Skip navigation links
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

K

k - Variable in class gov.sandia.cognition.math.Combinations.AbstractCombinationsIterator
Number of objects to choose from the universe set.
KalmanFilter - Class in gov.sandia.cognition.statistics.bayesian
A Kalman filter estimates the state of a dynamical system corrupted with white Gaussian noise with observations that are corrupted with white Gaussian noise.
KalmanFilter() - Constructor for class gov.sandia.cognition.statistics.bayesian.KalmanFilter
Creates a new instance of KalmanFilter
KalmanFilter(int) - Constructor for class gov.sandia.cognition.statistics.bayesian.KalmanFilter
Creates an autonomous, fully observable linear dynamical system with the given dimensionality
KalmanFilter(LinearDynamicalSystem, Matrix, Matrix) - Constructor for class gov.sandia.cognition.statistics.bayesian.KalmanFilter
Creates a new instance of LinearUpdater
kappa - Variable in class gov.sandia.cognition.learning.function.kernel.SigmoidKernel
The kappa value to multiply times the dot product.
KDTree<VectorType extends Vectorizable,DataType,PairType extends Pair<? extends VectorType,DataType>> - Class in gov.sandia.cognition.math.geometry
Implementation of a kd-tree.
KDTree() - Constructor for class gov.sandia.cognition.math.geometry.KDTree
Default constructor
KDTree(Collection<? extends PairType>) - Constructor for class gov.sandia.cognition.math.geometry.KDTree
Creates a balanced KDTree from the given points.
KDTree(PairType, KDTree.PairFirstVectorizableIndexComparator, KDTree<VectorType, DataType, PairType>) - Constructor for class gov.sandia.cognition.math.geometry.KDTree
Creates a KDTree subtree for recursion purposes.
KDTree(ArrayList<? extends PairType>, KDTree.PairFirstVectorizableIndexComparator, int, KDTree<VectorType, DataType, PairType>) - Constructor for class gov.sandia.cognition.math.geometry.KDTree
Creates a balanced KDTree subtree for recursion purposes from the given ArrayList of points.
KDTree.InOrderKDTreeIterator<VectorType extends Vectorizable,DataType,PairType extends Pair<? extends VectorType,DataType>> - Class in gov.sandia.cognition.math.geometry
Iterates through the KDTree using "inorder", also known as "symmetric traversal", of the tree.
KDTree.Neighborhood<VectorType extends Vectorizable,DataType,PairType extends Pair<? extends VectorType,DataType>> - Class in gov.sandia.cognition.math.geometry
A Collection of nearby pairs.
KDTree.Neighborhood.Neighbor<VectorType extends Vectorizable,DataType,PairType extends Pair<? extends VectorType,DataType>> - Class in gov.sandia.cognition.math.geometry
Holds neighbor information used during the evaluate method and is put into a priority queue.
KDTree.Neighborhood.NeighborhoodIterator - Class in gov.sandia.cognition.math.geometry
Iterator for the Neighborhood.
KDTree.PairFirstVectorizableIndexComparator - Class in gov.sandia.cognition.math.geometry
Comparator for Pairs that have a Vectorizable as its first parameter.
keepGoing - Variable in class gov.sandia.cognition.learning.algorithm.AbstractAnytimeBatchLearner
Indicates whether or not the learner should make another step.
kernel - Variable in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.AbstractOnlineKernelBinaryCategorizerLearner
The kernel to use.
kernel - Variable in class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation
The kernel to use.
kernel - Variable in class gov.sandia.cognition.learning.function.categorization.KernelBinaryCategorizer
The internal kernel.
kernel - Variable in class gov.sandia.cognition.learning.function.kernel.DefaultKernelContainer
The internal kernel.
Kernel<InputType> - Interface in gov.sandia.cognition.learning.function.kernel
The Kernel interface the functionality required from an object that implements a kernel function.
KernelAdatron<InputType> - Class in gov.sandia.cognition.learning.algorithm.perceptron.kernel
The KernelAdatron class implements an online version of the Support Vector Machine learning algorithm.
KernelAdatron() - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelAdatron
Creates a new instance of KernelAdatron.
KernelAdatron(Kernel<? super InputType>) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelAdatron
Creates a new KernelAdatron with the given kernel.
