Skip navigation links
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

N

N - Variable in class gov.sandia.cognition.math.Combinations.AbstractCombinationsIterator
Universe set size
n - Variable in class gov.sandia.cognition.statistics.distribution.BetaBinomialDistribution
Number of observations, similar to the Binomial N, must be greater than zero
NAME - Static variable in class gov.sandia.cognition.statistics.bayesian.conjugate.BernoulliBayesianEstimator.Parameter
Name of the parameter, "p".
NAME - Static variable in class gov.sandia.cognition.statistics.bayesian.conjugate.BinomialBayesianEstimator.Parameter
Name of the parameter, "p".
NAME - Static variable in class gov.sandia.cognition.statistics.bayesian.conjugate.ExponentialBayesianEstimator.Parameter
Default name of the parameter, "rate".
NAME - Static variable in class gov.sandia.cognition.statistics.bayesian.conjugate.GammaInverseScaleBayesianEstimator.Parameter
Default name, "inverse-scale".
NAME - Static variable in class gov.sandia.cognition.statistics.bayesian.conjugate.MultinomialBayesianEstimator.Parameter
Name of the parameter, "parameters".
NAME - Static variable in class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanBayesianEstimator.Parameter
Name of the parameter, "mean".
NAME - Static variable in class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanCovarianceBayesianEstimator.Parameter
Name of the parameter, "meanAndCovariance".
NAME - Static variable in class gov.sandia.cognition.statistics.bayesian.conjugate.PoissonBayesianEstimator.Parameter
Name of the parameter, "rate".
NAME - Static variable in class gov.sandia.cognition.statistics.bayesian.conjugate.UniformDistributionBayesianEstimator.Parameter
Name of the parameter, "maxSupport".
NAME - Static variable in class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanBayesianEstimator.Parameter
Name of the parameter, "mean".
NAME - Static variable in class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanVarianceBayesianEstimator.Parameter
Name of the parameter, "meanAndVariance".
name - Variable in class gov.sandia.cognition.util.AbstractNamed
The name of the object.
Named - Interface in gov.sandia.cognition.util
The Named interface defines an Object that has a useful name attached to it, which is common for many types of Objects.
NamedValue<ValueType> - Interface in gov.sandia.cognition.util
The NamedValue class describes a name-value pair.
nativeBlasAvailable() - Static method in class gov.sandia.cognition.math.matrix.custom.NativeBlasHandler
Returns true if a native version of BLAS was found.
NativeBlasHandler - Class in gov.sandia.cognition.math.matrix.custom
This class provides a uniform interface between working with a native-coded BLAS package or the jBLAS package.
NativeBlasHandler() - Constructor for class gov.sandia.cognition.math.matrix.custom.NativeBlasHandler
Initializes the BLAS instances, searching for the native BLAS implementation.
NativeMatrixTests - Class in gov.sandia.cognition.math.matrix.mtj
Tests to see if native versions of LAPACK and BLAS are loaded.
NativeMatrixTests() - Constructor for class gov.sandia.cognition.math.matrix.mtj.NativeMatrixTests
 
