- P - Variable in class gov.sandia.cognition.math.matrix.custom.DenseMatrix.LU
-
The 0-based list of row swaps used in the factorization.
- p - Variable in class gov.sandia.cognition.statistics.distribution.GeometricDistribution
-
Probability of a positive outcome (Bernoulli probability), [0,1]
- p - Variable in class gov.sandia.cognition.statistics.distribution.NegativeBinomialDistribution
-
Probability of a positive outcome (Bernoulli probability), [0,1]
- Pair<FirstType,SecondType> - Interface in gov.sandia.cognition.util
-
The Pair
interface defines the functionality of an object that
contains a pair of other objects inside of it.
- PairFirstVectorizableIndexComparator(int) - Constructor for class gov.sandia.cognition.math.geometry.KDTree.PairFirstVectorizableIndexComparator
-
Creates a new instance of PairFirstVectorizableIndexComparator
- pairwiseTest - Variable in class gov.sandia.cognition.statistics.method.AbstractPairwiseMultipleHypothesisComparison
-
Confidence test used for pair-wise null-hypothesis tests.
- pairwiseTestStatistics - Variable in class gov.sandia.cognition.statistics.method.AbstractPairwiseMultipleHypothesisComparison.Statistic
-
Results from the pair-wise confidence tests.
- ParallelAlgorithm - Interface in gov.sandia.cognition.algorithm
-
Interface for algorithms that are parallelized using multithreading.
- ParallelBaumWelchAlgorithm<ObservationType> - Class in gov.sandia.cognition.learning.algorithm.hmm
-
A Parallelized implementation of some of the methods of the
Baum-Welch Algorithm.
- ParallelBaumWelchAlgorithm() - Constructor for class gov.sandia.cognition.learning.algorithm.hmm.ParallelBaumWelchAlgorithm
-
Default constructor
- ParallelBaumWelchAlgorithm(HiddenMarkovModel<ObservationType>, BatchLearner<Collection<? extends WeightedValue<? extends ObservationType>>, ? extends ComputableDistribution<ObservationType>>, boolean) - Constructor for class gov.sandia.cognition.learning.algorithm.hmm.ParallelBaumWelchAlgorithm
-
Creates a new instance of ParallelBaumWelchAlgorithm
- ParallelBaumWelchAlgorithm.DistributionEstimatorTask<ObservationType> - Class in gov.sandia.cognition.learning.algorithm.hmm
-
Re-estimates the PDF from the gammas.
- ParallelClusterDistortionMeasure<DataType,ClusterType extends Cluster<DataType>> - Class in gov.sandia.cognition.learning.function.cost
-
A parallel implementation of ClusterDistortionMeasure.
- ParallelClusterDistortionMeasure() - Constructor for class gov.sandia.cognition.learning.function.cost.ParallelClusterDistortionMeasure
-
Creates a new instance of ParallelClusterDistortionMeasure
- ParallelClusterDistortionMeasure(ClusterDivergenceFunction<ClusterType, DataType>) - Constructor for class gov.sandia.cognition.learning.function.cost.ParallelClusterDistortionMeasure
-
Creates a new instance of ClusterDistortionMeasure
- ParallelDirichletProcessMixtureModel<ObservationType> - Class in gov.sandia.cognition.statistics.bayesian
-
A Parallelized version of vanilla Dirichlet Process Mixture Model learning.
- ParallelDirichletProcessMixtureModel() - Constructor for class gov.sandia.cognition.statistics.bayesian.ParallelDirichletProcessMixtureModel
-
Creates a new instance of ParallelDirichletProcessMixtureModel
- ParallelDirichletProcessMixtureModel.ClusterUpdaterTask - Class in gov.sandia.cognition.statistics.bayesian
-
Tasks that update the values of the clusters for Gibbs sampling
- ParallelDirichletProcessMixtureModel.DPMMAssignments - Class in gov.sandia.cognition.statistics.bayesian
-
Assignments from the DPMM
- ParallelDirichletProcessMixtureModel.ObservationAssignmentTask - Class in gov.sandia.cognition.statistics.bayesian
-
Task that assign observations to cluster indices
- ParallelHiddenMarkovModel<ObservationType> - Class in gov.sandia.cognition.learning.algorithm.hmm
-
A Hidden Markov Model with parallelized processing.
- ParallelHiddenMarkovModel() - Constructor for class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel
-
Creates a new instance of ParallelHiddenMarkovModel
- ParallelHiddenMarkovModel(int) - Constructor for class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel
-
Creates a new instance of ParallelHiddenMarkovModel
- ParallelHiddenMarkovModel(Vector, Matrix, Collection<? extends ComputableDistribution<ObservationType>>) - Constructor for class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel
-
Creates a new instance of ParallelHiddenMarkovModel
- ParallelHiddenMarkovModel(HiddenMarkovModel<ObservationType>) - Constructor for class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel
-
\
Creates a new ParallelHiddenMarkovModel
from another
HiddenMarkovModel
.
- ParallelHiddenMarkovModel.ComputeTransitionsTask - Class in gov.sandia.cognition.learning.algorithm.hmm
-
Calls the computeTransitions method.
- ParallelHiddenMarkovModel.LogLikelihoodTask - Class in gov.sandia.cognition.learning.algorithm.hmm
-
Computes the log-likelihood of a particular data sequence
- ParallelHiddenMarkovModel.NormalizeTransitionTask - Class in gov.sandia.cognition.learning.algorithm.hmm
-
Calls the normalizeTransitionMatrix method.
- ParallelHiddenMarkovModel.ObservationLikelihoodTask<ObservationType> - Class in gov.sandia.cognition.learning.algorithm.hmm
-
Calls the computeObservationLikelihoods() method.
- ParallelHiddenMarkovModel.StateObservationLikelihoodTask - Class in gov.sandia.cognition.learning.algorithm.hmm
-
Calls the computeStateObservationLikelihood() method.
- ParallelHiddenMarkovModel.ViterbiTask - Class in gov.sandia.cognition.learning.algorithm.hmm
-
Computes the most-likely "from state" for the given "destination state"
and the given deltas.
- ParallelizableCostFunction - Interface in gov.sandia.cognition.learning.function.cost
-
Interface describing a cost function that can (largely) be computed in
parallel.
- ParallelizedCostFunctionContainer - Class in gov.sandia.cognition.learning.function.cost
-
A cost function that automatically splits a ParallelizableCostFunction
across multiple cores/processors to speed up computation.
- ParallelizedCostFunctionContainer() - Constructor for class gov.sandia.cognition.learning.function.cost.ParallelizedCostFunctionContainer
-
Default constructor for ParallelizedCostFunctionContainer.
- ParallelizedCostFunctionContainer(ParallelizableCostFunction) - Constructor for class gov.sandia.cognition.learning.function.cost.ParallelizedCostFunctionContainer
-
Creates a new instance of ParallelizedCostFunctionContainer
- ParallelizedCostFunctionContainer(ParallelizableCostFunction, ThreadPoolExecutor) - Constructor for class gov.sandia.cognition.learning.function.cost.ParallelizedCostFunctionContainer
-
Creates a new instance of ParallelizedCostFunctionContainer
- ParallelizedCostFunctionContainer.SubCostEvaluate - Class in gov.sandia.cognition.learning.function.cost
-
Callable task for the evaluate() method.
- ParallelizedCostFunctionContainer.SubCostGradient - Class in gov.sandia.cognition.learning.function.cost
-
Callable task for the computeGradient() method
- ParallelizedGeneticAlgorithm<CostParametersType,GenomeType> - Class in gov.sandia.cognition.learning.algorithm.genetic
-
This is a parallel implementation of the genetic algorithm.
- ParallelizedGeneticAlgorithm() - Constructor for class gov.sandia.cognition.learning.algorithm.genetic.ParallelizedGeneticAlgorithm
-
Default constructor
- ParallelizedGeneticAlgorithm(Collection<GenomeType>, Reproducer<GenomeType>, CostFunction<? super GenomeType, ? super CostParametersType>, ThreadPoolExecutor) - Constructor for class gov.sandia.cognition.learning.algorithm.genetic.ParallelizedGeneticAlgorithm
-
- ParallelizedGeneticAlgorithm(Collection<GenomeType>, Reproducer<GenomeType>, CostFunction<? super GenomeType, ? super CostParametersType>, ThreadPoolExecutor, int, int) - Constructor for class gov.sandia.cognition.learning.algorithm.genetic.ParallelizedGeneticAlgorithm
-
- ParallelizedGeneticAlgorithm.EvaluateGenome - Class in gov.sandia.cognition.learning.algorithm.genetic
-
Callable task for the evaluate() method.
- ParallelizedKMeansClusterer<DataType,ClusterType extends Cluster<DataType>> - Class in gov.sandia.cognition.learning.algorithm.clustering
-
This is a parallel implementation of the k-means clustering algorithm.
- ParallelizedKMeansClusterer() - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.ParallelizedKMeansClusterer
-
Default constructor
- ParallelizedKMeansClusterer(int, int, ThreadPoolExecutor, FixedClusterInitializer<ClusterType, DataType>, ClusterDivergenceFunction<? super ClusterType, ? super DataType>, ClusterCreator<ClusterType, DataType>) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.ParallelizedKMeansClusterer
-
Creates a new instance of ParallelizedKMeansClusterer2
- ParallelizedKMeansClusterer.AssignDataToCluster - Class in gov.sandia.cognition.learning.algorithm.clustering
-
Callable task for the evaluate() method.