KernelAdatron(Kernel<? super InputType>, int) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelAdatron
Creates a new KernelAdatron with the given kernel and maximum number of iterations.
KernelBasedIterativeRegression<InputType> - Class in gov.sandia.cognition.learning.algorithm.regression
The KernelBasedIterativeRegression class implements an online version of the Support Vector Regression algorithm.
KernelBasedIterativeRegression() - Constructor for class gov.sandia.cognition.learning.algorithm.regression.KernelBasedIterativeRegression
Creates a new instance of KernelBasedIterativeRegression.
KernelBasedIterativeRegression(Kernel<? super InputType>) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.KernelBasedIterativeRegression
Creates a new KernelBasedIterativeRegression with the given kernel.
KernelBasedIterativeRegression(Kernel<? super InputType>, double) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.KernelBasedIterativeRegression
Creates a new KernelBasedIterativeRegression with the given kernel.
KernelBasedIterativeRegression(Kernel<? super InputType>, double, int) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.KernelBasedIterativeRegression
Creates a new KernelBasedIterativeRegression with the given kernel and maximum number of iterations.
KernelBinaryCategorizer<InputType,EntryType extends WeightedValue<? extends InputType>> - Class in gov.sandia.cognition.learning.function.categorization
The KernelBinaryCategorizer class implements a binary categorizer that uses a kernel to do its categorization.
KernelBinaryCategorizer() - Constructor for class gov.sandia.cognition.learning.function.categorization.KernelBinaryCategorizer
Creates a new instance of KernelBinaryCategorizer.
KernelBinaryCategorizer(Kernel<? super InputType>) - Constructor for class gov.sandia.cognition.learning.function.categorization.KernelBinaryCategorizer
Creates a new instance of KernelBinaryCategorizer with the given kernel.
KernelBinaryCategorizer(Kernel<? super InputType>, Collection<EntryType>, double) - Constructor for class gov.sandia.cognition.learning.function.categorization.KernelBinaryCategorizer
Creates a new instance of KernelBinaryCategorizer with the given kernel, weighted examples, and bias.
KernelBinaryCategorizer(KernelBinaryCategorizer<InputType, ? extends EntryType>) - Constructor for class gov.sandia.cognition.learning.function.categorization.KernelBinaryCategorizer
Creates a new copy of a KernelBinaryCategorizer.
KernelBinaryCategorizerOnlineLearnerAdapter<InputType> - Class in gov.sandia.cognition.learning.algorithm.perceptron.kernel
A wrapper class for a KernelizableBinaryCategorizerOnlineLearner that allows it to be used as a batch or incremental learner over the input type directly, rather than using utility methods.
KernelBinaryCategorizerOnlineLearnerAdapter() - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelBinaryCategorizerOnlineLearnerAdapter
Creates a new KernelBinaryCategorizerOnlineLearnerAdapter with a null learner.
KernelBinaryCategorizerOnlineLearnerAdapter(Kernel<? super InputType>, KernelizableBinaryCategorizerOnlineLearner) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelBinaryCategorizerOnlineLearnerAdapter
Creates a new KernelBinaryCategorizerOnlineLearnerAdapter with the given kernel and learner.
KernelContainer<InputType> - Interface in gov.sandia.cognition.learning.function.kernel
Defines an object that contains a Kernel.
KernelDistanceMetric<InputType> - Class in gov.sandia.cognition.learning.function.kernel
The KernelDistanceMetric class implements a distance metric that utilizes an underlying Kernel for computing the distance.
KernelDistanceMetric() - Constructor for class gov.sandia.cognition.learning.function.kernel.KernelDistanceMetric
Creates a new instance of KernelDistanceMetric.
KernelDistanceMetric(Kernel<? super InputType>) - Constructor for class gov.sandia.cognition.learning.function.kernel.KernelDistanceMetric
Creates a new instance of KernelDistanceMetric using the given kernel.
KernelDistanceMetric(KernelDistanceMetric<InputType>) - Constructor for class gov.sandia.cognition.learning.function.kernel.KernelDistanceMetric
Creates a new copy of a KernelDistanceMetric.