NearestNeighbor<InputType,OutputType> - Interface in gov.sandia.cognition.learning.algorithm.nearest
The NearestNeighborExhaustive class implements a simple evaluator that looks up a given input object in a collection of input-output pair examples and returns the output associated with the most similar input.
NearestNeighborExhaustive<InputType,OutputType> - Class in gov.sandia.cognition.learning.algorithm.nearest
The NearestNeighborExhaustive class implements a simple evaluator that looks up a given input object in a collection of input-output pair examples and returns the output associated with the most similar input.
NearestNeighborExhaustive() - Constructor for class gov.sandia.cognition.learning.algorithm.nearest.NearestNeighborExhaustive
Creates a new instance of NearestNeighborExhaustive.
NearestNeighborExhaustive(DivergenceFunction<? super InputType, ? super InputType>) - Constructor for class gov.sandia.cognition.learning.algorithm.nearest.NearestNeighborExhaustive
Creates a new instance of NearestNeighborExhaustive.
NearestNeighborExhaustive(DivergenceFunction<? super InputType, ? super InputType>, Collection<? extends InputOutputPair<? extends InputType, OutputType>>) - Constructor for class gov.sandia.cognition.learning.algorithm.nearest.NearestNeighborExhaustive
Creates a new instance of NearestNeighborExhaustive.
NearestNeighborExhaustive.Learner<InputType,OutputType> - Class in gov.sandia.cognition.learning.algorithm.nearest
The NearestNeighborExhaustive.Learner class implements a batch learner for the NearestNeighborExhaustive class.
NearestNeighborKDTree<InputType extends Vectorizable,OutputType> - Class in gov.sandia.cognition.learning.algorithm.nearest
A KDTree-based implementation of the nearest neighbor algorithm.
NearestNeighborKDTree() - Constructor for class gov.sandia.cognition.learning.algorithm.nearest.NearestNeighborKDTree
Creates a new instance of NearestNeighborKDTree.
NearestNeighborKDTree(KDTree<InputType, OutputType, InputOutputPair<? extends InputType, OutputType>>, DivergenceFunction<? super InputType, ? super InputType>) - Constructor for class gov.sandia.cognition.learning.algorithm.nearest.NearestNeighborKDTree
Creates a new instance of NearestNeighborKDTree
NearestNeighborKDTree.Learner<InputType extends Vectorizable,OutputType> - Class in gov.sandia.cognition.learning.algorithm.nearest
This is a BatchLearner interface for creating a new NearestNeighbor from a given dataset, simply a pass-through to the constructor of NearestNeighbor
negative() - Method in class gov.sandia.cognition.math.AbstractRing
 
negative - Variable in class gov.sandia.cognition.math.LogNumber
The sign of the value, sign(value).
negative() - Method in class gov.sandia.cognition.math.LogNumber
 
negative() - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
 
negative() - Method in class gov.sandia.cognition.math.MutableDouble
 
negative() - Method in class gov.sandia.cognition.math.MutableInteger
 
negative() - Method in class gov.sandia.cognition.math.MutableLong
 
negative() - Method in interface gov.sandia.cognition.math.Ring
Returns the element-wise negation of this, such that this.plus( this.negative() ) has only zero elements.
negative() - Method in class gov.sandia.cognition.math.UnsignedLogNumber
 
negative() - Method in class gov.sandia.cognition.time.DefaultDuration
 
negative() - Method in interface gov.sandia.cognition.time.Duration
Returns the negative of this duration.
NegativeBinomialDistribution - Class in gov.sandia.cognition.statistics.distribution
Negative binomial distribution, also known as the Polya distribution, gives the number of successes of a series of Bernoulli trials before recording a given number of failures.
NegativeBinomialDistribution() - Constructor for class gov.sandia.cognition.statistics.distribution.NegativeBinomialDistribution
Creates a new instance of NegativeBinomialDistribution
NegativeBinomialDistribution(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.NegativeBinomialDistribution
Creates a new instance of NegativeBinomialDistribution
NegativeBinomialDistribution(NegativeBinomialDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.NegativeBinomialDistribution
Copy constructor
NegativeBinomialDistribution.CDF - Class in gov.sandia.cognition.statistics.distribution
CDF of the NegativeBinomialDistribution
NegativeBinomialDistribution.MaximumLikelihoodEstimator - Class in gov.sandia.cognition.statistics.distribution
Maximum likelihood estimator of the distribution
NegativeBinomialDistribution.PMF - Class in gov.sandia.cognition.statistics.distribution
PMF of the NegativeBinomialDistribution.
NegativeBinomialDistribution.WeightedMaximumLikelihoodEstimator - Class in gov.sandia.cognition.statistics.distribution
Weighted maximum likelihood estimator of the distribution
negativeEquals() - Method in class gov.sandia.cognition.math.AbstractRing
 
negativeEquals() - Method in class gov.sandia.cognition.math.LogNumber
 
negativeEquals() - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
 
negativeEquals() - Method in class gov.sandia.cognition.math.MutableDouble
 
negativeEquals() - Method in class gov.sandia.cognition.math.MutableInteger
 
negativeEquals() - Method in class gov.sandia.cognition.math.MutableLong
 
negativeEquals() - Method in interface gov.sandia.cognition.math.Ring
Inline element-wise negation of this
negativeEquals() - Method in class gov.sandia.cognition.math.UnsignedLogNumber
 