- ParallelizedKMeansClusterer.CreateClustersFromAssignments - Class in gov.sandia.cognition.learning.algorithm.clustering
-
Callable task for that creates clusters from assigned data
- ParallelLatentDirichletAllocationVectorGibbsSampler - Class in gov.sandia.cognition.text.topic
-
- ParallelLatentDirichletAllocationVectorGibbsSampler() - Constructor for class gov.sandia.cognition.text.topic.ParallelLatentDirichletAllocationVectorGibbsSampler
-
Creates a new ParallelLatentDirichletAllocationVectorGibbsSampler
with
default parameters.
- ParallelLatentDirichletAllocationVectorGibbsSampler(int, double, double, int, int, int, Random) - Constructor for class gov.sandia.cognition.text.topic.ParallelLatentDirichletAllocationVectorGibbsSampler
-
Creates a new ParallelLatentDirichletAllocationVectorGibbsSampler
with
the given parameters.
- ParallelLatentDirichletAllocationVectorGibbsSampler.DocumentSampleTask - Class in gov.sandia.cognition.text.topic
-
A document sampling task
- ParallelLearnerValidationExperiment<InputDataType,FoldDataType,LearnedType,StatisticType,SummaryType> - Class in gov.sandia.cognition.learning.experiment
-
Parallel version of the LearnerValidationExperiment class that executes
the validations experiments across available cores and hyperthreads.
- ParallelLearnerValidationExperiment() - Constructor for class gov.sandia.cognition.learning.experiment.ParallelLearnerValidationExperiment
-
Default constructor
- ParallelLearnerValidationExperiment(ValidationFoldCreator<InputDataType, FoldDataType>, PerformanceEvaluator<? super LearnedType, ? super Collection<? extends FoldDataType>, ? extends StatisticType>, Summarizer<? super StatisticType, ? extends SummaryType>) - Constructor for class gov.sandia.cognition.learning.experiment.ParallelLearnerValidationExperiment
-
Creates a new instance of ParallelLearnerValidationExperiment.
- ParallelNegativeLogLikelihood<DataType> - Class in gov.sandia.cognition.learning.function.cost
-
Parallel implementation of the NegativeLogLikleihood cost function
- ParallelNegativeLogLikelihood() - Constructor for class gov.sandia.cognition.learning.function.cost.ParallelNegativeLogLikelihood
-
Default constructor
- ParallelNegativeLogLikelihood(Collection<? extends DataType>) - Constructor for class gov.sandia.cognition.learning.function.cost.ParallelNegativeLogLikelihood
-
Creates a new instance of ParallelNegativeLogLikelihood
- ParallelNegativeLogLikelihood.NegativeLogLikelihoodTask<DataType> - Class in gov.sandia.cognition.learning.function.cost
-
Task for computing partial log likelihoods
- ParallelSparseMatrix - Class in gov.sandia.cognition.math.matrix.custom
-
A sparse matrix implementation.
- ParallelSparseMatrix(int, int, int) - Constructor for class gov.sandia.cognition.math.matrix.custom.ParallelSparseMatrix
-
Creates a new parallel sparse matrix with the specified number of rows
and columns.
- ParallelSparseMatrix(ParallelSparseMatrix) - Constructor for class gov.sandia.cognition.math.matrix.custom.ParallelSparseMatrix
-
Creates a new sparse matrix with the same dimensions and data as m
(performs a deep copy).
- ParallelSparseMatrix(SparseMatrix, int) - Constructor for class gov.sandia.cognition.math.matrix.custom.ParallelSparseMatrix
-
Creates a new sparse matrix with the same dimensions and data as m
(performs a deep copy).
- ParallelSparseMatrix(DenseMatrix, int) - Constructor for class gov.sandia.cognition.math.matrix.custom.ParallelSparseMatrix
-
Creates a new sparse matrix with the same dimensions and data as d
(performs a deep copy).
- ParallelSparseMatrix(DiagonalMatrix, int) - Constructor for class gov.sandia.cognition.math.matrix.custom.ParallelSparseMatrix
-
Creates a new sparse matrix with the same dimensions and data as d
(performs a deep copy).
- ParallelSparseMatrix() - Constructor for class gov.sandia.cognition.math.matrix.custom.ParallelSparseMatrix
-
This should never be called by anything or anyone other than Java's
serialization code.
- ParallelUtil - Class in gov.sandia.cognition.algorithm
-
Utility methods for creating parallel algorithms.
- ParallelUtil() - Constructor for class gov.sandia.cognition.algorithm.ParallelUtil
-
Protected constructor since this is a utility class.
- parameter - Variable in class gov.sandia.cognition.statistics.bayesian.conjugate.AbstractConjugatePriorBayesianEstimator
-
Bayesian hyperparameter relationship between the conditional
distribution and the conjugate prior distribution.
- Parameter(BernoulliDistribution, BetaDistribution) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.BernoulliBayesianEstimator.Parameter
-
Creates a new instance
- Parameter(BinomialDistribution, BetaDistribution) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.BinomialBayesianEstimator.Parameter
-
Creates a new instance of Parameter
- Parameter(ExponentialDistribution, GammaDistribution) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.ExponentialBayesianEstimator.Parameter
-
Creates a new instance of Parameter
- Parameter(GammaDistribution, GammaDistribution) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.GammaInverseScaleBayesianEstimator.Parameter
-
Creates a new instance of Parameter
- Parameter(MultinomialDistribution, DirichletDistribution) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.MultinomialBayesianEstimator.Parameter
-
Creates a new instance
- Parameter(MultivariateGaussian, MultivariateGaussian) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanBayesianEstimator.Parameter
-
Creates a new instance
- Parameter(MultivariateGaussian, NormalInverseWishartDistribution) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanCovarianceBayesianEstimator.Parameter
-
Creates a new instance
- Parameter(PoissonDistribution, GammaDistribution) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.PoissonBayesianEstimator.Parameter
-
Creates a new instance
- Parameter(UniformDistribution, ParetoDistribution) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.UniformDistributionBayesianEstimator.Parameter
-
Creates a new instance
- Parameter(UnivariateGaussian, UnivariateGaussian) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanBayesianEstimator.Parameter
-
Creates a new instance
- Parameter(UnivariateGaussian, NormalInverseGammaDistribution) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanVarianceBayesianEstimator.Parameter
-
Creates a new instance
- ParameterAdaptable<ObjectType,DataType> - Interface in gov.sandia.cognition.learning.parameter
-
Interface for an object that allows parameter adapters to be attached to it.
- ParameterAdaptableBatchLearnerWrapper<DataType,ResultType,LearnerType extends BatchLearner<? super DataType,? extends ResultType>> - Class in gov.sandia.cognition.learning.parameter
-
A wrapper for adding parameter adapters to a batch learner.
- ParameterAdaptableBatchLearnerWrapper() - Constructor for class gov.sandia.cognition.learning.parameter.ParameterAdaptableBatchLearnerWrapper
-
Creates a new ParameterAdaptableBatchLearnerWrapper
.
- ParameterAdaptableBatchLearnerWrapper(LearnerType) - Constructor for class gov.sandia.cognition.learning.parameter.ParameterAdaptableBatchLearnerWrapper
-
Creates a new ParameterAdaptableBatchLearnerWrapper
.
- ParameterAdapter<ObjectType,DataType> - Interface in gov.sandia.cognition.learning.parameter
-
Interface for an object that can adapt the parameters of another object
based on some given data.
- parameterAdapters - Variable in class gov.sandia.cognition.learning.parameter.ParameterAdaptableBatchLearnerWrapper
-
The list of parameter adapters for the learner.
- parameterCost - Variable in class gov.sandia.cognition.learning.function.cost.SumSquaredErrorCostFunction.Cache
-
Cost-function value of the parameter set
- ParameterCostEvaluatorDerivativeBased(GradientDescendable, DifferentiableCostFunction) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.ParameterDifferentiableCostMinimizer.ParameterCostEvaluatorDerivativeBased
-
Creates a new instance of ParameterCostEvaluatorDerivativeBased
- ParameterCostEvaluatorDerivativeFree(VectorizableVectorFunction, SupervisedCostFunction<Vector, Vector>) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.ParameterDerivativeFreeCostMinimizer.ParameterCostEvaluatorDerivativeFree
-
Creates a new instance of ParameterCostEvaluatorDerivativeFree
- ParameterCostMinimizer<ResultType extends VectorizableVectorFunction> - Interface in gov.sandia.cognition.learning.algorithm.regression
-
A anytime algorithm that is used to estimate the locally minimum-cost
parameters of an object.
- ParameterDerivativeFreeCostMinimizer - Class in gov.sandia.cognition.learning.algorithm.regression
-
Implementation of a class of objects that uses a derivative-free
minimization algorithm.
- ParameterDerivativeFreeCostMinimizer() - Constructor for class gov.sandia.cognition.learning.algorithm.regression.ParameterDerivativeFreeCostMinimizer
-
Creates a new instance of ParameterDerivativeFreeCostMinimizer
- ParameterDerivativeFreeCostMinimizer(FunctionMinimizer<Vector, Double, ? super DifferentiableEvaluator<Vector, Double, Vector>>) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.ParameterDerivativeFreeCostMinimizer
-
Creates a new instance of ParameterDerivativeFreeCostMinimizer
- ParameterDerivativeFreeCostMinimizer.ParameterCostEvaluatorDerivativeFree - Class in gov.sandia.cognition.learning.algorithm.regression
-
Function that maps the parameters of an object to its inputs, so that
minimization algorithms can tune the parameters of an object against
a cost function.
- ParameterDifferentiableCostMinimizer - Class in gov.sandia.cognition.learning.algorithm.regression
-
This class adapts the unconstrained nonlinear minimization algorithms in
the "minimization" package to the task of estimating locally optimal
(minimum-cost) parameter sets.
