- r - Variable in class gov.sandia.cognition.learning.algorithm.confidence.AdaptiveRegularizationOfWeights
-
The r parameter that controls regularization weight.
- R - Variable in class gov.sandia.cognition.math.matrix.custom.DenseMatrix.QR
-
The upper-triangular matrix
- r - Variable in class gov.sandia.cognition.statistics.distribution.NegativeBinomialDistribution
-
Number of trials before the experiment is stopped,
must be greater than zero.
- RadialBasisKernel - Class in gov.sandia.cognition.learning.function.kernel
-
The RadialBasisKernel
implements the standard radial basis
kernel, which is:
exp( -||x - y||^2 / (2 * sigma^2) )
where sigma is the parameter that controls the bandwidth of the kernel.
- RadialBasisKernel() - Constructor for class gov.sandia.cognition.learning.function.kernel.RadialBasisKernel
-
Creates a new instance of RadialBasisKernel with a default value for
sigma of 1.0.
- RadialBasisKernel(double) - Constructor for class gov.sandia.cognition.learning.function.kernel.RadialBasisKernel
-
Creates a new instance of RadialBasisKernel with the given value for
sigma.
- RadialBasisKernel(RadialBasisKernel) - Constructor for class gov.sandia.cognition.learning.function.kernel.RadialBasisKernel
-
Creates a new copy of a RadialBasisKernel.
- radius - Variable in class gov.sandia.cognition.learning.algorithm.perceptron.Ballseptron
-
The radius enforced by the algorithm.
- random - Variable in class gov.sandia.cognition.learning.algorithm.clustering.initializer.AbstractMinDistanceFixedClusterInitializer
-
The random number generator to use.
- random - Variable in class gov.sandia.cognition.learning.algorithm.clustering.MiniBatchKMeansClusterer
-
The random number generator to use for initialization and subset
selection.
- random - Variable in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
-
The source of randomness used during initial partitioning.
- random - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractBaggingLearner
-
The random number generator to use.
- random - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner
-
The random number generator to use.
- random - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.OnlineBaggingCategorizerLearner
-
The random number generator to use.
- random - Variable in class gov.sandia.cognition.learning.algorithm.factor.machine.AbstractFactorizationMachineLearner
-
The random number generator to use.
- random - Variable in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.OnlineKernelRandomizedBudgetPerceptron
-
The random number generator.
- random - Variable in class gov.sandia.cognition.learning.algorithm.svm.PrimalEstimatedSubGradient
-
The random number generator to use.
- random - Variable in class gov.sandia.cognition.statistics.bayesian.AbstractMarkovChainMonteCarlo
-
Random number generator.
- random - Variable in class gov.sandia.cognition.statistics.bayesian.AbstractParticleFilter
-
Random number generator.
- random - Variable in class gov.sandia.cognition.statistics.distribution.MixtureOfGaussians.EMLearner
-
Random number generator.
- random - Variable in class gov.sandia.cognition.statistics.distribution.ScalarMixtureDensityModel.EMLearner
-
Random number generator.
- random - Variable in class gov.sandia.cognition.statistics.distribution.StudentizedRangeDistribution
-
Random number generator for Monte Carlo simulations
- random - Variable in class gov.sandia.cognition.text.topic.LatentDirichletAllocationVectorGibbsSampler
-
The random number generator to use.
- random - Variable in class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis
-
The random number generator to use.
- random - Variable in class gov.sandia.cognition.util.AbstractRandomized
-
The random number generator for this object to use.
- RandomByTwoFoldCreator<DataType> - Class in gov.sandia.cognition.learning.experiment
-
A validation fold creator that takes a given collection of data and randomly
splits it in half a given number of times, returning two folds for each
split, using one half as training and the other half as testing.
- RandomByTwoFoldCreator() - Constructor for class gov.sandia.cognition.learning.experiment.RandomByTwoFoldCreator
-
Creates a new RandomByTwoFoldCreator
with a default number of
splits.
- RandomByTwoFoldCreator(int) - Constructor for class gov.sandia.cognition.learning.experiment.RandomByTwoFoldCreator
-
Creates a new RandomByTwoFoldCreator
with a given number of
splits.
- RandomByTwoFoldCreator(int, Random) - Constructor for class gov.sandia.cognition.learning.experiment.RandomByTwoFoldCreator
-
Creates a new RandomByTwoFoldCreator
with a given number of
splits.
- RandomClusterInitializer<ClusterType extends Cluster<DataType>,DataType> - Class in gov.sandia.cognition.learning.algorithm.clustering.initializer
-
Creates initial clusters by selecting random data points as singleton
clusters.
- RandomClusterInitializer(ClusterCreator<ClusterType, DataType>, Random) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.initializer.RandomClusterInitializer
-
Creates a new random cluster creator.
- RandomDataPartitioner<DataType> - Class in gov.sandia.cognition.learning.data
-
The RandomDataPartitioner
class implements a randomized data
partitioner that takes a collection of data and randomly splits it into
training and testing sets based on a fixed percentage of training data.
- RandomDataPartitioner() - Constructor for class gov.sandia.cognition.learning.data.RandomDataPartitioner
-
Creates a new instance of RandomDataPartitioner.
- RandomDataPartitioner(double, Random) - Constructor for class gov.sandia.cognition.learning.data.RandomDataPartitioner
-
Creates a new instance of RandomDataPartitioner.