NegativeLogLikelihood<DataType> - Class in gov.sandia.cognition.learning.function.cost
CostFunction for computing the maximum likelihood (because we are minimizing the negative of the log likelihood)
NegativeLogLikelihood() - Constructor for class gov.sandia.cognition.learning.function.cost.NegativeLogLikelihood
Default constructor
NegativeLogLikelihood(Collection<? extends DataType>) - Constructor for class gov.sandia.cognition.learning.function.cost.NegativeLogLikelihood
Creates a new instance of NegativeLogLikelihood
NegativeLogLikelihoodTask(Collection<? extends DataType>) - Constructor for class gov.sandia.cognition.learning.function.cost.ParallelNegativeLogLikelihood.NegativeLogLikelihoodTask
Creates a new instance of NegativeLogLikelihoodTask
Neighbor(OutputType, double) - Constructor for class gov.sandia.cognition.learning.algorithm.nearest.KNearestNeighborExhaustive.Neighbor
Creates a new neighbor.
Neighbor(PairType, double) - Constructor for class gov.sandia.cognition.math.geometry.KDTree.Neighborhood.Neighbor
Creates a new neighbor.
Neighborhood(int) - Constructor for class gov.sandia.cognition.math.geometry.KDTree.Neighborhood
Creates a new Neighborhood.
NeighborhoodGaussianClusterInitializer - Class in gov.sandia.cognition.learning.algorithm.clustering.initializer
Creates GaussianClusters near existing, but not on top of, data points.
NeighborhoodGaussianClusterInitializer() - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.initializer.NeighborhoodGaussianClusterInitializer
Default constructor.
NeighborhoodGaussianClusterInitializer(Random) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.initializer.NeighborhoodGaussianClusterInitializer
Creates a new instance of NeighborhoodGaussianClusterInitializer
NeighborhoodGaussianClusterInitializer(double, double, Random) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.initializer.NeighborhoodGaussianClusterInitializer
Creates a new instance of NeighborhoodGaussianClusterInitializer
NeighborhoodIterator() - Constructor for class gov.sandia.cognition.math.geometry.KDTree.Neighborhood.NeighborhoodIterator
Default constructor.
neighborIds(int) - Method in class gov.sandia.cognition.graph.GraphMetrics
Returns the ids of all neighbors for the input node id.
neighborIds(NodeNameType) - Method in class gov.sandia.cognition.graph.GraphMetrics
Returns the ids of all neighbors for the input node name.
neighbors(int) - Method in class gov.sandia.cognition.graph.GraphMetrics
Returns the names of all neighbors for the input node id.
neighbors(NodeNameType) - Method in class gov.sandia.cognition.graph.GraphMetrics
Returns the names of all neighbors for the input node name.
NemenyiConfidence - Class in gov.sandia.cognition.statistics.method
The Nemenyi test is the rank-based analogue of the Tukey multiple-comparison test.
NemenyiConfidence() - Constructor for class gov.sandia.cognition.statistics.method.NemenyiConfidence
Creates a new instance of NemenyiConfidence
NemenyiConfidence.Statistic - Class in gov.sandia.cognition.statistics.method
Statistic from Nemenyi's multiple comparison test
next() - Method in class gov.sandia.cognition.collection.AbstractLogNumberMap.SimpleIterator
 
next() - Method in class gov.sandia.cognition.collection.AbstractMutableDoubleMap.SimpleIterator
 
next() - Method in class gov.sandia.cognition.collection.FiniteCapacityBuffer.InternalIterator
 
next() - Method in class gov.sandia.cognition.collection.MultiIterator
next() - Method in class gov.sandia.cognition.math.Combinations.IndexIterator
 