- ParameterDifferentiableCostMinimizer() - Constructor for class gov.sandia.cognition.learning.algorithm.regression.ParameterDifferentiableCostMinimizer
-
Creates a new instance of ParameterDifferentiableCostMinimizer
- ParameterDifferentiableCostMinimizer(FunctionMinimizer<Vector, Double, ? super DifferentiableEvaluator<Vector, Double, Vector>>) - Constructor for class gov.sandia.cognition.learning.algorithm.regression.ParameterDifferentiableCostMinimizer
-
Creates a new instance of ParameterDerivativeFreeCostMinimizer
- ParameterDifferentiableCostMinimizer.ParameterCostEvaluatorDerivativeBased - Class in gov.sandia.cognition.learning.algorithm.regression
-
Function that maps the parameters of an object to its inputs, so that
minimization algorithms can tune the parameters of an object against
a cost function.
- parameterGetter - Variable in class gov.sandia.cognition.statistics.DefaultDistributionParameter
-
Getter for the parameter, the write method.
- ParameterGradientEvaluator<InputType,OutputType,GradientType> - Interface in gov.sandia.cognition.learning.algorithm.gradient
-
Interface for computing the derivative of the output with respect to the
parameters for a given input.
- parameters - Variable in class gov.sandia.cognition.factory.ConstructorBasedFactory
-
The parameters to pass to the constructor.
- parameters - Variable in class gov.sandia.cognition.statistics.distribution.CategoricalDistribution
-
Parameters of the multinomial distribution, must be at least
2-dimensional and each element must be nonnegative.
- parameters - Variable in class gov.sandia.cognition.statistics.distribution.DirichletDistribution
-
Parameters of the Dirichlet distribution, must be at least 2-dimensional
and each element must be positive.
- parameters - Variable in class gov.sandia.cognition.statistics.distribution.MultivariatePolyaDistribution
-
Parameters of the Dirichlet distribution, must be at least 2-dimensional
and each element must be positive.
- parameterSetter - Variable in class gov.sandia.cognition.statistics.DefaultDistributionParameter
-
Setter for the parameter, the read method.
- parent - Variable in class gov.sandia.cognition.learning.algorithm.tree.AbstractDecisionTreeNode
-
The parent node of this node.
- parent - Variable in class gov.sandia.cognition.math.geometry.KDTree
-
Parent of this node of the subtree.
- parent - Variable in class gov.sandia.cognition.math.geometry.Quadtree.Node
-
The parent of this node in the tree.
- ParetoDistribution - Class in gov.sandia.cognition.statistics.distribution
-
This class describes the Pareto distribution, sometimes called the Bradford
Distribution.
- ParetoDistribution() - Constructor for class gov.sandia.cognition.statistics.distribution.ParetoDistribution
-
Creates a new instance of ParetoDistribution
- ParetoDistribution(double, double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.ParetoDistribution
-
Creates a new instance of ParetoDistribution
- ParetoDistribution(ParetoDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.ParetoDistribution
-
Copy constructor
- ParetoDistribution.CDF - Class in gov.sandia.cognition.statistics.distribution
-
CDF of the Pareto Distribution.
- ParetoDistribution.PDF - Class in gov.sandia.cognition.statistics.distribution
-
PDF of the ParetoDistribution
- parse(BufferedReader) - Method in class gov.sandia.cognition.framework.io.CSVDefaultCognitiveModelLiteHandler
-
The main parsing function.
- parseCSVToModelFactory(String, boolean) - Static method in class gov.sandia.cognition.framework.io.CSVDefaultCognitiveModelLiteHandler
-
Reads a default CognitiveModuleFactory from the given file and puts it in
a default CognitiveModelFactory.
- parseCSVToModelFactory(BufferedReader, boolean) - Static method in class gov.sandia.cognition.framework.io.CSVDefaultCognitiveModelLiteHandler
-
Reads a default CognitiveModuleFactory from the given buffered reader and
puts it in a default CognitiveModelFactory.
- parseCSVToModuleFactory(String, boolean) - Static method in class gov.sandia.cognition.framework.io.CSVDefaultCognitiveModelLiteHandler
-
Reads a default CognitiveModuleFactory from the given CSV file and
returns it.
- parseCSVToModuleFactory(BufferedReader, boolean) - Static method in class gov.sandia.cognition.framework.io.CSVDefaultCognitiveModelLiteHandler
-
Reads a default CognitiveModuleFactory from the given buffered reader and
then returns it.
- parseHeader(BufferedReader) - Method in class gov.sandia.cognition.framework.io.CSVDefaultCognitiveModelLiteHandler
-
Parses the header and returns the version number.
- parseVector(Collection<String>) - Static method in class gov.sandia.cognition.math.matrix.VectorReader
-
Parses a Vector
from the given list of element tokens.
- partialSum - Variable in class gov.sandia.cognition.statistics.TransferEntropy.TransferEntropyPartialSumObject
-
The partial sum.
- ParticleFilter<ObservationType,ParameterType> - Interface in gov.sandia.cognition.statistics.bayesian
-
A particle filter aims to estimate a sequence of hidden parameters
based on observed data using point-mass estimates of the posterior
distribution.
- ParticleFilter.Updater<ObservationType,ParameterType> - Interface in gov.sandia.cognition.statistics.bayesian
-
Updates the particles.
- particlePctThreadhold - Variable in class gov.sandia.cognition.statistics.bayesian.SamplingImportanceResamplingParticleFilter
-
Percentage of effective particles, below which we resample.
- PartitionalClusterer<DataType,ClusterType extends Cluster<DataType>> - Class in gov.sandia.cognition.learning.algorithm.clustering
-
The PartitionalClusterer
implements a partitional clustering
algorithm, which is a type of hierarchical clustering algorithm.
- PartitionalClusterer(int, ClusterDivergenceFunction<ClusterType, DataType>, IncrementalClusterCreator<ClusterType, DataType>) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
-
Creates a new partitional clusterer.
- PartitionalClusterer(int, WithinClusterDivergence<ClusterType, DataType>, IncrementalClusterCreator<ClusterType, DataType>) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
-
Creates a new partitional clusterer.
- PartitionedDataset<DataType> - Interface in gov.sandia.cognition.learning.data
-
Interface for a dataset partitioned into training and testing sets.
- partitioner - Variable in class gov.sandia.cognition.learning.experiment.RandomFoldCreator
-
The partitioner used for each fold.
- PatternRecognizerLite - Interface in gov.sandia.cognition.framework.lite
-
The PatternRecognizerLite interface defines the functionality needed by a
pattern recognizer that is to be used by a SemanticMemoryLite.
- PDF() - Constructor for class gov.sandia.cognition.statistics.distribution.BetaDistribution.PDF
-
Default constructor.
- PDF(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.BetaDistribution.PDF
-
Creates a new PDF
- PDF(BetaDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.BetaDistribution.PDF
-
Copy constructor
- PDF() - Constructor for class gov.sandia.cognition.statistics.distribution.CauchyDistribution.PDF
-
Creates a new instance of CauchyDistribution
- PDF(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.CauchyDistribution.PDF
-
Creates a new instance of CauchyDistribution
- PDF(CauchyDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.CauchyDistribution.PDF
-
Copy constructor
- PDF() - Constructor for class gov.sandia.cognition.statistics.distribution.ChiSquareDistribution.PDF
-
Default constructor.
- PDF(double) - Constructor for class gov.sandia.cognition.statistics.distribution.ChiSquareDistribution.PDF
-
Creates a new instance of ChiSquareDistribution
- PDF(ChiSquareDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.ChiSquareDistribution.PDF
-
Copy constructor
- PDF() - Constructor for class gov.sandia.cognition.statistics.distribution.DirichletDistribution.PDF
-
Default constructor.
- PDF(Vector) - Constructor for class gov.sandia.cognition.statistics.distribution.DirichletDistribution.PDF
-
Creates a new instance of PDF
- PDF(DirichletDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.DirichletDistribution.PDF
-
Copy Constructor.
- PDF() - Constructor for class gov.sandia.cognition.statistics.distribution.ExponentialDistribution.PDF
-
Default constructor.
- PDF(double) - Constructor for class gov.sandia.cognition.statistics.distribution.ExponentialDistribution.PDF
-
Creates a new instance of PDF
- PDF(ExponentialDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.ExponentialDistribution.PDF
-
Copy constructor
- PDF() - Constructor for class gov.sandia.cognition.statistics.distribution.GammaDistribution.PDF
-
Default constructor.
- PDF(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.GammaDistribution.PDF
-
Creates a new instance of PDF
- PDF(GammaDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.GammaDistribution.PDF
-
Copy constructor
- PDF() - Constructor for class gov.sandia.cognition.statistics.distribution.InverseGammaDistribution.PDF
-
Default constructor
- PDF(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.InverseGammaDistribution.PDF
-
Creates a new instance of InverseGammaDistribution
- PDF(InverseGammaDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.InverseGammaDistribution.PDF
-
Copy constructor
- PDF() - Constructor for class gov.sandia.cognition.statistics.distribution.InverseWishartDistribution.PDF
-
Creates a new instance of InverseWishartDistribution
- PDF(Matrix, int) - Constructor for class gov.sandia.cognition.statistics.distribution.InverseWishartDistribution.PDF
-
Creates a new instance of InverseWishartDistribution
- PDF(InverseWishartDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.InverseWishartDistribution.PDF
-
Copy constructor.