KernelizableBinaryCategorizerOnlineLearner - Interface in gov.sandia.cognition.learning.algorithm.perceptron
Interface for an online learner of a linear binary categorizer that can also be used with a kernel function.
kernelMatrix - Variable in class gov.sandia.cognition.learning.algorithm.pca.KernelPrincipalComponentsAnalysis.Function
The kernel matrix for all the data the KPCA was done over.
KernelPerceptron<InputType> - Class in gov.sandia.cognition.learning.algorithm.perceptron.kernel
The KernelPerceptron class implements the kernel version of the Perceptron algorithm.
KernelPerceptron() - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelPerceptron
Creates a new instance of KernelPerceptron.
KernelPerceptron(Kernel<? super InputType>) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelPerceptron
Creates a new KernelPerceptron with the given kernel.
KernelPerceptron(Kernel<? super InputType>, int) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelPerceptron
Creates a new KernelPerceptron with the given kernel and maximum number of iterations.
KernelPerceptron(Kernel<? super InputType>, int, double, double) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelPerceptron
Creates a new KernelPerceptron with the given parameters.
KernelPrincipalComponentsAnalysis<DataType> - Class in gov.sandia.cognition.learning.algorithm.pca
An implementation of the Kernel Principal Components Analysis (KPCA) algorithm.
KernelPrincipalComponentsAnalysis() - Constructor for class gov.sandia.cognition.learning.algorithm.pca.KernelPrincipalComponentsAnalysis
Creates a new Kernel Principal Components Analysis with a null kernel and a default component count.
KernelPrincipalComponentsAnalysis(Kernel<? super DataType>, int) - Constructor for class gov.sandia.cognition.learning.algorithm.pca.KernelPrincipalComponentsAnalysis
Creates a new Kernel Principal Components Analysis with the given kernel and component count.
KernelPrincipalComponentsAnalysis(Kernel<? super DataType>, int, boolean) - Constructor for class gov.sandia.cognition.learning.algorithm.pca.KernelPrincipalComponentsAnalysis
Creates a new Kernel Principal Components Analysis with the given kernel and component count.
KernelPrincipalComponentsAnalysis.Function<DataType> - Class in gov.sandia.cognition.learning.algorithm.pca
The resulting transformation function learned by Kernel Principal Components Analysis.
kernels - Variable in class gov.sandia.cognition.learning.function.kernel.DefaultKernelsContainer
The collection of kernels in the container.
KernelScalarFunction<InputType> - Class in gov.sandia.cognition.learning.function.scalar
The KernelScalarFunction class implements a scalar function that uses a kernel to compute its output value.
KernelScalarFunction() - Constructor for class gov.sandia.cognition.learning.function.scalar.KernelScalarFunction
Creates a new instance of KernelScalarFunction.
KernelScalarFunction(Kernel<? super InputType>) - Constructor for class gov.sandia.cognition.learning.function.scalar.KernelScalarFunction
Creates a new instance of KernelScalarFunction with the given kernel.
KernelScalarFunction(Kernel<? super InputType>, Collection<? extends WeightedValue<? extends InputType>>, double) - Constructor for class gov.sandia.cognition.learning.function.scalar.KernelScalarFunction
Creates a new instance of KernelScalarFunction with the given kernel, weighted examples, and bias.
KernelScalarFunction(KernelScalarFunction<InputType>) - Constructor for class gov.sandia.cognition.learning.function.scalar.KernelScalarFunction
Creates a new copy of a KernelScalarFunction.
KernelUtil - Class in gov.sandia.cognition.learning.function.kernel
A utility class for dealing with kernels.
KernelUtil() - Constructor for class gov.sandia.cognition.learning.function.kernel.KernelUtil
 
KernelWeightedRobustRegression<InputType,OutputType> - Class in gov.sandia.cognition.learning.algorithm.regression
KernelWeightedRobustRegression takes a supervised learning algorithm that operates on a weighted collection of InputOutputPairs and modifies the weight of a sample based on the dataset output and its corresponding estimate from the Evaluator from the supervised learning algorithm at each iteration.