- RandomFoldCreator<DataType> - Class in gov.sandia.cognition.learning.experiment
-
The RandomFoldCreator
class makes use of a randomized data
partitioner to create a set number of folds for a set of data by passing
the data to the data partitioner multiple times.
- RandomFoldCreator() - Constructor for class gov.sandia.cognition.learning.experiment.RandomFoldCreator
-
Creates a new instance of RandomFoldCreator.
- RandomFoldCreator(int, RandomizedDataPartitioner<DataType>) - Constructor for class gov.sandia.cognition.learning.experiment.RandomFoldCreator
-
Creates a new instance of RandomFoldCreator.
- RandomForestFactory - Class in gov.sandia.cognition.learning.algorithm.tree
-
A factory class for creating Random Forest learners.
- RandomForestFactory() - Constructor for class gov.sandia.cognition.learning.algorithm.tree.RandomForestFactory
-
- Randomized - Interface in gov.sandia.cognition.util
-
The Randomized
interface defines the functionality of an object
whose computations are based in part on an underlying random number
generator (a Random
object).
- RandomizedDataPartitioner<DataType> - Interface in gov.sandia.cognition.learning.data
-
The RandomizedDataPartitioner
extends a DataPartitioner
to
indicate that is it is randomized, which means that its partitions are based
(at least in part) on an underlying random number generator.
- randomizeOrder() - Method in class gov.sandia.cognition.collection.IntArrayList
-
Takes the elements of this and alters their order to a random order
(using a variant of Fisher-Yates shuffle called Durstenfeld shuffle).
- randomizeOrder(Random) - Method in class gov.sandia.cognition.collection.IntArrayList
-
Takes the elements of this and alters their order to a random order
(using a variant of Fisher-Yates shuffle called Durstenfeld shuffle).
- RandomSubspace - Class in gov.sandia.cognition.learning.data.feature
-
Selects a random subspace from the given vector, which is a random set of
indices.
- RandomSubspace() - Constructor for class gov.sandia.cognition.learning.data.feature.RandomSubspace
-
Creates a new RandomSubspace
with the default size.
- RandomSubspace(int) - Constructor for class gov.sandia.cognition.learning.data.feature.RandomSubspace
-
Creates a new RandomSubspace
with the given size.
- RandomSubspace(int, Random) - Constructor for class gov.sandia.cognition.learning.data.feature.RandomSubspace
-
Creates a new RandomSubspace
with the given parameters.
- RandomSubspace(int, Random, VectorFactory<?>) - Constructor for class gov.sandia.cognition.learning.data.feature.RandomSubspace
-
Creates a new RandomSubspace
with the given parameters.
- RandomSubVectorThresholdLearner<OutputType> - Class in gov.sandia.cognition.learning.algorithm.tree
-
Learns a decision function by taking a randomly sampling a subspace from
a given set of input vectors and then learning a threshold function by
passing the subspace vectors to a sublearner.
- RandomSubVectorThresholdLearner() - Constructor for class gov.sandia.cognition.learning.algorithm.tree.RandomSubVectorThresholdLearner
-
Creates a new RandomSubVectorThresholdLearner
.
- RandomSubVectorThresholdLearner(DeciderLearner<Vectorizable, OutputType, Boolean, VectorElementThresholdCategorizer>, double, Random) - Constructor for class gov.sandia.cognition.learning.algorithm.tree.RandomSubVectorThresholdLearner
-
Creates a new RandomSubVectorThresholdLearner
.
- RandomSubVectorThresholdLearner(DeciderLearner<Vectorizable, OutputType, Boolean, VectorElementThresholdCategorizer>, double, Random, VectorFactory<? extends Vector>) - Constructor for class gov.sandia.cognition.learning.algorithm.tree.RandomSubVectorThresholdLearner
-
Creates a new RandomSubVectorThresholdLearner
.
- RandomSubVectorThresholdLearner(DeciderLearner<Vectorizable, OutputType, Boolean, VectorElementThresholdCategorizer>, double, int[], Random, VectorFactory<? extends Vector>) - Constructor for class gov.sandia.cognition.learning.algorithm.tree.RandomSubVectorThresholdLearner
-
Creates a new RandomSubVectorThresholdLearner
.
- RandomVariable<DataType> - Interface in gov.sandia.cognition.statistics
-
Describes the functionality of a random variable.
- RandomWalker(boolean, Random) - Constructor for class gov.sandia.cognition.graph.GraphWalker.RandomWalker
-
Creates a random walker with directedness specified
- range(int) - Static method in class gov.sandia.cognition.collection.IntArrayList
-
Creates a new instance pre-loaded with values [0 ..
- range(int, int) - Static method in class gov.sandia.cognition.collection.IntArrayList
-
Creates a new instance pre-loaded with values [min ..
- RangeExcludedArrayList<E> - Class in gov.sandia.cognition.collection
-
The RangeExcludedArrayList
class implements a light-weight list on
top of an ArrayList
where a certain range of values is excluded from
the list.
- RangeExcludedArrayList(ArrayList<E>, int, int) - Constructor for class gov.sandia.cognition.collection.RangeExcludedArrayList
-
Creates a new instance of RangeExcludedArrayList.
- rank() - Method in class gov.sandia.cognition.math.matrix.AbstractMatrix
-
- rank(double) - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
-
- rank(double) - Method in class gov.sandia.cognition.math.matrix.custom.DiagonalMatrix
-
- rank(double) - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
-
Computes the effective rank of this
, which is the number of
linearly independent rows and columns in this
.