- PDF() - Constructor for class gov.sandia.cognition.statistics.distribution.LaplaceDistribution.PDF
-
Creates a new instance of LaplaceDistribution.PDF
- PDF(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.LaplaceDistribution.PDF
-
Creates a new instance of LaplaceDistribution.PDF
- PDF(LaplaceDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.LaplaceDistribution.PDF
-
Copy Constructor
- PDF() - Constructor for class gov.sandia.cognition.statistics.distribution.LogisticDistribution.PDF
-
Default constructor
- PDF(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.LogisticDistribution.PDF
-
Creates a new instance of PDF
- PDF(LogisticDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.LogisticDistribution.PDF
-
Copy constructor
- PDF() - Constructor for class gov.sandia.cognition.statistics.distribution.LogNormalDistribution.PDF
-
Default constructor.
- PDF(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.LogNormalDistribution.PDF
-
Creates a new instance of LogNormalDistribution
- PDF(LogNormalDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.LogNormalDistribution.PDF
-
Copy Constructor
- PDF(MultivariateGaussian...) - Constructor for class gov.sandia.cognition.statistics.distribution.MixtureOfGaussians.PDF
-
Creates a new instance of MixtureOfGaussians
- PDF(Collection<? extends MultivariateGaussian>) - Constructor for class gov.sandia.cognition.statistics.distribution.MixtureOfGaussians.PDF
-
Creates a new instance of MixtureOfGaussians
- PDF(Collection<? extends MultivariateGaussian>, double[]) - Constructor for class gov.sandia.cognition.statistics.distribution.MixtureOfGaussians.PDF
-
Creates a new instance of LinearMixtureModel
- PDF(MixtureOfGaussians.PDF) - Constructor for class gov.sandia.cognition.statistics.distribution.MixtureOfGaussians.PDF
-
Copy Constructor
- PDF() - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.PDF
-
Default constructor.
- PDF(int) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.PDF
-
Creates a new instance of MultivariateGaussian.
- PDF(Vector, Matrix) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.PDF
-
Creates a new instance of MultivariateGaussian.
- PDF(MultivariateGaussian) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.PDF
-
Creates a new instance of MultivariateGaussian.
- PDF(Collection<? extends DistributionType>) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateMixtureDensityModel.PDF
-
Creates a new instance of MultivariateMixtureDensityModel
- PDF(Collection<? extends DistributionType>, double[]) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateMixtureDensityModel.PDF
-
Creates a new instance of MultivariateMixtureDensityModel
- PDF(MultivariateMixtureDensityModel<? extends DistributionType>) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateMixtureDensityModel.PDF
-
Copy Constructor
- PDF() - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateStudentTDistribution.PDF
-
Creates a new instance of MultivariateStudentTDistribution
- PDF(int) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateStudentTDistribution.PDF
-
Creates a distribution with the given dimensionality.
- PDF(double, Vector, Matrix) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateStudentTDistribution.PDF
-
Creates a distribution with the given dimensionality.
- PDF(MultivariateStudentTDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateStudentTDistribution.PDF
-
Copy constructor
- PDF() - Constructor for class gov.sandia.cognition.statistics.distribution.NormalInverseGammaDistribution.PDF
-
Creates a new instance of NormalInverseGammaDistribution
- PDF(double, double, double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.NormalInverseGammaDistribution.PDF
-
Creates a new instance of NormalInverseGammaDistribution
- PDF(NormalInverseGammaDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.NormalInverseGammaDistribution.PDF
-
Copy constructor
- PDF() - Constructor for class gov.sandia.cognition.statistics.distribution.NormalInverseWishartDistribution.PDF
-
Default constructor
- PDF(int, double) - Constructor for class gov.sandia.cognition.statistics.distribution.NormalInverseWishartDistribution.PDF
-
Creates a new instance of NormalInverseWishartDistribution
- PDF(MultivariateGaussian, InverseWishartDistribution, double) - Constructor for class gov.sandia.cognition.statistics.distribution.NormalInverseWishartDistribution.PDF
-
Creates a new instance of NormalInverseWishartDistribution
- PDF(NormalInverseWishartDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.NormalInverseWishartDistribution.PDF
-
Copy constructor
- PDF() - Constructor for class gov.sandia.cognition.statistics.distribution.ParetoDistribution.PDF
-
Creates a new instance of PDF
- PDF(double, double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.ParetoDistribution.PDF
-
Creates a new instance of PDF
- PDF(ParetoDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.ParetoDistribution.PDF
-
Copy constructor
- PDF() - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel.PDF
-
Creates a new instance of ScalarMixtureDensityModel
- PDF(SmoothUnivariateDistribution...) - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel.PDF
-
Creates a new instance of ScalarMixtureDensityModel
- PDF(Collection<? extends SmoothUnivariateDistribution>) - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel.PDF
-
Creates a new instance of ScalarMixtureDensityModel
- PDF(Collection<? extends SmoothUnivariateDistribution>, double[]) - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel.PDF
-
Creates a new instance of ScalarMixtureDensityModel
- PDF(ScalarMixtureDensityModel) - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel.PDF
-
Copy constructor
- PDF() - Constructor for class gov.sandia.cognition.statistics.distribution.StudentTDistribution.PDF
-
Default constructor.
- PDF(double) - Constructor for class gov.sandia.cognition.statistics.distribution.StudentTDistribution.PDF
-
Creates a new instance of PDF
- PDF(double, double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.StudentTDistribution.PDF
-
Creates a new instance of PDF
- PDF(StudentTDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.StudentTDistribution.PDF
-
Creates a new instance of PDF
- PDF() - Constructor for class gov.sandia.cognition.statistics.distribution.UniformDistribution.PDF
-
Creates a new instance of PDF
- PDF(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.UniformDistribution.PDF
-
Creates a new instance of PDF
- PDF(UniformDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.UniformDistribution.PDF
-
Copy constructor
- PDF() - Constructor for class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.PDF
-
Creates a new instance of UnivariateGaussian
with zero mean and unit variance
- PDF(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.PDF
-
Creates a new instance of UnivariateGaussian
- PDF(UnivariateGaussian) - Constructor for class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.PDF
-
Copy constructor
- PDF() - Constructor for class gov.sandia.cognition.statistics.distribution.WeibullDistribution.PDF
-
Creates a new instance of WeibullDistribution
- PDF(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.WeibullDistribution.PDF
-
Creates a new instance of WeibullDistribution
- PDF(WeibullDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.WeibullDistribution.PDF
-
Copy constructor
- PDFLogEvaluator(ProbabilityFunction<Double>) - Constructor for class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.PDFLogEvaluator
-
Creates a new instance of PDFLogEvaluator
- percentToSample - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractBaggingLearner
-
The percentage of the data to sample with replacement on each iteration.
- percentToSample - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner
-
The percent to sample on each iteration.
- percentToSample - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.OnlineBaggingCategorizerLearner
-
The percentage of the data to sample for each ensemble member.
- percentToSample - Variable in class gov.sandia.cognition.learning.algorithm.tree.RandomSubVectorThresholdLearner
-
The percentage of the dimensionality to sample.
- Perceptron - Class in gov.sandia.cognition.learning.algorithm.perceptron
-
The Perceptron
class implements the standard Perceptron learning
algorithm that learns a binary classifier based on vector input.
- Perceptron() - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.Perceptron
-
Creates a new instance of Perceptron.
- Perceptron(int) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.Perceptron
-
Creates a new instance of Perceptron with the given maximum number of
iterations.
- Perceptron(int, double, double) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.Perceptron
-
Creates a new instance of Perceptron with the given parameters
- Perceptron(int, double, double, VectorFactory<?>) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.Perceptron
-
Creates a new instance of Perceptron with the given parameters
- PERFORMANCE_DESCRIPTION - Static variable in class gov.sandia.cognition.learning.algorithm.clustering.DirichletProcessClustering
-
Description of the performance value returned, "Number of Clusters".
- PERFORMANCE_NAME - Static variable in class gov.sandia.cognition.learning.algorithm.hmm.AbstractBaumWelchAlgorithm
-
Name of the performance statistic, "Log Likelihood".
- PERFORMANCE_NAME - Static variable in class gov.sandia.cognition.learning.algorithm.pca.GeneralizedHebbianAlgorithm
-
The performance name is "Change".
- PERFORMANCE_NAME - Static variable in class gov.sandia.cognition.learning.algorithm.svm.SequentialMinimalOptimization
-
The performance name is "Change count".
- PERFORMANCE_NAME - Static variable in class gov.sandia.cognition.statistics.bayesian.MetropolisHastingsAlgorithm
-
Performance statistic name, "Current Log Likelihood".
- PERFORMANCE_NAME - Static variable in class gov.sandia.cognition.statistics.distribution.MixtureOfGaussians.EMLearner
-
Name of the performance measurement, "Assignment Change".
- PERFORMANCE_NAME - Static variable in class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel.EMLearner
-
Name of the performance measurement, "Assignment Change".
- performanceEvaluator - Variable in class gov.sandia.cognition.learning.experiment.LearnerComparisonExperiment
-
The evaluator to use to compute the performance of the learned object on
each fold.
- performanceEvaluator - Variable in class gov.sandia.cognition.learning.experiment.LearnerRepeatExperiment
-
The evaluator to use to compute the performance of the learned object on
each fold.
- performanceEvaluator - Variable in class gov.sandia.cognition.learning.experiment.LearnerValidationExperiment
-
The evaluator to use to compute the performance of the learned object on
each fold.
- performanceEvaluator - Variable in class gov.sandia.cognition.learning.experiment.OnlineLearnerValidationExperiment
-
The evaluator to use to compute the performance of the learned object on
each fold.