next() - Method in class gov.sandia.cognition.math.Combinations.SubsetIterator
 
next() - Method in class gov.sandia.cognition.math.geometry.KDTree.InOrderKDTreeIterator
 
next() - Method in class gov.sandia.cognition.math.geometry.KDTree.Neighborhood.NeighborhoodIterator
 
next() - Method in class gov.sandia.cognition.math.matrix.custom.VectorIterator
 
next() - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector.SimpleIterator
 
next() - Method in class gov.sandia.cognition.math.matrix.MatrixUnionIterator
next() - Method in class gov.sandia.cognition.math.matrix.VectorUnionIterator
 
next() - Method in class gov.sandia.cognition.statistics.distribution.MultinomialDistribution.Domain.MultinomialIterator
 
nextDouble() - Method in class gov.sandia.cognition.util.DoubleReuseRandom
Returns the next double from the array
nextIndex() - Method in class gov.sandia.cognition.collection.FiniteCapacityBuffer.InternalIterator
 
nextNonEmptyLine(BufferedReader) - Static method in class gov.sandia.cognition.io.CSVUtility
Returns the next non-empty line from the given BufferedReader as an array of the CSV entries.
nextNonEmptyLine(BufferedReader, char) - Static method in class gov.sandia.cognition.io.CSVUtility
Returns the next non-empty line from the given BufferedReader as an array of the CSV entries.
nextPrime(long) - Static method in class gov.sandia.cognition.hash.HashFunctionUtil
Returns the next-greater prime, sort of like "ceil" but for primes.
NGramFilter - Class in gov.sandia.cognition.text.term.filter
A term filter that creates an n-gram of terms.
NGramFilter() - Constructor for class gov.sandia.cognition.text.term.filter.NGramFilter
Creates a new NGramFilter with the default size.
NGramFilter(int) - Constructor for class gov.sandia.cognition.text.term.filter.NGramFilter
Creates a new NGramFilter with the given size.
Node(Quadtree<DataType>.Node, Rectangle2D.Double) - Constructor for class gov.sandia.cognition.math.geometry.Quadtree.Node
Creates a new Node with the given parent and region bounds.
NodeNameAwareEnergyFunction<LabelType,NodeNameType> - Interface in gov.sandia.cognition.graph.inference
Helpful interface that adds per-node labeling and getting results from energy functions using the graph's node label type.
NodePartitioning<NodeNameType> - Interface in gov.sandia.cognition.graph.community
Interface for all graph partitioning classes
nodes - Variable in class gov.sandia.cognition.graph.inference.SumProductInferencingAlgorithm
This internally stores the nodes with their values for the learning
nodeValue - Variable in class gov.sandia.cognition.math.geometry.KDTree.InOrderKDTreeIterator
Value of the node
norm(double) - Method in class gov.sandia.cognition.math.matrix.AbstractVectorSpace
 
norm(double) - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
 
norm(double) - Method in interface gov.sandia.cognition.math.matrix.VectorSpace
Returns the p-norm of the Vector with the given power.
norm1() - Method in class gov.sandia.cognition.math.matrix.AbstractVectorSpace
 
norm1() - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
 
norm1() - Method in interface gov.sandia.cognition.math.matrix.VectorSpace
1-norm of the vector (sum of absolute values in the vector)
norm2(ValueType, Kernel<? super ValueType>) - Static method in class gov.sandia.cognition.learning.function.kernel.KernelUtil
Computes the 2-norm of the given value according to the given kernel.
norm2(DefaultKernelBinaryCategorizer<InputType>) - Static method in class gov.sandia.cognition.learning.function.kernel.KernelUtil
Computes the 2-norm of the weight vector implied by the given kernel binary categorizer.
norm2() - Method in class gov.sandia.cognition.math.matrix.AbstractVectorSpace
 
norm2() - Method in class gov.sandia.cognition.math.matrix.decomposition.AbstractSingularValueDecomposition
 
norm2() - Method in interface gov.sandia.cognition.math.matrix.decomposition.SingularValueDecomposition
Returns the associated 2-norm (spectral norm) of the underlying matrix, which is simply the largest singular value
norm2() - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
 