- rank() - Method in class gov.sandia.cognition.math.matrix.decomposition.AbstractSingularValueDecomposition
-
- rank() - Method in interface gov.sandia.cognition.math.matrix.decomposition.SingularValueDecomposition
-
Returns the rank of the underlying matrix by calling this.effectiveRank
with an effectiveZero = 0.0
- rank() - Method in interface gov.sandia.cognition.math.matrix.Matrix
-
Computes the rank of this
, which is the number of
linearly independent rows and columns in this
.
- rank(double) - Method in interface gov.sandia.cognition.math.matrix.Matrix
-
Computes the effective rank of this
, which is the number of
linearly independent rows and columns in this
.
- rank(double) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJMatrix
-
- rank(double) - Method in class gov.sandia.cognition.math.matrix.mtj.DiagonalMatrixMTJ
-
- ranks(Collection<? extends Number>) - Static method in class gov.sandia.cognition.statistics.method.WilcoxonSignedRankConfidence
-
Returns the ranks of the values in ascending order
- rate - Variable in class gov.sandia.cognition.statistics.distribution.ExponentialDistribution
-
Rate, or inverse scale, of the distribution, must be greater than zero.
- rate - Variable in class gov.sandia.cognition.statistics.distribution.PoissonDistribution
-
Expected number of occurrences during the integer interval, must be
greater than zero.
- rawErrorRates - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractCategorizerOutOfBagStoppingCriteria
-
The raw out-of-bag error rate, per iteration.
- read() - Method in interface gov.sandia.cognition.data.temporal.TemporalDataReadChannel
-
Reads the next value from the data reader.
- read(InputStream) - Static method in class gov.sandia.cognition.io.XStreamSerializationHandler
-
Reads an Object from the given InputStream.
- read(Reader) - Static method in class gov.sandia.cognition.io.XStreamSerializationHandler
-
Reads an Object from the given Reader.
- read() - Method in class gov.sandia.cognition.math.matrix.MatrixReader
-
Reads the next Matrix found in the specified Reader
- read() - Method in class gov.sandia.cognition.math.matrix.VectorReader
-
Reads a Vector off of the next line in the file
- readChannel() - Method in interface gov.sandia.cognition.data.temporal.BatchTemporalDataSource
-
Gets the read channel for the data source.
- readChannel() - Method in interface gov.sandia.cognition.data.temporal.TemporalDataSource
-
Gets the data channel for the data source.
- readCollection(boolean) - Method in class gov.sandia.cognition.math.matrix.VectorReader
-
Reads a collection of Vectors from the Reader
- ReaderTokenizer - Class in gov.sandia.cognition.io
-
Reads each line from a Reader, and returns each line as a List of Strings
- ReaderTokenizer(Reader) - Constructor for class gov.sandia.cognition.io.ReaderTokenizer
-
Creates a new instance of ReaderTokenizer
- readFile(String) - Static method in class gov.sandia.cognition.io.CSVUtility
-
Reads a CSV file into a list of arrays of string values.
- readFile(String, char) - Static method in class gov.sandia.cognition.io.CSVUtility
-
Reads a CSV file into a list of arrays of string values.
- readFromFile(File) - Static method in class gov.sandia.cognition.io.ObjectSerializationHandler
-
Reads a Java serialized Object from the given File and returns it.
- readFromFile(String) - Method in class gov.sandia.cognition.io.serialization.AbstractFileSerializationHandler
-
- readFromFile(File) - Method in class gov.sandia.cognition.io.serialization.AbstractStreamSerializationHandler
-
- readFromFile(String) - Method in interface gov.sandia.cognition.io.serialization.FileSerializationHandler
-
Reads an object from the given file.
- readFromFile(File) - Method in interface gov.sandia.cognition.io.serialization.FileSerializationHandler
-
Reads an object from the given file.
- readFromFile(String) - Static method in class gov.sandia.cognition.io.XStreamSerializationHandler
-
Reads an Object from the given file name.
- readFromFile(File) - Static method in class gov.sandia.cognition.io.XStreamSerializationHandler
-
Reads an Object from the given file name.
- readFromStream(BufferedInputStream) - Static method in class gov.sandia.cognition.io.ObjectSerializationHandler
-
Reads a Java serialized Object from the given stream and returns it.
- readMetaData(URLConnection) - Method in class gov.sandia.cognition.text.document.DefaultDocument
-
Reads the file name and title from the given URL.
- readModel(String) - Static method in class gov.sandia.cognition.framework.io.ModelFileHandler
-
Attempts to read a CognitiveModel from the given file name.
- readModel(File) - Static method in class gov.sandia.cognition.framework.io.ModelFileHandler
-
Attempts to read a CognitiveModel from the given file.
- readModelBinarySerialized(File) - Static method in class gov.sandia.cognition.framework.io.ModelFileHandler
-
Attempts to read a CognitiveModel from the given file in binary
serialized format.
- readModelCSV(File) - Static method in class gov.sandia.cognition.framework.io.ModelFileHandler
-
Attempts to read a CognitiveModel from the given file in CSV
format.
- readModelFactory(String) - Static method in class gov.sandia.cognition.framework.io.ModelFileHandler
-
Attempts to read a CognitiveModelFactory from the given file name.