- performanceEvaluator - Variable in class gov.sandia.cognition.learning.performance.AnytimeBatchLearnerValidationPerformanceReporter
-
The performance evaluator.
- PerformanceEvaluator() - Constructor for class gov.sandia.cognition.learning.performance.categorization.DefaultBinaryConfusionMatrix.PerformanceEvaluator
-
Creates a new PerformanceEvaluator
.
- PerformanceEvaluator<ObjectType,DataType,ResultType> - Interface in gov.sandia.cognition.learning.performance
-
The PerformanceEvaluator
class defines the functionality of some
object with regards to some data.
- Permanence<NodeNameType> - Class in gov.sandia.cognition.graph.community
-
- Permanence(DirectedNodeEdgeGraph<NodeNameType>, int, double) - Constructor for class gov.sandia.cognition.graph.community.Permanence
-
Initialize the class with the input graph and parameters
- permanence() - Method in class gov.sandia.cognition.graph.community.Permanence
-
Returns the permanence discovered by running solveCommunities.
- Permutation - Class in gov.sandia.cognition.math
-
The Permutation
class contains methods for dealing with
permutations of object sets.
- Permutation() - Constructor for class gov.sandia.cognition.math.Permutation
-
Creates a new instance of Permutation
- PersonalizedPageRank<NodeNameType> - Class in gov.sandia.cognition.graph.community
-
This class can compute PersonalizedPageRank for the input graph and a
specified node, and also can determine a community for any specified node.
- PersonalizedPageRank(DirectedNodeEdgeGraph<NodeNameType>) - Constructor for class gov.sandia.cognition.graph.community.PersonalizedPageRank
-
Initializes all of the internal data-structures for the input graph.
- PersonalizedPageRank(DirectedNodeEdgeGraph<NodeNameType>, double) - Constructor for class gov.sandia.cognition.graph.community.PersonalizedPageRank
-
Initializes all of the internal data-structures for the input graph.
- perturb(PerturbedType) - Method in interface gov.sandia.cognition.learning.algorithm.annealing.Perturber
-
Perturbs the given object and returns the perturbed version.
- perturb(Vectorizable) - Method in class gov.sandia.cognition.learning.algorithm.annealing.VectorizablePerturber
-
Perturbs the given Vectorizable by cloning it and then operating on
the clone by side-effect.
- Perturber<PerturbedType> - Interface in gov.sandia.cognition.learning.algorithm.annealing
-
The Perturber interface defines the functionality of an object that can
take an object and perturb it, returning the perturbed value.
- perturbVector(Vector) - Method in class gov.sandia.cognition.learning.algorithm.annealing.VectorizablePerturber
-
Perturbs the given vector using the underlying random number generator.
- phi - Variable in class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalDeviation
-
Phi is the standard score computed from the confidence.
- phi - Variable in class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalVariance
-
Phi is the standard score computed from the confidence.
- PI2 - Static variable in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian
-
PI times 2.0, 6.283185307179586
- PIDController - Class in gov.sandia.cognition.math.signals
-
This class defines a Proportional-plus-Integral-plus-Derivative set-point
controller.
- PIDController() - Constructor for class gov.sandia.cognition.math.signals.PIDController
-
Creates a new instance of PIDController
- PIDController(double, double, double) - Constructor for class gov.sandia.cognition.math.signals.PIDController
-
Creates a new instance of PIDController.
- PIDController(double, double, double, double) - Constructor for class gov.sandia.cognition.math.signals.PIDController
-
Creates a new instance of PIDController.
- PIDController.State - Class in gov.sandia.cognition.math.signals
-
State of a PIDController
- plus(RingType) - Method in class gov.sandia.cognition.math.AbstractRing
-
- plus(LogNumber) - Method in class gov.sandia.cognition.math.LogNumber
-
- plus(Vector) - Method in class gov.sandia.cognition.math.matrix.custom.SparseVector
-
- plus(InfiniteVector<KeyType>) - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
-
- plus(MutableDouble) - Method in class gov.sandia.cognition.math.MutableDouble
-
- plus(MutableInteger) - Method in class gov.sandia.cognition.math.MutableInteger
-
- plus(MutableLong) - Method in class gov.sandia.cognition.math.MutableLong
-
- plus(RingType) - Method in interface gov.sandia.cognition.math.Ring
-
Arithmetic addition of this
and other
- plus(UnsignedLogNumber) - Method in class gov.sandia.cognition.math.UnsignedLogNumber
-
- plus(MultivariateGaussian) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian
-
Adds two MultivariateGaussian random variables together and returns the
resulting MultivariateGaussian
- plus(UnivariateGaussian.SufficientStatistic) - Method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.SufficientStatistic
-
Adds this set of sufficient statistics to another and returns the
combined sufficient statistics.
- plus(Duration) - Method in class gov.sandia.cognition.time.DefaultDuration
-
- plus(Duration) - Method in interface gov.sandia.cognition.time.Duration
-
Adds this duration to the given duration and returns the sum.
- plusEquals(int, double) - Method in class gov.sandia.cognition.collection.DoubleArrayList
-
Adds val to the element at idx
- plusEquals(int, int) - Method in class gov.sandia.cognition.collection.IntArrayList
-
Adds val to the element at idx
- plusEquals(ComplexNumber) - Method in class gov.sandia.cognition.math.ComplexNumber
-
Inline addition between this and the complex number
- plusEquals(LogNumber) - Method in class gov.sandia.cognition.math.LogNumber
-
- plusEquals(Matrix) - Method in class gov.sandia.cognition.math.matrix.AbstractMatrix
-
- plusEquals(Vector) - Method in class gov.sandia.cognition.math.matrix.AbstractVector
-
- plusEquals(SparseMatrix) - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
-
- plusEquals(DenseMatrix) - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
-
- plusEquals(DiagonalMatrix) - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
-
- plusEquals(DenseVector) - Method in class gov.sandia.cognition.math.matrix.custom.DenseVector
-
- plusEquals(SparseVector) - Method in class gov.sandia.cognition.math.matrix.custom.DenseVector
-
- plusEquals(SparseMatrix) - Method in class gov.sandia.cognition.math.matrix.custom.DiagonalMatrix
-
Type-specific version of plusEquals for combining whatever type this is
with the input sparse matrix.
- plusEquals(DenseMatrix) - Method in class gov.sandia.cognition.math.matrix.custom.DiagonalMatrix
-
Type-specific version of plusEquals for combining whatever type this is
with the input dense matrix.
- plusEquals(DiagonalMatrix) - Method in class gov.sandia.cognition.math.matrix.custom.DiagonalMatrix
-
- plusEquals(SparseMatrix) - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
Type-specific version of plusEquals for combining whatever type this is
with the input sparse matrix.
- plusEquals(DenseMatrix) - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
Type-specific version of plusEquals for combining whatever type this is
with the input dense matrix.
- plusEquals(DiagonalMatrix) - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
Type-specific version of plusEquals for combining whatever type this is
with the input diagonal matrix.
- plusEquals(DenseVector) - Method in class gov.sandia.cognition.math.matrix.custom.SparseVector
-
Type-specific version of plusEquals for combining whatever type this is
with the input dense vector.
- plusEquals(SparseVector) - Method in class gov.sandia.cognition.math.matrix.custom.SparseVector
-
- plusEquals(InfiniteVector<KeyType>) - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
-
- plusEquals(Matrix) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJMatrix
-
- plusEquals(AbstractMTJMatrix) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJMatrix
-
Inline addition of this
and matrix
, modifies
the elements of this
- plusEquals(Vector) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJVector
-
- plusEquals(AbstractMTJVector) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJVector
-
Inline addition of this and the other vector
- plusEquals(MutableDouble) - Method in class gov.sandia.cognition.math.MutableDouble
-
- plusEquals(MutableInteger) - Method in class gov.sandia.cognition.math.MutableInteger
-
- plusEquals(MutableLong) - Method in class gov.sandia.cognition.math.MutableLong
-
- plusEquals(RingType) - Method in interface gov.sandia.cognition.math.Ring
-
Inline arithmetic addition of this
and other
- plusEquals(UnsignedLogNumber) - Method in class gov.sandia.cognition.math.UnsignedLogNumber
-
- plusEquals(UnivariateGaussian.SufficientStatistic) - Method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.SufficientStatistic
-
Adds another sufficient statistic to this one.
- plusEquals(RandomVariable<Number>) - Method in class gov.sandia.cognition.statistics.UnivariateRandomVariable
-
- PMF() - Constructor for class gov.sandia.cognition.statistics.distribution.BernoulliDistribution.PMF
-
Default constructor
- PMF(double) - Constructor for class gov.sandia.cognition.statistics.distribution.BernoulliDistribution.PMF
-
Creates a new instance of PMF
- PMF(BernoulliDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.BernoulliDistribution.PMF
-
Copy constructor
- PMF() - Constructor for class gov.sandia.cognition.statistics.distribution.BetaBinomialDistribution.PMF
-
Creates a new instance of BetaBinomialDistribution
- PMF(int, double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.BetaBinomialDistribution.PMF
-
Creates a new instance of BetaBinomialDistribution
- PMF(BetaBinomialDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.BetaBinomialDistribution.PMF
-
Copy constructor
- PMF() - Constructor for class gov.sandia.cognition.statistics.distribution.BinomialDistribution.PMF
-
Default constructor.