norm2() - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJVector
 
norm2() - Method in interface gov.sandia.cognition.math.matrix.VectorSpace
2-norm of the vector (aka Euclidean distance of the vector)
norm2Squared(ValueType, Kernel<? super ValueType>) - Static method in class gov.sandia.cognition.learning.function.kernel.KernelUtil
Computes the squared 2-norm of the given value according to the given kernel.
norm2Squared(DefaultKernelBinaryCategorizer<InputType>) - Static method in class gov.sandia.cognition.learning.function.kernel.KernelUtil
Computes the squared 2-norm of the weight vector implied by the given kernel binary categorizer.
norm2Squared() - Method in class gov.sandia.cognition.math.matrix.AbstractVectorSpace
 
norm2Squared() - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
 
norm2Squared() - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJVector
 
norm2Squared() - Method in interface gov.sandia.cognition.math.matrix.VectorSpace
Squared 2-norm of the vector (aka squared Euclidean distance of the vector)
NormalInverseGammaDistribution - Class in gov.sandia.cognition.statistics.distribution
The normal inverse-gamma distribution is the product of a univariate Gaussian distribution with an inverse-gamma distribution.
NormalInverseGammaDistribution() - Constructor for class gov.sandia.cognition.statistics.distribution.NormalInverseGammaDistribution
Creates a new instance of NormalInverseGammaDistribution
NormalInverseGammaDistribution(double, double, double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.NormalInverseGammaDistribution
Creates a new instance of NormalInverseGammaDistribution
NormalInverseGammaDistribution(NormalInverseGammaDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.NormalInverseGammaDistribution
Copy constructor
NormalInverseGammaDistribution.PDF - Class in gov.sandia.cognition.statistics.distribution
PDF of the NormalInverseGammaDistribution
NormalInverseWishartDistribution - Class in gov.sandia.cognition.statistics.distribution
The normal inverse Wishart distribution
NormalInverseWishartDistribution() - Constructor for class gov.sandia.cognition.statistics.distribution.NormalInverseWishartDistribution
Default constructor
NormalInverseWishartDistribution(int) - Constructor for class gov.sandia.cognition.statistics.distribution.NormalInverseWishartDistribution
Creates a new instance of NormalInverseWishartDistribution
NormalInverseWishartDistribution(int, double) - Constructor for class gov.sandia.cognition.statistics.distribution.NormalInverseWishartDistribution
Creates a new instance of NormalInverseWishartDistribution
NormalInverseWishartDistribution(MultivariateGaussian, InverseWishartDistribution, double) - Constructor for class gov.sandia.cognition.statistics.distribution.NormalInverseWishartDistribution
Creates a new instance of NormalInverseWishartDistribution
NormalInverseWishartDistribution(NormalInverseWishartDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.NormalInverseWishartDistribution
Copy constructor
NormalInverseWishartDistribution.PDF - Class in gov.sandia.cognition.statistics.distribution
PDF of the normal inverse-Wishart distribution.
normalize() - Method in class gov.sandia.cognition.learning.algorithm.hmm.MarkovChain
Normalizes this Markov chain.
normalize() - Method in interface gov.sandia.cognition.math.matrix.Quaternion
Returns the normalized version of the quaternion.
normalizedCentroid - Variable in class gov.sandia.cognition.learning.algorithm.clustering.cluster.NormalizedCentroidCluster
The normalized center of the cluster.