- readModelFactory(File) - Static method in class gov.sandia.cognition.framework.io.ModelFileHandler
-
Attempts to read a CognitiveModelFactory from the given file.
- readModelFactoryBinarySerialized(File) - Static method in class gov.sandia.cognition.framework.io.ModelFileHandler
-
Attempts to read a CognitiveModelFactory from the given file in binary
serialized format.
- readModelFactoryCSV(File) - Static method in class gov.sandia.cognition.framework.io.ModelFileHandler
-
Attempts to read a CognitiveModelFactory from the given file in CSV
format.
- readModelFactoryXMLSerialized(File) - Static method in class gov.sandia.cognition.framework.io.ModelFileHandler
-
Attempts to read a CognitiveModelFactory from the given file in XML
serialized format.
- readModelFromFile(String) - Static method in class gov.sandia.cognition.framework.io.SerializedModelHandler
-
Reads a serialized CognitiveModel from the given file.
- readModelFromFile(File) - Static method in class gov.sandia.cognition.framework.io.SerializedModelHandler
-
Reads a serialized CognitiveModel from the given file.
- readModelXMLSerialized(File) - Static method in class gov.sandia.cognition.framework.io.ModelFileHandler
-
Attempts to read a CognitiveModel from the given file in XML serialized
format.
- readNextLine() - Method in class gov.sandia.cognition.io.ReaderTokenizer
-
Reads the next line of the Reader, returning each token on the line as
an entry in an ArrayList
- readObject(InputStream) - Method in class gov.sandia.cognition.io.serialization.AbstractTextSerializationHandler
-
- readObject(InputStream) - Method in class gov.sandia.cognition.io.serialization.GZIPSerializationHandler
-
- readObject(InputStream) - Method in class gov.sandia.cognition.io.serialization.JavaDefaultBinarySerializationHandler
-
- readObject(InputStream) - Method in interface gov.sandia.cognition.io.serialization.StreamSerializationHandler
-
Reads an object from the given stream.
- readObject(Reader) - Method in interface gov.sandia.cognition.io.serialization.TextSerializationHandler
-
Reads an object from the given reader.
- readObject(Reader) - Method in class gov.sandia.cognition.io.serialization.XStreamSerializationHandler
-
- readObjectFromFile(File) - Static method in class gov.sandia.cognition.framework.io.SerializedModelHandler
-
Reads a serialized Java Object from the given File.
- readParameters() - Method in class gov.sandia.cognition.text.topic.LatentDirichletAllocationVectorGibbsSampler
-
Reads the current set of parameters.
- readResolve() - Method in class gov.sandia.cognition.algorithm.AnytimeAlgorithmWrapper
-
This method is detected by the Java Serialization code and is called on
deserialization.
- readState(CognitiveModelState, CognitiveModuleState) - Method in interface gov.sandia.cognition.framework.concurrent.ConcurrentCognitiveModule
-
Read in and temporarily hold input state information required for
performing module evaluation.
- readState(CognitiveModelState, CognitiveModuleState) - Method in class gov.sandia.cognition.framework.learning.EvaluatorBasedCognitiveModule
-
Read in and temporarily hold input state information required for
performing module evaluation.
- readState(CognitiveModelState, CognitiveModuleState) - Method in class gov.sandia.cognition.framework.learning.StatefulEvaluatorBasedCognitiveModule
-
Read in and temporarily hold input state information required for
performing module evaluation.
- readState(CognitiveModelState, CognitiveModuleState) - Method in class gov.sandia.cognition.framework.lite.ArrayBasedPerceptionModule
-
Read in and temporarily hold input state information required for
performing module evaluation.
- readText() - Method in class gov.sandia.cognition.text.AbstractTextual
-
- readText() - Method in class gov.sandia.cognition.text.document.AbstractField
-
- readText() - Method in interface gov.sandia.cognition.text.document.Field
-
Gets a new reader for the content of the field.
- readText() - Method in interface gov.sandia.cognition.text.Textual
-
Returns a new text reader for the text in this object.
- rebalance() - Method in class gov.sandia.cognition.learning.algorithm.nearest.KNearestNeighborKDTree
-
Rebalances the internal KDTree to make the search more efficient.
- reblanace() - Method in class gov.sandia.cognition.math.geometry.KDTree
-
Rebalances the KDTree.
- rebuild() - Method in class gov.sandia.cognition.math.geometry.Quadtree
-
Rebuilds the entire quadtree.
- ReceiverOperatingCharacteristic - Class in gov.sandia.cognition.statistics.method
-
Class that describes a Receiver Operating Characteristic (usually called an
"ROC Curve").
- ReceiverOperatingCharacteristic.DataPoint - Class in gov.sandia.cognition.statistics.method
-
Contains information about a datapoint on an ROC curve
- ReceiverOperatingCharacteristic.DataPoint.Sorter - Class in gov.sandia.cognition.statistics.method
-
Sorts DataPoints in ascending order according to their
falsePositiveRate (x-axis)
- ReceiverOperatingCharacteristic.Statistic - Class in gov.sandia.cognition.statistics.method
-
Contains useful statistics derived from a ROC curve
- recognize(CognitiveModuleState, Vector) - Method in interface gov.sandia.cognition.framework.lite.PatternRecognizerLite
-
Computes the recognition.
- recognize(CognitiveModuleState, Vector) - Method in class gov.sandia.cognition.framework.lite.SimplePatternRecognizer
-
Computes the recognition.