KernelWeightedRobustRegression(SupervisedBatchLearner<InputType, OutputType, ?>, Kernel<? super OutputType>) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.KernelWeightedRobustRegression
Creates a new instance of RobustRegression
KernelWeightedRobustRegression(SupervisedBatchLearner<InputType, OutputType, ?>, Kernel<? super OutputType>, int, double) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.KernelWeightedRobustRegression
Creates a new instance of RobustRegression
key - Variable in class gov.sandia.cognition.collection.AbstractLogNumberMap.SimpleEntry
Key associated with this entry
key - Variable in class gov.sandia.cognition.collection.AbstractMutableDoubleMap.SimpleEntry
Key associated with this entry
key - Variable in class gov.sandia.cognition.util.DefaultKeyValuePair
The key part in the pair, which is the first element.
keySet() - Method in class gov.sandia.cognition.collection.AbstractScalarMap
 
keySet() - Method in class gov.sandia.cognition.collection.DynamicArrayMap
 
keySet() - Method in interface gov.sandia.cognition.collection.NumericMap
Gets the set of unique keys in the map.
KeyValuePair<KeyType,ValueType> - Interface in gov.sandia.cognition.util
Represents a key-value pair.
KMeansClusterer<DataType,ClusterType extends Cluster<DataType>> - Class in gov.sandia.cognition.learning.algorithm.clustering
The KMeansClusterer class implements the standard k-means (k-centroids) clustering algorithm.
KMeansClusterer() - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.KMeansClusterer
Creates a new instance of KMeansClusterer with default parameters.
KMeansClusterer(int, int, FixedClusterInitializer<ClusterType, DataType>, ClusterDivergenceFunction<? super ClusterType, ? super DataType>, ClusterCreator<ClusterType, DataType>) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.KMeansClusterer
Creates a new instance of KMeansClusterer using the given parameters.
KMeansClustererWithRemoval<DataType,ClusterType extends Cluster<DataType>> - Class in gov.sandia.cognition.learning.algorithm.clustering
Creates a k-means clustering algorithm that removes clusters that do not have sufficient membership to pass a simple statistical significance test.
KMeansClustererWithRemoval() - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.KMeansClustererWithRemoval
Default constructor
KMeansClustererWithRemoval(int, int, FixedClusterInitializer<ClusterType, DataType>, ClusterDivergenceFunction<ClusterType, DataType>, ClusterCreator<ClusterType, DataType>, double) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.KMeansClustererWithRemoval
Creates a new instance of KMeansClusterer using the given parameters.
KMeansFactory - Class in gov.sandia.cognition.learning.algorithm.clustering
Creates a parallelized version of the k-means clustering algorithm for the typical use: clustering vector data with a Euclidean distance metric.
KMeansFactory() - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.KMeansFactory
Creates a new instance of KMeansFactory
KMeansFactory(int) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.KMeansFactory
Creates a new instance of KMeansFactory.
KMeansFactory(int, Random) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.KMeansFactory
Creates a new instance of KMeansFactory.
KNearestNeighbor<InputType,OutputType> - Interface in gov.sandia.cognition.learning.algorithm.nearest
A generic k-nearest-neighbor classifier.
KNearestNeighborExhaustive<InputType,OutputType> - Class in gov.sandia.cognition.learning.algorithm.nearest
A generic k-nearest-neighbor classifier.
KNearestNeighborExhaustive() - Constructor for class gov.sandia.cognition.learning.algorithm.nearest.KNearestNeighborExhaustive
Creates a new instance of KNearestNeighborExhaustive.
KNearestNeighborExhaustive(int, Collection<? extends InputOutputPair<? extends InputType, OutputType>>, DivergenceFunction<? super InputType, ? super InputType>, Summarizer<? super OutputType, ? extends OutputType>) - Constructor for class gov.sandia.cognition.learning.algorithm.nearest.KNearestNeighborExhaustive
Creates a new instance of KNearestNeighborExhaustive
KNearestNeighborExhaustive.Learner<InputType,OutputType> - Class in gov.sandia.cognition.learning.algorithm.nearest
This is a BatchLearner interface for creating a new KNearestNeighborExhaustive from a given dataset, simply a pass-through to the constructor of KNearestNeighborExhaustive
KNearestNeighborExhaustive.Neighbor - Class in gov.sandia.cognition.learning.algorithm.nearest
Holds neighbor information used during the evaluate method and is put into a priority queue.