NormalizedCentroidCluster<ClusterType> - Class in gov.sandia.cognition.learning.algorithm.clustering.cluster
Add the ability to store the centroid of the normalized vectors belonging to a centroid cluster.
NormalizedCentroidCluster() - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.cluster.NormalizedCentroidCluster
Creates a new instance of NormalizedCentroidCluster.
NormalizedCentroidCluster(ClusterType, ClusterType) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.cluster.NormalizedCentroidCluster
Creates a new instance of NormalizedCentroidCluster.
NormalizedCentroidCluster(int, ClusterType, ClusterType) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.cluster.NormalizedCentroidCluster
Creates a new instance of NormalizedCentroidCluster.
NormalizedCentroidCluster(ClusterType, ClusterType, Collection<? extends ClusterType>) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.cluster.NormalizedCentroidCluster
Creates a new instance of NormalizedCentroidCluster.
NormalizedCentroidCluster(int, ClusterType, ClusterType, Collection<? extends ClusterType>) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.cluster.NormalizedCentroidCluster
Creates a new instance of NormalizedCentroidCluster.
NormalizedCentroidClusterCreator - Class in gov.sandia.cognition.learning.algorithm.clustering.cluster
A cluster creator for NormalizedCentroidClusters which are clusters that have a normalized centroid in addition to the usual centroid.
NormalizedCentroidClusterCreator() - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.cluster.NormalizedCentroidClusterCreator
Creates a new instance of VectorizableCentroidClusterCreator()
NormalizedKernel<InputType> - Class in gov.sandia.cognition.learning.function.kernel
The NormalizedKernel class implements an Kernel that returns a normalized value between 0.0 and 1.0 by normalizing the results of a given kernel.
NormalizedKernel() - Constructor for class gov.sandia.cognition.learning.function.kernel.NormalizedKernel
Creates a new instance of NormalizedKernel.
NormalizedKernel(Kernel<? super InputType>) - Constructor for class gov.sandia.cognition.learning.function.kernel.NormalizedKernel
Creates a new instance of NormalizedKernel using the given kernel.
NormalizedKernel(NormalizedKernel<? super InputType>) - Constructor for class gov.sandia.cognition.learning.function.kernel.NormalizedKernel
Creates a new copy of a NormalizedKernel.
NormalizedLogLocalTermWeighter - Class in gov.sandia.cognition.text.term.vector.weighter.local
Implements a normalized version of the log local weighter.
NormalizedLogLocalTermWeighter() - Constructor for class gov.sandia.cognition.text.term.vector.weighter.local.NormalizedLogLocalTermWeighter
Creates a new NormalizedLogLocalTermWeighter.
NormalizedLogLocalTermWeighter(VectorFactory<? extends Vector>) - Constructor for class gov.sandia.cognition.text.term.vector.weighter.local.NormalizedLogLocalTermWeighter
Creates a new NormalizedLogLocalTermWeighter
normalizeEquals() - Method in interface gov.sandia.cognition.math.matrix.Quaternion
Normalizes the quaternion in-place.
normalizer - Variable in class gov.sandia.cognition.text.term.vector.weighter.CompositeLocalGlobalTermWeighter
The weight normalizer.
normalizeTransitionMatrix(Matrix, int) - Static method in class gov.sandia.cognition.learning.algorithm.hmm.MarkovChain
Normalizes a column of the transition-probability matrix
normalizeTransitionMatrix(Matrix) - Method in class gov.sandia.cognition.learning.algorithm.hmm.MarkovChain
Normalizes the transition-probability matrix
normalizeTransitionMatrix(Matrix) - Method in class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel
 