- RectifiedLinearFunction - Class in gov.sandia.cognition.learning.function.scalar
-
A rectified linear unit, which is the maximum of its input or 0.
- RectifiedLinearFunction() - Constructor for class gov.sandia.cognition.learning.function.scalar.RectifiedLinearFunction
-
- RecursiveBayesianEstimator<ObservationType,ParameterType,BeliefType extends Distribution<ParameterType>> - Interface in gov.sandia.cognition.statistics.bayesian
-
A recursive Bayesian estimator is an estimation method that uses the
previous belief of the system parameter and a single observation to refine
the estimate of the system parameter.
- reestimateAlpha - Variable in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel
-
Flag to automatically re-estimate the alpha parameter
- reestimateInitialProbabilities - Variable in class gov.sandia.cognition.learning.algorithm.hmm.AbstractBaumWelchAlgorithm
-
Flag to re-estimate the initial probability Vector.
- reference - Variable in class gov.sandia.cognition.text.document.AbstractDocument
-
A reference to where the document came from.
- Regression<InputType,OutputType,EvaluatorType extends Evaluator<? super InputType,? extends OutputType>> - Interface in gov.sandia.cognition.learning.algorithm.regression
-
A supervised learning algorithm that attempts to interpolate/extrapolate
inputs given a training set of input/output pairs.
- Regression(double...) - Constructor for class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Regression
-
Creates a new instance of Regression
- regressionLearner - Variable in class gov.sandia.cognition.learning.algorithm.tree.RegressionTreeLearner
-
The learning algorithm for the regression function.
- RegressionTree<InputType> - Class in gov.sandia.cognition.learning.algorithm.tree
-
The RegressionTree
class extends the DecisionTree
class
to implement a decision tree that does regression.
- RegressionTree() - Constructor for class gov.sandia.cognition.learning.algorithm.tree.RegressionTree
-
Creates a new instance of RegressionTree.
- RegressionTree(DecisionTreeNode<InputType, Double>) - Constructor for class gov.sandia.cognition.learning.algorithm.tree.RegressionTree
-
Creates a new instance of RegressionTree.
- RegressionTreeLearner<InputType> - Class in gov.sandia.cognition.learning.algorithm.tree
-
The RegressionTreeLearner
class implements a learning algorithm for
a regression tree that makes use of a decider learner and a regression
learner.
- RegressionTreeLearner() - Constructor for class gov.sandia.cognition.learning.algorithm.tree.RegressionTreeLearner
-
Creates a new instance of RegressionTreeLearner
- RegressionTreeLearner(DeciderLearner<? super InputType, Double, ?, ?>) - Constructor for class gov.sandia.cognition.learning.algorithm.tree.RegressionTreeLearner
-
Creates a new instance of CategorizationTreeLearner with a mean node
learner
- RegressionTreeLearner(DeciderLearner<? super InputType, Double, ?, ?>, BatchLearner<? super Collection<? extends InputOutputPair<? extends InputType, Double>>, ? extends Evaluator<? super InputType, Double>>) - Constructor for class gov.sandia.cognition.learning.algorithm.tree.RegressionTreeLearner
-
Creates a new instance of CategorizationTreeLearner.
- RegressionTreeLearner(DeciderLearner<? super InputType, Double, ?, ?>, BatchLearner<? super Collection<? extends InputOutputPair<? extends InputType, Double>>, ? extends Evaluator<? super InputType, Double>>, int, int) - Constructor for class gov.sandia.cognition.learning.algorithm.tree.RegressionTreeLearner
-
Creates a new instance of CategorizationTreeLearner.
- RegressionTreeNode<InputType,InteriorType> - Class in gov.sandia.cognition.learning.algorithm.tree
-
The RegressionTreeNode
implements a DecisionTreeNode
for
a tree that does regression.
- RegressionTreeNode() - Constructor for class gov.sandia.cognition.learning.algorithm.tree.RegressionTreeNode
-
Creates a new instance of RegressionTreeNode.
- RegressionTreeNode(DecisionTreeNode<InputType, Double>, double) - Constructor for class gov.sandia.cognition.learning.algorithm.tree.RegressionTreeNode
-
Creates a new instance of RegressionTreeNode.
- RegressionTreeNode(DecisionTreeNode<InputType, Double>, Categorizer<? super InputType, ? extends InteriorType>, double) - Constructor for class gov.sandia.cognition.learning.algorithm.tree.RegressionTreeNode
-
Creates a new instance of RegressionTreeNode.
- RegressionTreeNode(DecisionTreeNode<InputType, Double>, Evaluator<? super InputType, Double>, double) - Constructor for class gov.sandia.cognition.learning.algorithm.tree.RegressionTreeNode
-
Creates a new instance of RegressionTreeNode.
- RegressionTreeNode(DecisionTreeNode<InputType, Double>, Evaluator<? super InputType, Double>, double, Object) - Constructor for class gov.sandia.cognition.learning.algorithm.tree.RegressionTreeNode
-
Creates a new instance of RegressionTreeNode.
- RegressionTreeNode(DecisionTreeNode<InputType, Double>, Categorizer<? super InputType, ? extends InteriorType>, Evaluator<? super InputType, Double>, double, Object) - Constructor for class gov.sandia.cognition.learning.algorithm.tree.RegressionTreeNode
-
Creates a new instance of RegressionTreeNode.