- PMF(int, double) - Constructor for class gov.sandia.cognition.statistics.distribution.BinomialDistribution.PMF
-
Creates a new instance of PMF
- PMF(BinomialDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.BinomialDistribution.PMF
-
Copy constructor
- PMF() - Constructor for class gov.sandia.cognition.statistics.distribution.CategoricalDistribution.PMF
-
Creates a new instance of CategoricalDistribution
- PMF(int) - Constructor for class gov.sandia.cognition.statistics.distribution.CategoricalDistribution.PMF
-
Creates a new instance of CategoricalDistribution
- PMF(Vector) - Constructor for class gov.sandia.cognition.statistics.distribution.CategoricalDistribution.PMF
-
Creates a new instance of CategoricalDistribution
- PMF(CategoricalDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.CategoricalDistribution.PMF
-
Copy constructor
- PMF() - Constructor for class gov.sandia.cognition.statistics.distribution.ChineseRestaurantProcess.PMF
-
Creates a new instance of ChineseRestaurantProcess
- PMF(double, int) - Constructor for class gov.sandia.cognition.statistics.distribution.ChineseRestaurantProcess.PMF
-
Creates a new instance of ChineseRestaurantProcess
- PMF(ChineseRestaurantProcess) - Constructor for class gov.sandia.cognition.statistics.distribution.ChineseRestaurantProcess.PMF
-
Copy constructor
- PMF() - Constructor for class gov.sandia.cognition.statistics.distribution.DefaultDataDistribution.PMF
-
Default constructor
- PMF(DataDistribution<KeyType>) - Constructor for class gov.sandia.cognition.statistics.distribution.DefaultDataDistribution.PMF
-
Copy constructor
- PMF(int) - Constructor for class gov.sandia.cognition.statistics.distribution.DefaultDataDistribution.PMF
-
Creates a new instance of DefaultDataDistribution
- PMF(Iterable<? extends KeyType>) - Constructor for class gov.sandia.cognition.statistics.distribution.DefaultDataDistribution.PMF
-
Creates a new instance of ScalarDataDistribution
- PMF() - Constructor for class gov.sandia.cognition.statistics.distribution.DeterministicDistribution.PMF
-
Creates a new instance of DeterministicDistribution
- PMF(double) - Constructor for class gov.sandia.cognition.statistics.distribution.DeterministicDistribution.PMF
-
Creates a new instance of DeterministicDistribution
- PMF(DeterministicDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.DeterministicDistribution.PMF
-
Copy Constructor
- PMF() - Constructor for class gov.sandia.cognition.statistics.distribution.GeometricDistribution.PMF
-
Creates a new instance of GeometricDistribution
- PMF(double) - Constructor for class gov.sandia.cognition.statistics.distribution.GeometricDistribution.PMF
-
Creates a new instance of GeometricDistribution
- PMF(GeometricDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.GeometricDistribution.PMF
-
Copy constructor
- PMF() - Constructor for class gov.sandia.cognition.statistics.distribution.MultinomialDistribution.PMF
-
Creates a new instance of MultinomialDistribution.PMF
- PMF(int, int) - Constructor for class gov.sandia.cognition.statistics.distribution.MultinomialDistribution.PMF
-
Creates a new instance of MultinomialDistribution.PMF
- PMF(Vector, int) - Constructor for class gov.sandia.cognition.statistics.distribution.MultinomialDistribution.PMF
-
Creates a new instance of MultinomialDistribution.PMF
- PMF(MultinomialDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.MultinomialDistribution.PMF
-
Copy constructor
- PMF() - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariatePolyaDistribution.PMF
-
Creates a new instance of DirichletDistribution
- PMF(int, int) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariatePolyaDistribution.PMF
-
Creates a new instance of MultivariatePolyaDistribution
- PMF(Vector, int) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariatePolyaDistribution.PMF
-
Creates a new instance of MultivariatePolyaDistribution
- PMF(MultivariatePolyaDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariatePolyaDistribution.PMF
-
Copy Constructor.
- PMF() - Constructor for class gov.sandia.cognition.statistics.distribution.NegativeBinomialDistribution.PMF
-
Creates a new instance of PMF
- PMF(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.NegativeBinomialDistribution.PMF
-
Creates a new instance of PMF
- PMF(NegativeBinomialDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.NegativeBinomialDistribution.PMF
-
Copy constructor
- PMF() - Constructor for class gov.sandia.cognition.statistics.distribution.PoissonDistribution.PMF
-
Default constructor.
- PMF(double) - Constructor for class gov.sandia.cognition.statistics.distribution.PoissonDistribution.PMF
-
Creates a new PMF
- PMF(PoissonDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.PoissonDistribution.PMF
-
Copy constructor
- PMF() - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarDataDistribution.PMF
-
Default constructor
- PMF(ScalarDataDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarDataDistribution.PMF
-
Copy constructor
- PMF(Iterable<? extends Number>) - Constructor for class gov.sandia.cognition.statistics.distribution.ScalarDataDistribution.PMF
-
Creates a new instance of PMF
- PMF() - Constructor for class gov.sandia.cognition.statistics.distribution.UniformIntegerDistribution.PMF
-
- PMF(int, int) - Constructor for class gov.sandia.cognition.statistics.distribution.UniformIntegerDistribution.PMF
-
- PMF(UniformIntegerDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.UniformIntegerDistribution.PMF
-
- PMF() - Constructor for class gov.sandia.cognition.statistics.distribution.YuleSimonDistribution.PMF
-
Creates a new instance of YuleSimonDistribution
- PMF(double) - Constructor for class gov.sandia.cognition.statistics.distribution.YuleSimonDistribution.PMF
-
Creates a new instance of YuleSimonDistribution
- PMF(YuleSimonDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.YuleSimonDistribution.PMF
-
Copy constructor
- Point(double, double) - Constructor for class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.Point
-
Creates a new instance of Point
- PoissonBayesianEstimator - Class in gov.sandia.cognition.statistics.bayesian.conjugate
-
A Bayesian estimator for the parameter of a PoissonDistribution using
the conjugate prior GammaDistribution.
- PoissonBayesianEstimator() - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.PoissonBayesianEstimator
-
Creates a new instance of PoissonBayesianEstimator
- PoissonBayesianEstimator(GammaDistribution) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.PoissonBayesianEstimator
-
Creates a new instance of PoissonBayesianEstimator
- PoissonBayesianEstimator(PoissonDistribution, GammaDistribution) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.PoissonBayesianEstimator
-
Creates a new instance of PoissonBayesianEstimator
- PoissonBayesianEstimator(BayesianParameter<Double, PoissonDistribution, GammaDistribution>) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.PoissonBayesianEstimator
-
Creates a new instance
- PoissonBayesianEstimator.Parameter - Class in gov.sandia.cognition.statistics.bayesian.conjugate
-
Parameter of this conjugate prior relationship.
- PoissonDistribution - Class in gov.sandia.cognition.statistics.distribution
-
A Poisson distribution is the limits of what happens when a Bernoulli trial
with "rare" events are sampled on a continuous basis and then binned into
discrete time intervals.
- PoissonDistribution() - Constructor for class gov.sandia.cognition.statistics.distribution.PoissonDistribution
-
Creates a new instance of PoissonDistribution
- PoissonDistribution(double) - Constructor for class gov.sandia.cognition.statistics.distribution.PoissonDistribution
-
Creates a new instance of PoissonDistribution
- PoissonDistribution(PoissonDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.PoissonDistribution
-
Creates a new instance of PoissonDistribution
- PoissonDistribution.CDF - Class in gov.sandia.cognition.statistics.distribution
-
CDF of the PoissonDistribution
- PoissonDistribution.MaximumLikelihoodEstimator - Class in gov.sandia.cognition.statistics.distribution
-
Creates a PoissonDistribution from data
- PoissonDistribution.PMF - Class in gov.sandia.cognition.statistics.distribution
-
PMF of the PoissonDistribution.
- PoissonDistribution.WeightedMaximumLikelihoodEstimator - Class in gov.sandia.cognition.statistics.distribution
-
Creates a PoissonDistribution from weighted data.
- PolynomialFunction - Class in gov.sandia.cognition.learning.function.scalar
-
A single polynomial term specified by a real-valued exponent.
- PolynomialFunction(double) - Constructor for class gov.sandia.cognition.learning.function.scalar.PolynomialFunction
-
Creates a new instance of PolynomialFunction
- PolynomialFunction(PolynomialFunction) - Constructor for class gov.sandia.cognition.learning.function.scalar.PolynomialFunction
-
Copy Constructor
- PolynomialFunction.ClosedForm - Interface in gov.sandia.cognition.learning.function.scalar
-
Describes functionality of a closed-form algebraic polynomial function
- PolynomialFunction.Cubic - Class in gov.sandia.cognition.learning.function.scalar
-
Algebraic treatment for a polynomial of the form
y(x) = q0 + q1*x + q2*x^2 + q3*x^3
- PolynomialFunction.Linear - Class in gov.sandia.cognition.learning.function.scalar
-
Utilities for algebraic treatment of a linear polynomial of the form
y(x) = q0 + q1*x
- PolynomialFunction.Quadratic - Class in gov.sandia.cognition.learning.function.scalar
-
Utilities for algebraic treatment of a quadratic polynomial of the form
y(x) = q0 + q1*x + q2*x^2.
- PolynomialFunction.Regression - Class in gov.sandia.cognition.learning.function.scalar
-
Performs Linear Regression using an arbitrary set of
PolynomialFunction basis functions
- PolynomialKernel - Class in gov.sandia.cognition.learning.function.kernel
-
The PolynomialKernel
class implements a kernel for two given
vectors that is the polynomial function:
(x dot y + c)^d
d is the degree of the polynomial, which must be a positive integer.
- PolynomialKernel() - Constructor for class gov.sandia.cognition.learning.function.kernel.PolynomialKernel
-
Creates a new instance of PolynomialKernel with a degree of 2 and a
constant of 1.0.