NormalizeTransitionTask() - Constructor for class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel.NormalizeTransitionTask
Default constructor.
normalizeTransitionTasks - Variable in class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel
NormalizeTransitionTasks.
normalizeWeights(Vector, Vector, Vector) - Method in interface gov.sandia.cognition.text.term.vector.weighter.normalize.TermWeightNormalizer
Normalizes the given weight vector.
normalizeWeights(Vector, Vector, Vector) - Method in class gov.sandia.cognition.text.term.vector.weighter.normalize.UnitTermWeightNormalizer
 
normFrobenius() - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
 
normFrobenius() - Method in class gov.sandia.cognition.math.matrix.custom.DiagonalMatrix
 
normFrobenius() - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
Compute the Frobenius norm of this, which is just a fancy way of saying that I will square each element, add those up, and square root the result.
normFrobenius() - Method in interface gov.sandia.cognition.math.matrix.Matrix
Compute the Frobenius norm of this, which is just a fancy way of saying that I will square each element, add those up, and square root the result.
normFrobenius() - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJMatrix
 
normFrobenius() - Method in class gov.sandia.cognition.math.matrix.mtj.DiagonalMatrixMTJ
 
normFrobeniusSquared() - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
 
normFrobeniusSquared() - Method in class gov.sandia.cognition.math.matrix.custom.DiagonalMatrix
 
normFrobeniusSquared() - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
Compute the squared Frobenius norm of this, which is just a fancy way of saying that I will square each element and add those up.
normFrobeniusSquared() - Method in interface gov.sandia.cognition.math.matrix.Matrix
Compute the squared Frobenius norm of this, which is just a fancy way of saying that I will square each element and add those up.
normFrobeniusSquared() - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJMatrix
 
normInfinity() - Method in class gov.sandia.cognition.math.matrix.AbstractVectorSpace
 
normInfinity() - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
 
normInfinity() - Method in interface gov.sandia.cognition.math.matrix.VectorSpace
Returns the infinity norm of the Vector, which is the maximum absolute value of an element in the Vector.
NullHypothesisEvaluator<DataType> - Interface in gov.sandia.cognition.statistics.method
Evaluates the probability that the null-hypothesis is correct.
nullHypothesisProbabilities - Variable in class gov.sandia.cognition.statistics.method.AbstractMultipleHypothesisComparison.Statistic
Null Hypothesis probability associated with the (i,j) treatment comparison
nullHypothesisProbability - Variable in class gov.sandia.cognition.statistics.method.AbstractConfidenceStatistic
Probability of the null hypothesis, often called "p-value"
nullValue - Variable in class gov.sandia.cognition.data.convert.number.DefaultBooleanToNumberConverter
The number to use to represent a null value.
num - Variable in class gov.sandia.cognition.math.geometry.KDTree
Number of elements in this subtree.
NumberAverager - Class in gov.sandia.cognition.math
Returns an average (arithmetic mean) of a collection of Numbers
NumberAverager() - Constructor for class gov.sandia.cognition.math.NumberAverager
Creates a new instance of NumberAverager
NumberComparator - Class in gov.sandia.cognition.collection
Compares two Numbers (base class of Double, Integer, etc.) for sorting.
NumberComparator() - Constructor for class gov.sandia.cognition.collection.NumberComparator
Creates a new instance of NumberComparator
NumberConverterToVectorAdapter<InputType> - Class in gov.sandia.cognition.data.convert.vector
Adapts a DataConverter that outputs a number to be a VectorEncoder.
NumberConverterToVectorAdapter() - Constructor for class gov.sandia.cognition.data.convert.vector.NumberConverterToVectorAdapter
Creates a new NumberConverterToVectorAdapter.
NumberConverterToVectorAdapter(DataConverter<? super InputType, ? extends Number>) - Constructor for class gov.sandia.cognition.data.convert.vector.NumberConverterToVectorAdapter
Creates a new NumberConverterToVectorAdapter for the given converter.
numberOfAppearances - Variable in class gov.sandia.cognition.statistics.TransferEntropy.TransferEntropyPartialSumObject
The number of appearances.
NumberToVectorEncoder - Class in gov.sandia.cognition.data.convert.vector
An encoder that encodes a number as an element of a Vector.
NumberToVectorEncoder() - Constructor for class gov.sandia.cognition.data.convert.vector.NumberToVectorEncoder
Creates a new NumberToVectorEncoder.
numCorrectToSample - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner
The number of correct examples to sample on each iteration.
numCustomers - Variable in class gov.sandia.cognition.statistics.distribution.ChineseRestaurantProcess
Total number of customers that we will arrange around tables, must be greater than zero.
numEdges() - Method in class gov.sandia.cognition.graph.GraphMetrics
Returns the number of edges in the graph.
numEdges() - Method in class gov.sandia.cognition.graph.inference.CostSpeedupEnergyFunction
 
numEdges() - Method in class gov.sandia.cognition.graph.inference.EdgeMergingEnergyFunction
 
numEdges() - Method in interface gov.sandia.cognition.graph.inference.EnergyFunction
Returns the number of paths that messages should be passed down.
numEdges() - Method in class gov.sandia.cognition.graph.inference.GraphWrappingEnergyFunction
 