- Regressor<InputType> - Interface in gov.sandia.cognition.learning.function.regression
-
Defines the functionality of a regression function, which is the model
created by regression algorithms.
- regularization - Variable in class gov.sandia.cognition.learning.algorithm.regression.AbstractLogisticRegression
-
L2 ridge regularization term, must be nonnegative, a value of zero is
equivalent to unregularized regression.
- regularizationWeight - Variable in class gov.sandia.cognition.learning.algorithm.svm.PrimalEstimatedSubGradient
-
The weight assigned to the regularization term in the algorithm, which
is often represented as lambda.
- regularizedIncompleteBetaFunction(double, double, double) - Static method in class gov.sandia.cognition.math.MathUtil
-
Computes the regularized incomplete Beta function.
- reinitializeWeights() - Method in class gov.sandia.cognition.learning.function.vector.ThreeLayerFeedforwardNeuralNetwork
-
Reinitializes the neural network parameters based on its current setup.
- RejectionSampling<ObservationType,ParameterType> - Class in gov.sandia.cognition.statistics.bayesian
-
Rejection sampling is a method of inferring hidden parameters by using
an easy-to-sample-from distribution (times a scale factor) that envelopes
another distribution that is difficult to sample from.
- RejectionSampling() - Constructor for class gov.sandia.cognition.statistics.bayesian.RejectionSampling
-
Creates a new instance of RejectionSampling
- RejectionSampling.DefaultUpdater<ObservationType,ParameterType> - Class in gov.sandia.cognition.statistics.bayesian
-
Default ImportanceSampling Updater that uses a BayesianParameter
to compute the quantities of interest.
- RejectionSampling.ScalarEstimator<ObservationType> - Class in gov.sandia.cognition.statistics.bayesian
-
Routine for estimating the minimum scalar needed to envelop the
conjunctive distribution.
- RejectionSampling.ScalarEstimator.MinimizerFunction - Class in gov.sandia.cognition.statistics.bayesian
-
Minimization function that measures the difference between the
logarithm of the sampler function minus the logarithm of the
conjunctive distribution.
- RejectionSampling.Updater<ObservationType,ParameterType> - Interface in gov.sandia.cognition.statistics.bayesian
-
Updater for ImportanceSampling
- RelationNetwork<ObjectType,RelationType> - Interface in gov.sandia.cognition.text.relation
-
An interface for a network of relations between objects.
- relationsFrom(ObjectType) - Method in interface gov.sandia.cognition.text.relation.RelationNetwork
-
Gets all of the relations where the given object is the source.
- relationsFrom(IndexedTerm) - Method in class gov.sandia.cognition.text.term.relation.MatrixBasedTermSimilarityNetwork
-
- relationsOf(ObjectType) - Method in interface gov.sandia.cognition.text.relation.RelationNetwork
-
Gets all of the relations that involve the given object.
- relationsOf(IndexedTerm) - Method in class gov.sandia.cognition.text.term.relation.MatrixBasedTermSimilarityNetwork
-
- relationsTo(ObjectType) - Method in interface gov.sandia.cognition.text.relation.RelationNetwork
-
Gets all of the relations where the given object is the target.
- relationsTo(IndexedTerm) - Method in class gov.sandia.cognition.text.term.relation.MatrixBasedTermSimilarityNetwork
-
- RelaxedOnlineMaximumMarginAlgorithm - Class in gov.sandia.cognition.learning.algorithm.perceptron
-
An implementation of the Relaxed Online Maximum Margin Algorithm
(ROMMA).
- RelaxedOnlineMaximumMarginAlgorithm() - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.RelaxedOnlineMaximumMarginAlgorithm
-
Creates a new RelaxedOnlineMaximumMarginAlgorithm
.
- RelaxedOnlineMaximumMarginAlgorithm(VectorFactory<?>) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.RelaxedOnlineMaximumMarginAlgorithm
-
Creates a new RelaxedOnlineMaximumMarginAlgorithm
with
the given vector factory.
- remove() - Method in class gov.sandia.cognition.collection.AbstractLogNumberMap.SimpleIterator
-
- remove() - Method in class gov.sandia.cognition.collection.AbstractMutableDoubleMap.SimpleIterator
-
- remove(Object) - Method in class gov.sandia.cognition.collection.DynamicArrayMap
-
Runs in O(1).
- remove(int) - Method in class gov.sandia.cognition.collection.DynamicArrayMap
-
Removes the value for the given key from the mapping.
- remove() - Method in class gov.sandia.cognition.collection.FiniteCapacityBuffer.InternalIterator
-
- remove(Object) - Method in class gov.sandia.cognition.collection.FiniteCapacityBuffer
-
- remove(int) - Method in class gov.sandia.cognition.collection.FiniteCapacityBuffer
-
- remove() - Method in class gov.sandia.cognition.collection.MultiIterator
- remove(int) - Method in class gov.sandia.cognition.learning.function.categorization.DefaultKernelBinaryCategorizer
-
Removes the i-th example.
- remove() - Method in class gov.sandia.cognition.math.Combinations.AbstractCombinationsIterator
-
- remove() - Method in class gov.sandia.cognition.math.geometry.KDTree.InOrderKDTreeIterator
-
- remove() - Method in class gov.sandia.cognition.math.geometry.KDTree.Neighborhood.NeighborhoodIterator
-
- remove() - Method in class gov.sandia.cognition.math.matrix.custom.VectorIterator
-
Throws UnsupportedOperationException because you can't remove elements
from a DenseVector.