- PolynomialKernel(int) - Constructor for class gov.sandia.cognition.learning.function.kernel.PolynomialKernel
-
Creates a new instance of PolynomialKernel with the given degree and
a constant of 1.0.
- PolynomialKernel(int, double) - Constructor for class gov.sandia.cognition.learning.function.kernel.PolynomialKernel
-
Creates a new instance of PolynomialKernel with the given degree and
constant.
- PolynomialKernel(PolynomialKernel) - Constructor for class gov.sandia.cognition.learning.function.kernel.PolynomialKernel
-
Creates a new copy of a PolynomialKernel.
- PorterEnglishStemmingFilter - Class in gov.sandia.cognition.text.term.filter.stem
-
A term filter that uses the Porter Stemming algorithm.
- PorterEnglishStemmingFilter() - Constructor for class gov.sandia.cognition.text.term.filter.stem.PorterEnglishStemmingFilter
-
Creates a new PorterEnglishStemmingFilter
.
- possibleOneCharacterEdits(String, Collection<String>) - Method in class gov.sandia.cognition.text.spelling.SimpleStatisticalSpellingCorrector
-
Lists all possible one-character edits for a given word by looking at
character deletes, transposes, replaces, and inserts.
- possibleTruthsSorted(int) - Static method in class gov.sandia.cognition.statistics.method.ShafferStaticCorrection.Statistic
-
Returns the sorted-ascending set of the possible set of true
hypothesis given the number of treatments being considered.
- posterior - Variable in class gov.sandia.cognition.statistics.TransferEntropy.TransferEntropyDistributionObject
-
The posterior.
- power - Variable in class gov.sandia.cognition.learning.function.distance.MinkowskiDistanceMetric
-
The power that the distance is computed to.
- power(double) - Method in class gov.sandia.cognition.math.LogNumber
-
Returns a new LogNumber
representing this log number taken
to the given power.
- power(double) - Method in class gov.sandia.cognition.math.UnsignedLogNumber
-
Returns a new LogNumber
representing this log number taken
to the given power.
- powerEquals(double) - Method in class gov.sandia.cognition.math.LogNumber
-
Transforms this log number by taking it to the given power.
- powerEquals(double) - Method in class gov.sandia.cognition.math.UnsignedLogNumber
-
Transforms this log number by taking it to the given power.
- ppnd(double) - Static method in class gov.sandia.cognition.statistics.distribution.StudentizedRangeDistribution.APStat
-
ALGORITHM AS 111, APPL.STATIST., VOL.26, 118-121, 1977.
- precision - Variable in class gov.sandia.cognition.statistics.distribution.StudentTDistribution
-
Precision, which is proportionate to the inverseRootFinder of variance, of the
distribution, must be greater than zero.
- PrecisionRecallPair - Interface in gov.sandia.cognition.text.evaluation
-
A pair of precision and recall values.
- predict(MultivariateGaussian) - Method in class gov.sandia.cognition.statistics.bayesian.AbstractKalmanFilter
-
Creates a prediction of the system's next state given the current
belief state
- predict(MultivariateGaussian) - Method in class gov.sandia.cognition.statistics.bayesian.ExtendedKalmanFilter
-
- predict(MultivariateGaussian) - Method in class gov.sandia.cognition.statistics.bayesian.KalmanFilter
-
- predictionHorizon - Variable in class gov.sandia.cognition.learning.algorithm.SequencePredictionLearner
-
The prediction horizon, which is the number of samples in the future to
try to learn to predict.
- PredictiveDistribution(MultivariateGaussian) - Constructor for class gov.sandia.cognition.statistics.bayesian.BayesianLinearRegression.PredictiveDistribution
-
Creates a new instance of PredictiveDistribution
- PredictiveDistribution(MultivariateGaussianInverseGammaDistribution) - Constructor for class gov.sandia.cognition.statistics.bayesian.BayesianRobustLinearRegression.PredictiveDistribution
-
Creates a new instance of PredictiveDistribution
- PredictiveDistribution(MultivariateGaussian, ArrayList<InputType>) - Constructor for class gov.sandia.cognition.statistics.bayesian.GaussianProcessRegression.PredictiveDistribution
-
Creates a new instance of PredictiveDistribution
- preprocessor - Variable in class gov.sandia.cognition.learning.function.categorization.CompositeCategorizer
-
The preprocessor for the input data.
- preTimes(SparseVector) - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
-
- preTimes(DenseVector) - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
-
- preTimes(SparseVector) - Method in class gov.sandia.cognition.math.matrix.custom.DiagonalMatrix
-
- preTimes(DenseVector) - Method in class gov.sandia.cognition.math.matrix.custom.DiagonalMatrix
-
- preTimes(DiagonalMatrix) - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
Package-private helper for the diagonal matrix class.
- preTimes(SparseVector) - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
Type-specific version of pre-times for combining whatever type this is
with the input sparse vector.
- preTimes(DenseVector) - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
Type-specific version of pre-times for combining whatever type this is
with the input dense vector.
- previous() - Method in class gov.sandia.cognition.collection.FiniteCapacityBuffer.InternalIterator
-
- previousIndex() - Method in class gov.sandia.cognition.collection.FiniteCapacityBuffer.InternalIterator
-
- previousParameter - Variable in class gov.sandia.cognition.statistics.bayesian.AbstractMarkovChainMonteCarlo
-
The previous parameter in the random walk.
- previousSmoothedErrorRate - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractCategorizerOutOfBagStoppingCriteria
-
The smoothed error rate of the previous iteration.
- previousStepWeight - Variable in class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation.Entry
-
The weight of the entry on the previous step.
- PrimalEstimatedSubGradient - Class in gov.sandia.cognition.learning.algorithm.svm
-
An implementation of the Primal Estimated Sub-Gradient Solver (PEGASOS)
algorithm for learning a linear support vector machine (SVM).
- PrimalEstimatedSubGradient() - Constructor for class gov.sandia.cognition.learning.algorithm.svm.PrimalEstimatedSubGradient
-
Creates a new PrimalEstimatedSubGradient
with default parameters.
- PrimalEstimatedSubGradient(int, double, int, Random) - Constructor for class gov.sandia.cognition.learning.algorithm.svm.PrimalEstimatedSubGradient
-
Creates a new PrimalEstimatedSubGradient
with the given
parameters.
- Prime32Hash - Class in gov.sandia.cognition.hash
-
Implementation of the prime-hash function using 32-bit (4-byte) precision.
- Prime32Hash() - Constructor for class gov.sandia.cognition.hash.Prime32Hash
-
Creates a new instance of Prime32Hash
- Prime64Hash - Class in gov.sandia.cognition.hash
-
Implementation of the prime-hash function using 64-bit (8-byte) precision.
- Prime64Hash() - Constructor for class gov.sandia.cognition.hash.Prime64Hash
-
Creates a new instance of Prime64Hash
- PrincipalComponentsAnalysis - Interface in gov.sandia.cognition.learning.algorithm.pca
-
Principal Components Analysis is a family of algorithms that map from a
high-dimensional input space to a low-dimensional output space.
- PrincipalComponentsAnalysisFunction - Class in gov.sandia.cognition.learning.algorithm.pca
-
This VectorFunction maps a high-dimension input space onto a (hopefully)
simple low-dimensional output space by subtracting the mean of the input
data, and passing the zero-mean input through a dimension-reducing matrix
multiplication function.
- PrincipalComponentsAnalysisFunction() - Constructor for class gov.sandia.cognition.learning.algorithm.pca.PrincipalComponentsAnalysisFunction
-
Default constructor
- PrincipalComponentsAnalysisFunction(Vector, MultivariateDiscriminant) - Constructor for class gov.sandia.cognition.learning.algorithm.pca.PrincipalComponentsAnalysisFunction
-
Creates a new instance of PrincipalComponentAnalysisFunction
- printPartitioning(NodePartitioning<NodeNameType>) - Static method in interface gov.sandia.cognition.graph.community.NodePartitioning
-
A helper pretty print method so that all partitionings can have the same
look-and-feel.
- priors - Variable in class gov.sandia.cognition.learning.algorithm.bayes.VectorNaiveBayesCategorizer
-
The prior distribution for the categorizer.
- priors - Variable in class gov.sandia.cognition.learning.algorithm.tree.CategorizationTreeLearner
-
Prior probabilities for the different categories.
- PriorWeightedNodeLearner<OutputType> - Interface in gov.sandia.cognition.learning.algorithm.tree
-
The PriorWeightedNodeLearner
interface specifies the
ability to configure prior weights on the learning algorithm that
searches for a decision function inside a decision tree.
- priorWeights - Variable in class gov.sandia.cognition.statistics.distribution.LinearMixtureModel
-
Weights proportionate by which the distributions are sampled
- ProbabilisticLatentSemanticAnalysis - Class in gov.sandia.cognition.text.topic
-
An implementation of the Probabilistic Latent Semantic Analysis (PLSA)
algorithm.
- ProbabilisticLatentSemanticAnalysis() - Constructor for class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis
-
Creates a new ProbabilisticSemanticAnalysis with default parameters.
- ProbabilisticLatentSemanticAnalysis(Random) - Constructor for class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis
-
Creates a new ProbabilisticLatentSemanticAnalysis with default parameters
and the given random number generator.
- ProbabilisticLatentSemanticAnalysis(int) - Constructor for class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis
-
Creates a new ProbabilisticLatentSemanticAnalysis with the given rank
and otherwise default parameters.