KNearestNeighborKDTree<InputType extends Vectorizable,OutputType> - Class in gov.sandia.cognition.learning.algorithm.nearest
A KDTree-based implementation of the k-nearest neighbor algorithm.
KNearestNeighborKDTree() - Constructor for class gov.sandia.cognition.learning.algorithm.nearest.KNearestNeighborKDTree
Creates a new instance of KNearestNeighborKDTree
KNearestNeighborKDTree(int, KDTree<InputType, OutputType, InputOutputPair<? extends InputType, OutputType>>, Metric<? super InputType>, Summarizer<? super OutputType, ? extends OutputType>) - Constructor for class gov.sandia.cognition.learning.algorithm.nearest.KNearestNeighborKDTree
Creates a new instance of KNearestNeighborKDTree
KNearestNeighborKDTree.Learner<InputType extends Vectorizable,OutputType> - Class in gov.sandia.cognition.learning.algorithm.nearest
This is a BatchLearner interface for creating a new KNearestNeighbor from a given dataset, simply a pass-through to the constructor of KNearestNeighbor
knownTwoCharacterEdits(Iterable<String>) - Method in class gov.sandia.cognition.text.spelling.SimpleStatisticalSpellingCorrector
Creates the set of known two character edits for a given list of one character edits.
KolmogorovDistribution - Class in gov.sandia.cognition.statistics.distribution
Contains the Cumulative Distribution Function description for the "D" statistic used within the Kolmogorov-Smirnov test.
KolmogorovDistribution() - Constructor for class gov.sandia.cognition.statistics.distribution.KolmogorovDistribution
Creates a new instance of CumulativeDistribution
KolmogorovDistribution.CDF - Class in gov.sandia.cognition.statistics.distribution
Contains the Cumulative Distribution Function description for the "D" statistic used within the Kolmogorov-Smirnov test.
KolmogorovSmirnovConfidence - Class in gov.sandia.cognition.statistics.method
Performs a Kolmogorov-Smirnov Confidence Test.
KolmogorovSmirnovConfidence() - Constructor for class gov.sandia.cognition.statistics.method.KolmogorovSmirnovConfidence
Creates a new instance of KolmogorovSmirnovConfidence
KolmogorovSmirnovConfidence.Statistic - Class in gov.sandia.cognition.statistics.method
Computes the ConfidenceStatistic associated with a K-S test
KolmogorovSmirnovDivergence<DataType extends java.lang.Number> - Class in gov.sandia.cognition.learning.function.cost
CostFunction that induces a CDF that most-closely resembles the target distribution according to the Kolmogorov-Smirnov (K-S) test.
KolmogorovSmirnovDivergence() - Constructor for class gov.sandia.cognition.learning.function.cost.KolmogorovSmirnovDivergence
Default constructor
KolmogorovSmirnovDivergence(Collection<? extends DataType>) - Constructor for class gov.sandia.cognition.learning.function.cost.KolmogorovSmirnovDivergence
Creates a new instance of KolmogorovSmirnovDivergence
KolmogorovSmirnovEvaluator - Class in gov.sandia.cognition.learning.function.scalar
You can specify a particular CDF.
KolmogorovSmirnovEvaluator() - Constructor for class gov.sandia.cognition.learning.function.scalar.KolmogorovSmirnovEvaluator
Creates a new KolmogorovSmirnovEvaluator.
KolmogorovSmirnovEvaluator(CumulativeDistributionFunction<Double>, int) - Constructor for class gov.sandia.cognition.learning.function.scalar.KolmogorovSmirnovEvaluator
Creates a new KolmogorovSmirnovEvaluator.
KSsignificance(double, double) - Static method in class gov.sandia.cognition.statistics.method.KolmogorovSmirnovConfidence.Statistic
Computes the significance of the K-S test from the given degrees of freedom and D-statistic.
KullbackLeiblerDivergence<DomainType> - Class in gov.sandia.cognition.statistics
A class used for measuring how similar two distributions are using Kullback--Leibler Divergence.
KullbackLeiblerDivergence(DiscreteDistribution<DomainType>, DiscreteDistribution<DomainType>) - Constructor for class gov.sandia.cognition.statistics.KullbackLeiblerDivergence
Basic constructor to find the Kullback--Leibler Divergence between the two supplied distributions.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Skip navigation links