- remove() - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector.SimpleIterator
-
- remove() - Method in class gov.sandia.cognition.math.matrix.MatrixUnionIterator
- remove() - Method in class gov.sandia.cognition.math.matrix.mtj.MatrixUnionIteratorMTJ
- remove() - Method in class gov.sandia.cognition.math.matrix.VectorUnionIterator
-
- remove() - Method in class gov.sandia.cognition.statistics.distribution.MultinomialDistribution.Domain.MultinomialIterator
-
- remove(double) - Method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.SufficientStatistic
-
Removes a value to the sufficient statistics for the Gaussian.
- remove(Vectorizable) - Method in class gov.sandia.cognition.text.term.vector.AbstractVectorSpaceModel
-
- remove(Vectorizable) - Method in interface gov.sandia.cognition.text.term.vector.VectorSpaceModel
-
Removes the document from the model.
- remove(Vector) - Method in interface gov.sandia.cognition.text.term.vector.VectorSpaceModel
-
Removes the document from the model.
- remove(Vector) - Method in class gov.sandia.cognition.text.term.vector.weighter.global.AbstractEntropyBasedGlobalTermWeighter
-
- remove(Vector) - Method in class gov.sandia.cognition.text.term.vector.weighter.global.AbstractFrequencyBasedGlobalTermWeighter
-
- remove(Vector) - Method in class gov.sandia.cognition.text.term.vector.weighter.global.DominanceGlobalTermWeighter
-
- remove(Vector) - Method in class gov.sandia.cognition.text.term.vector.weighter.global.EntropyGlobalTermWeighter
-
- remove(Vector) - Method in class gov.sandia.cognition.text.term.vector.weighter.global.InverseDocumentFrequencyGlobalTermWeighter
-
- removeAll(Iterable<? extends Vectorizable>) - Method in class gov.sandia.cognition.text.term.vector.AbstractVectorSpaceModel
-
- removeAll(Iterable<? extends Vectorizable>) - Method in interface gov.sandia.cognition.text.term.vector.VectorSpaceModel
-
Removes all of the given documents from the model.
- removeCluster(int) - Method in class gov.sandia.cognition.learning.algorithm.clustering.KMeansClustererWithRemoval
-
Removes the cluster at the specified index, and does the internal
bookkeeping as well
- removeClusterMember(DefaultCluster<DataType>, DataType) - Method in class gov.sandia.cognition.learning.algorithm.clustering.cluster.DefaultIncrementalClusterCreator
-
- removeClusterMember(ClusterType, DataType) - Method in interface gov.sandia.cognition.learning.algorithm.clustering.cluster.IncrementalClusterCreator
-
Removes a member from the given cluster.
- removeClusterMember(NormalizedCentroidCluster<Vectorizable>, Vectorizable) - Method in class gov.sandia.cognition.learning.algorithm.clustering.cluster.NormalizedCentroidClusterCreator
-
- removeClusterMember(CentroidCluster<Vector>, Vector) - Method in class gov.sandia.cognition.learning.algorithm.clustering.cluster.VectorMeanCentroidClusterCreator
-
- removeCognitiveModelListener(CognitiveModelListener) - Method in class gov.sandia.cognition.framework.AbstractCognitiveModel
-
Removes a CognitiveModelListener from this model.
- removeCognitiveModelListener(CognitiveModelListener) - Method in interface gov.sandia.cognition.framework.CognitiveModel
-
Removes a CognitiveModelListener from this model.
- removeCogxel(SemanticIdentifier) - Method in interface gov.sandia.cognition.framework.CogxelState
-
Removes a Cogxel from the state, if it exists.
- removeCogxel(Cogxel) - Method in interface gov.sandia.cognition.framework.CogxelState
-
Removes a Cogxel from the CogxelState, if it exists.
- removeCogxel(SemanticIdentifier) - Method in class gov.sandia.cognition.framework.lite.CogxelStateLite
-
Removes a Cogxel from the state, if it exists.
- removeCogxel(Cogxel) - Method in class gov.sandia.cognition.framework.lite.CogxelStateLite
-
Removes a Cogxel from the CogxelState, if it exists.
- removeElement(Iterable<DataType>, int) - Static method in class gov.sandia.cognition.collection.CollectionUtil
-
Removes and returns the indexed value into the Iterable
.
- removeExtension(String) - Static method in class gov.sandia.cognition.io.FileUtil
-
Takes a file name and returns the name of the file without the extension
on it.
- removeField(String) - Method in class gov.sandia.cognition.text.document.AbstractDocument
-
Removes a field of the given name from the document.
- removeField(String) - Method in class gov.sandia.cognition.text.document.DefaultDocument
-
- removeIterativeAlgorithmListener(IterativeAlgorithmListener) - Method in class gov.sandia.cognition.algorithm.AbstractIterativeAlgorithm
-
- removeIterativeAlgorithmListener(IterativeAlgorithmListener) - Method in interface gov.sandia.cognition.algorithm.IterativeAlgorithm
-
Removes a listener for the iterations of the algorithm.
