
given infinite vector.
- fromLog(double) - Static method in class gov.sandia.cognition.math.LogMath
-
Converts a number from log-domain representation (x = exp(logX)).
- fromMilliseconds(double) - Static method in class gov.sandia.cognition.time.DefaultDuration
-
Creates a new DefaultDuration
from the given number of
milliseconds.
- fromMinutes(double) - Static method in class gov.sandia.cognition.time.DefaultDuration
-
Creates a new DefaultDuration
from the given number of
minutes.
- fromSeconds(double) - Static method in class gov.sandia.cognition.time.DefaultDuration
-
Creates a new DefaultDuration
from the given number of
seconds.
- FullCovarianceLearner() - Constructor for class gov.sandia.cognition.learning.data.feature.MultivariateDecorrelator.FullCovarianceLearner
-
Creates a new MultivariateDecorrelator.FullCovarianceLearner with
the default value for default covariance.
- FullCovarianceLearner(double) - Constructor for class gov.sandia.cognition.learning.data.feature.MultivariateDecorrelator.FullCovarianceLearner
-
Creates a new MultivariateDecorrelator.FullCovarianceLearner with the
given value for default covariance.
- Function() - Constructor for class gov.sandia.cognition.learning.algorithm.pca.KernelPrincipalComponentsAnalysis.Function
-
Creates a new, empty Kernel Principal Components Analysis function.
- Function(Kernel<? super DataType>, List<? extends DataType>, Matrix, boolean, Matrix) - Constructor for class gov.sandia.cognition.learning.algorithm.pca.KernelPrincipalComponentsAnalysis.Function
-
Creates a new Kernel Principal Components Analysis function.
- Function() - Constructor for class gov.sandia.cognition.learning.algorithm.regression.LogisticRegression.Function
-
- Function(int) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.LogisticRegression.Function
-
Creates a new instance of Function
- function - Variable in class gov.sandia.cognition.learning.function.kernel.ScalarFunctionKernel
-
The scalar function for the kernel to use.
- function - Variable in class gov.sandia.cognition.learning.function.kernel.VectorFunctionKernel
-
The vector function to use.
- function - Variable in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.LogEvaluator
-
Evaluator to wrap and compute the natural logarithm of.
- FUNCTION_EVALUATIONS - Static variable in class gov.sandia.cognition.statistics.method.InverseTransformSampling
-
Number of function evaluations needed to invert the distribution.
- FunctionMinimizer<InputType,OutputType,EvaluatorType extends Evaluator<? super InputType,? extends OutputType>> - Interface in gov.sandia.cognition.learning.algorithm.minimization
-
Interface for unconstrained minimization of nonlinear functions.
- FunctionMinimizerBFGS - Class in gov.sandia.cognition.learning.algorithm.minimization
-
Implementation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) Quasi-Newton
nonlinear minimization algorithm.
- FunctionMinimizerBFGS() - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerBFGS
-
Creates a new instance of FunctionMinimizerBFGS
- FunctionMinimizerBFGS(LineMinimizer<?>) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerBFGS
-
Creates a new instance of FunctionMinimizerBFGS
- FunctionMinimizerBFGS(LineMinimizer<?>, Vector, double, int) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerBFGS
-
Creates a new instance of FunctionMinimizerBFGS
- FunctionMinimizerConjugateGradient - Class in gov.sandia.cognition.learning.algorithm.minimization
-
Conjugate gradient method is a class of algorithms for finding the
unconstrained local minimum of a nonlinear function.
- FunctionMinimizerConjugateGradient(LineMinimizer<?>, Vector, double, int) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerConjugateGradient
-
Creates a new instance of FunctionMinimizerConjugateGradient
- FunctionMinimizerDFP - Class in gov.sandia.cognition.learning.algorithm.minimization
-
Implementation of the Davidon-Fletcher-Powell (DFP) formula for a
Quasi-Newton minimization update.
- FunctionMinimizerDFP() - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerDFP
-
Creates a new instance of FunctionMinimizerBFGS
- FunctionMinimizerDFP(LineMinimizer<?>) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerDFP
-
Creates a new instance of FunctionMinimizerBFGS
- FunctionMinimizerDFP(LineMinimizer<?>, Vector, double, int) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerDFP
-
Creates a new instance of FunctionMinimizerBFGS
- FunctionMinimizerDirectionSetPowell - Class in gov.sandia.cognition.learning.algorithm.minimization
-
Implementation of the derivative-free unconstrained nonlinear direction-set
minimization algorithm called "Powell's Method" by Numerical Recipes.