numEdgeTriangles(int) - Method in class gov.sandia.cognition.graph.GraphMetrics
Returns the number of triangles the input edge participates in.
NumericalDifferentiator<InputType,OutputType,DerivativeType> - Class in gov.sandia.cognition.math.matrix
Automatically differentiates a function by the method of forward differences.
NumericalDifferentiator(Evaluator<? super InputType, OutputType>, double) - Constructor for class gov.sandia.cognition.math.matrix.NumericalDifferentiator
Creates a new instance of NumericalDifferentiator
NumericalDifferentiator.DoubleJacobian - Class in gov.sandia.cognition.math.matrix
Numerical differentiator based on a Vector Jacobian.
NumericalDifferentiator.MatrixJacobian - Class in gov.sandia.cognition.math.matrix
Numerical differentiator based on a Matrix Jacobian.
NumericalDifferentiator.VectorJacobian - Class in gov.sandia.cognition.math.matrix
Numerical differentiator based on a Vector Jacobian.
NumericMap<KeyType> - Interface in gov.sandia.cognition.collection
An interface for a mapping of keys to numeric values.
numFolds - Variable in class gov.sandia.cognition.learning.experiment.CrossFoldCreator
The number of folds to create.
numFolds - Variable in class gov.sandia.cognition.learning.experiment.RandomFoldCreator
The number of folds to create.
numIncorrectToSample - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner
The number of incorrect examples to sample on each iteration.
numLevels() - Method in class gov.sandia.cognition.graph.community.Louvain.LouvainHierarchy
The number of levels in the hierarchy.
numModules - Variable in class gov.sandia.cognition.framework.lite.AbstractCognitiveModelLite
The number of modules.
numNeighbors(int) - Method in class gov.sandia.cognition.graph.GraphMetrics
Returns the number of neighbors for the input node id.
numNeighbors(NodeNameType) - Method in class gov.sandia.cognition.graph.GraphMetrics
Returns the number of neighbors for the input node name.
numNodes() - Method in class gov.sandia.cognition.graph.GraphMetrics
Returns the number of nodes in the graph.
numNodes() - Method in class gov.sandia.cognition.graph.inference.CostSpeedupEnergyFunction
 
numNodes() - Method in class gov.sandia.cognition.graph.inference.EdgeMergingEnergyFunction
 
numNodes() - Method in interface gov.sandia.cognition.graph.inference.EnergyFunction
Returns the number of nodes in the energy function.
numNodes() - Method in class gov.sandia.cognition.graph.inference.GraphWrappingEnergyFunction
 
numNodeTriangles(int) - Method in class gov.sandia.cognition.graph.GraphMetrics
Returns the number of triangles the node participates in.
numNodeTriangles(NodeNameType) - Method in class gov.sandia.cognition.graph.GraphMetrics
Returns the number of triangles the node participates in.
numParticles - Variable in class gov.sandia.cognition.statistics.bayesian.AbstractParticleFilter
Number of particles in the filter.
numRequestedClusters - Variable in class gov.sandia.cognition.learning.algorithm.clustering.KMeansClusterer
The number of clusters requested.
numRequestedClusters - Variable in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
The number of clusters requested.
numSplits - Variable in class gov.sandia.cognition.learning.experiment.RandomByTwoFoldCreator
The number of splits.
numSuccessors(int) - Method in class gov.sandia.cognition.graph.GraphMetrics
Returns the number of direct successors for the input node.
numSuccessors(NodeNameType) - Method in class gov.sandia.cognition.graph.GraphMetrics
Returns the number of direct successors for the input node.
numTrials - Variable in class gov.sandia.cognition.learning.experiment.AbstractValidationFoldExperiment
The number of trials in the experiment, which is the number of folds in the experiment.
numTrials - Variable in class gov.sandia.cognition.learning.experiment.LearnerRepeatExperiment
The number of trials to repeat the learning.
numTrials - Variable in class gov.sandia.cognition.learning.experiment.OnlineLearnerValidationExperiment
The number of trials in the experiment, which is the number of folds in the experiment.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Skip navigation links