- ProbabilisticLatentSemanticAnalysis(int, double, Random) - Constructor for class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis
-
Creates a new ProbabilisticLatentSemanticAnalysis with the given
parameters.
- ProbabilisticLatentSemanticAnalysis.LatentData - Class in gov.sandia.cognition.text.topic
-
The information about each latent variable.
- ProbabilisticLatentSemanticAnalysis.Result - Class in gov.sandia.cognition.text.topic
-
The dimensionality transform created by probabilistic latent semantic
analysis.
- ProbabilisticLatentSemanticAnalysis.StatusPrinter - Class in gov.sandia.cognition.text.topic
-
Prints out the status of the probabilistic latent semantic analysis
algorithm.
- ProbabilityDensityFunction<DataType> - Interface in gov.sandia.cognition.statistics
-
Defines a probability density function.
- probabilityFunction - Variable in class gov.sandia.cognition.learning.function.cost.ParallelNegativeLogLikelihood.NegativeLogLikelihoodTask
-
Probability function to compute the log likelihood
- ProbabilityFunction<DataType> - Interface in gov.sandia.cognition.statistics
-
A Distribution that has an evaluate method that indicates p(x), such as
a probability density function or a probability mass function (but NOT
a cumulative distribution function).
- ProbabilityMassFunction<DataType> - Interface in gov.sandia.cognition.statistics
-
The ProbabilityMassFunction
interface defines the functionality of
a probability mass function.
- ProbabilityMassFunctionUtil - Class in gov.sandia.cognition.statistics
-
Utility methods for helping computations in PMFs.
- ProbabilityMassFunctionUtil() - Constructor for class gov.sandia.cognition.statistics.ProbabilityMassFunctionUtil
-
- ProbabilityUtil - Class in gov.sandia.cognition.math
-
Utility methods for dealing with probabilities.
- ProbabilityUtil() - Constructor for class gov.sandia.cognition.math.ProbabilityUtil
-
- probablisticSelect(DoubleArrayList, Random) - Static method in class gov.sandia.cognition.graph.GraphWalker
-
Helper method that returns the index of the probabilistically selected
input weight.
- ProcessLauncher - Class in gov.sandia.cognition.io
-
Launches a process as a separate thread and monitors the stdout and stderr,
throwing events when they update and exit
- ProcessLauncher(String) - Constructor for class gov.sandia.cognition.io.ProcessLauncher
-
Creates a new instance of ProcessLauncher
- ProcessLauncherEvent - Class in gov.sandia.cognition.io
-
Event that gets fired when the ProcessLauncher is updated (for example,
the underlying process writes to stdout or stderr, or terminates)
- ProcessLauncherEvent(ProcessLauncherEvent.EventType, String, Process) - Constructor for class gov.sandia.cognition.io.ProcessLauncherEvent
-
Creates a new instance of ProcessLauncherEvent
- processLauncherEvent(ProcessLauncherEvent) - Method in interface gov.sandia.cognition.io.ProcessLauncherListener
-
Method that gets called when the ProcessLauncher is updated (for example,
the underlying process writes to stdout or stderr, or terminates)
- ProcessLauncherEvent.EventType - Enum in gov.sandia.cognition.io
-
Types of events that may be fired
- ProcessLauncherListener - Interface in gov.sandia.cognition.io
-
Interface for receiving ProcessLauncher events
- ProductKernel<InputType> - Class in gov.sandia.cognition.learning.function.kernel
-
The ProductKernel
class implements a kernel that takes the product
of applying multiple kernels to the same pair of inputs.
- ProductKernel() - Constructor for class gov.sandia.cognition.learning.function.kernel.ProductKernel
-
Creates a new instance of ProductKernel.
- ProductKernel(Collection<? extends Kernel<? super InputType>>) - Constructor for class gov.sandia.cognition.learning.function.kernel.ProductKernel
-
Creates a new instance of ProductKernel with the given collection of
kernels.
- Projectron<InputType> - Class in gov.sandia.cognition.learning.algorithm.perceptron.kernel
-
An implementation of the Projectron algorithm, which is an online kernel
binary categorizer learner that has a budget parameter tuned by the eta
parameter.
- Projectron() - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Projectron
-
Creates a new Projectron
with a null kernel and default
parameters.
- Projectron(Kernel<? super InputType>) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Projectron
-
Creates a new Projectron
with the given kernel and default
parameters.
- Projectron(Kernel<? super InputType>, double) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Projectron
-
Creates a new Projectron
with the given parameters.
- Projectron.LinearSoftMargin<InputType> - Class in gov.sandia.cognition.learning.algorithm.perceptron.kernel
-
An implementation of the Projectron++ algorithm, which is an online
kernel binary categorizer learner that has a budget parameter tuned by
the eta parameter.
- ProportionalUpdate() - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlineMultiPerceptron.ProportionalUpdate
-
Creates a new OnlineMultiPerceptron.ProportionalUpdate
.
- ProportionalUpdate(double) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlineMultiPerceptron.ProportionalUpdate
-
Creates a new OnlineMultiPerceptron.ProportionalUpdate
with the
given minimum margin.
- ProportionalUpdate(double, VectorFactory<?>) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlineMultiPerceptron.ProportionalUpdate
-
Creates a new OnlineMultiPerceptron.ProportionalUpdate
with the
given minimum margin and backing vector factory.
- proportionIncorrectInSample - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner
-
The proportion of incorrect examples in each sample.
- proposals - Variable in class gov.sandia.cognition.statistics.bayesian.RejectionSampling.DefaultUpdater
-
Number of proposals suggested
- prototype - Variable in class gov.sandia.cognition.factory.PrototypeFactory
-
The prototype to create clones from.
- PrototypeFactory<CreatedType extends CloneableSerializable> - Class in gov.sandia.cognition.factory
-
The PrototypeFactory
class implements a Factory
that uses a
prototype object to create new objects from by cloning it.
- PrototypeFactory() - Constructor for class gov.sandia.cognition.factory.PrototypeFactory
-
Creates a new PrototypeFactory
with no prototype.
- PrototypeFactory(CreatedType) - Constructor for class gov.sandia.cognition.factory.PrototypeFactory
-
Creates a new PrototypeFactory
with the given prototype.
- PrototypeFactory(PrototypeFactory<? extends CreatedType>) - Constructor for class gov.sandia.cognition.factory.PrototypeFactory
-
Creates a new copy of a PrototypeFactory
.
- prototypes - Variable in class gov.sandia.cognition.learning.function.categorization.LinearMultiCategorizer
-
A map of each category to its prototype categorizer.
- prtrng(double, double, double) - Static method in class gov.sandia.cognition.statistics.distribution.StudentizedRangeDistribution.APStat
-
Algorithm AS 190 Appl Statist (1983) Vol.32, No.2.
- pseudoInverse() - Method in class gov.sandia.cognition.math.matrix.AbstractMatrix
-
- pseudoInverse(double) - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
-
- pseudoInverse(double) - Method in class gov.sandia.cognition.math.matrix.custom.DiagonalMatrix
-
- pseudoInverse(double) - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
Computes the effective pseudo-inverse of this
, using a
rather expensive procedure (SVD)
- pseudoInverse() - Method in class gov.sandia.cognition.math.matrix.decomposition.AbstractSingularValueDecomposition
-
- pseudoInverse(double) - Method in class gov.sandia.cognition.math.matrix.decomposition.AbstractSingularValueDecomposition
-
- pseudoInverse() - Method in interface gov.sandia.cognition.math.matrix.decomposition.SingularValueDecomposition
-
Computes the Least Squares pseudoinverse of the underlying matrix
- pseudoInverse(double) - Method in interface gov.sandia.cognition.math.matrix.decomposition.SingularValueDecomposition
-
Computes the Least Squares pseudoinverse of the underlying matrix,
while clipping the singular values at effectiveZero
- pseudoInverse() - Method in interface gov.sandia.cognition.math.matrix.DiagonalMatrix
-
- pseudoInverse(double) - Method in interface gov.sandia.cognition.math.matrix.DiagonalMatrix
-
- pseudoInverse() - Method in interface gov.sandia.cognition.math.matrix.Matrix
-
Computes the effective pseudo-inverse of this
, using a
rather expensive procedure (SVD)
- pseudoInverse(double) - Method in interface gov.sandia.cognition.math.matrix.Matrix
-
Computes the effective pseudo-inverse of this
, using a
rather expensive procedure (SVD)
- pseudoInverse(double) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractSparseMatrix
-
- pseudoInverse(double) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseMatrix
-
- pseudoInverse() - Method in class gov.sandia.cognition.math.matrix.mtj.DiagonalMatrixMTJ
-
- pseudoInverse(double) - Method in class gov.sandia.cognition.math.matrix.mtj.DiagonalMatrixMTJ
-
- psi - Variable in class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalDeviation
-
Psi is the cached value 1 + phi^2 / 2.
- PublicationReference - Annotation Type in gov.sandia.cognition.annotation
-
The PublicationReference
annotation describes a reference to a
publication from a journal, conference, etc.
- PublicationReferences - Annotation Type in gov.sandia.cognition.annotation
-
The PublicationReferences
annotation defines a container for one or
more references to a publication.
- PublicationType - Enum in gov.sandia.cognition.annotation
-
The PublicationType
enumeration lists off the possible types of
publications for a PublicationReference
annotation.
- put(Integer, ValueType) - Method in class gov.sandia.cognition.collection.DynamicArrayMap
-
Runs in O(1) if the key is within the range already used,
otherwise O(n) to expand the range.
- put(int, ValueType) - Method in class gov.sandia.cognition.collection.DynamicArrayMap
-
Puts a value into the mapping.