- FunctionMinimizerDirectionSetPowell() - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerDirectionSetPowell
-
Default constructor
- FunctionMinimizerDirectionSetPowell(LineMinimizer<?>) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerDirectionSetPowell
-
Creates a new instance of FunctionMinimizerDirectionSetPowell
- FunctionMinimizerDirectionSetPowell(LineMinimizer<?>, Vector, double, int) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerDirectionSetPowell
-
Creates a new instance of FunctionMinimizerDirectionSetPowell
- FunctionMinimizerFletcherReeves - Class in gov.sandia.cognition.learning.algorithm.minimization
-
This is an implementation of the Fletcher-Reeves conjugate gradient
minimization procedure.
- FunctionMinimizerFletcherReeves() - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerFletcherReeves
-
Creates a new instance of FunctionMinimizerPolakRibiere
- FunctionMinimizerFletcherReeves(LineMinimizer<?>) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerFletcherReeves
-
Creates a new instance of FunctionMinimizerPolakRibiere
- FunctionMinimizerFletcherReeves(LineMinimizer<?>, Vector, double, int) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerFletcherReeves
-
Creates a new instance of FunctionMinimizerConjugateGradient
- FunctionMinimizerGradientDescent - Class in gov.sandia.cognition.learning.algorithm.minimization
-
This is an implementation of the classic Gradient Descent algorithm, also
known as Steepest Descent, Backpropagation (for neural nets), or Hill
Climbing.
- FunctionMinimizerGradientDescent() - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerGradientDescent
-
Creates a new instance of FunctionMinimizerGradientDescent
- FunctionMinimizerGradientDescent(double, double) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerGradientDescent
-
Creates a new instance of FunctionMinimizerGradientDescent
- FunctionMinimizerGradientDescent(double, double, Vector, double, int) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerGradientDescent
-
Creates a new instance of FunctionMinimizerGradientDescent
- FunctionMinimizerLiuStorey - Class in gov.sandia.cognition.learning.algorithm.minimization
-
This is an implementation of the Liu-Storey conjugate gradient
minimization procedure.
- FunctionMinimizerLiuStorey() - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerLiuStorey
-
Creates a new instance of FunctionMinimizerLiuStorey
- FunctionMinimizerLiuStorey(LineMinimizer<?>) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerLiuStorey
-
Creates a new instance of FunctionMinimizerLiuStorey
- FunctionMinimizerLiuStorey(LineMinimizer<?>, Vector, double, int) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerLiuStorey
-
Creates a new instance of FunctionMinimizerLiuStorey
- FunctionMinimizerNelderMead - Class in gov.sandia.cognition.learning.algorithm.minimization
-
Implementation of the Downhill Simplex minimization algorithm, also known as
the Nelder-Mead method.
- FunctionMinimizerNelderMead() - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerNelderMead
-
Creates a new instance of FunctionMinimizerNelderMead
- FunctionMinimizerPolakRibiere - Class in gov.sandia.cognition.learning.algorithm.minimization
-
This is an implementation of the Polack-Ribiere conjugate gradient
minimization procedure.
- FunctionMinimizerPolakRibiere() - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerPolakRibiere
-
Creates a new instance of FunctionMinimizerPolakRibiere
- FunctionMinimizerPolakRibiere(LineMinimizer<?>) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerPolakRibiere
-
Creates a new instance of FunctionMinimizerPolakRibiere
- FunctionMinimizerPolakRibiere(LineMinimizer<?>, Vector, double, int) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerPolakRibiere
-
Creates a new instance of FunctionMinimizerConjugateGradient
- FunctionMinimizerQuasiNewton - Class in gov.sandia.cognition.learning.algorithm.minimization
-
This is an abstract implementation of the Quasi-Newton minimization method,
sometimes called "Variable-Metric methods."
This family of minimization algorithms uses first-order gradient information
to find a locally minimum to a scalar function.
- FunctionMinimizerQuasiNewton(LineMinimizer<?>, Vector, double, int) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerQuasiNewton
-
Creates a new instance of FunctionMinimizerBFGS