- removeIterativeAlgorithmListener(IterativeAlgorithmListener) - Method in class gov.sandia.cognition.learning.algorithm.minimization.matrix.IterativeMatrixSolver
-
- removeListener(ProcessLauncherListener) - Method in class gov.sandia.cognition.io.ProcessLauncher
-
Removes the given object from the event queue
- removeListener(LearningExperimentListener) - Method in class gov.sandia.cognition.learning.experiment.AbstractLearningExperiment
-
- removeListener(LearningExperimentListener) - Method in interface gov.sandia.cognition.learning.experiment.LearningExperiment
-
Removes the given listener from this object.
- removeNode(SemanticLabel) - Method in class gov.sandia.cognition.framework.DefaultSemanticNetwork
-
Removes a node from the semantic network including all of the incoming
and outgoing links of the node.
- removeNode(SemanticLabel) - Method in interface gov.sandia.cognition.framework.lite.MutablePatternRecognizerLite
-
Removes a node and all links associated with that node from the pattern
recognizer.
- removeNode(SemanticLabel) - Method in class gov.sandia.cognition.framework.lite.MutableSemanticMemoryLite
-
Removes a node and all links associated with that node from the semantic
memory.
- removeNode(SemanticLabel) - Method in class gov.sandia.cognition.framework.lite.SimplePatternRecognizer
-
Removes a node and all links associated with that node from the pattern
recognizer.
- RemoveOldestKernelPerceptron<InputType> - Class in gov.sandia.cognition.learning.algorithm.perceptron.kernel
-
A budget kernel Perceptron that always removes the oldest item.
- RemoveOldestKernelPerceptron() - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.RemoveOldestKernelPerceptron
-
Creates a new RemoveOldestKernelPerceptron
with a null kernel
and default budget.
- RemoveOldestKernelPerceptron(Kernel<? super InputType>, int) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.RemoveOldestKernelPerceptron
-
Creates a new RemoveOldestKernelPerceptron
with the given
parameters.
- removeParameterAdapter(ParameterAdapter<? super ObjectType, ? super DataType>) - Method in interface gov.sandia.cognition.learning.parameter.ParameterAdaptable
-
Removes the given parameter adapter from this object.
- removeParameterAdapter(ParameterAdapter<? super LearnerType, ? super DataType>) - Method in class gov.sandia.cognition.learning.parameter.ParameterAdaptableBatchLearnerWrapper
-
- removeSemanticIdentifierMapListener(SemanticIdentifierMapListener) - Method in class gov.sandia.cognition.framework.DefaultSemanticIdentifierMap
-
Removes a listener from this semantic identifier map.
- removeSemanticIdentifierMapListener(SemanticIdentifierMapListener) - Method in interface gov.sandia.cognition.framework.SemanticIdentifierMap
-
Removes a listener from this semantic identifier map.
- removeUnusedClusters() - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.Sample
-
Removes the unused clusters from the Sample.
- reorder(ArrayList<DataType>, Random) - Static method in class gov.sandia.cognition.math.Permutation
-
Reorders the elements in a given array list to be a permuted ordering of
elements in the collection.
- reproduce(Collection<EvaluatedGenome<GenomeType>>) - Method in class gov.sandia.cognition.learning.algorithm.genetic.reproducer.CrossoverReproducer
-
Produces a new population of genomes from the supplied population using
crossover.
- reproduce(Collection<EvaluatedGenome<GenomeType>>) - Method in class gov.sandia.cognition.learning.algorithm.genetic.reproducer.MultiReproducer
-
Applies the supplied reproducers to the population of genomes.
- reproduce(Collection<EvaluatedGenome<GenomeType>>) - Method in class gov.sandia.cognition.learning.algorithm.genetic.reproducer.MutationReproducer
-
Produces a new mutated population based on the supplied population.
- reproduce(Collection<EvaluatedGenome<GenomeType>>) - Method in interface gov.sandia.cognition.learning.algorithm.genetic.reproducer.Reproducer
-
Applies a reproduction algorithm to the given collection of genomes and
their associated score from the cost function.
- reproduce(Collection<EvaluatedGenome<GenomeType>>) - Method in class gov.sandia.cognition.learning.algorithm.genetic.selector.AbstractSelector
-
Applies the selection algorithm to the given collection of genomes and
their associated score from the cost function.
- Reproducer<GenomeType> - Interface in gov.sandia.cognition.learning.algorithm.genetic.reproducer
-
The Reproducer interface defines the functionality of a reproduction
algorithm in a genetic algorithm.
- requestedRank - Variable in class gov.sandia.cognition.text.topic.LatentSemanticAnalysis
-
The rank requested for the result LSA.
- requestedRank - Variable in class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis
-
The requested rank to reduce the dimensionality to.
- resample(double) - Method in interface gov.sandia.cognition.data.temporal.BatchTemporalDataSource
-
Resamples the data at the given sample period using zero-order hold.
- resetCognitiveState() - Method in interface gov.sandia.cognition.framework.CognitiveModel
-
Resets the current cognitive state.
- resetCognitiveState() - Method in class gov.sandia.cognition.framework.lite.AbstractCognitiveModelLite
-
Resets the current state of the model.
- resetLines() - Method in class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.AbstractEnvelope
-
Resets the line segments
- resetState() - Method in class gov.sandia.cognition.evaluator.AbstractStatefulEvaluator
-
- resetState() - Method in interface gov.sandia.cognition.evaluator.StatefulEvaluator
-
Resets the state of the evaluator to a default state.
- resize(int) - Method in class gov.sandia.cognition.collection.DoubleArrayList
-
Replace the internal storage with a new buffer.
- resize(int) - Method in class gov.sandia.cognition.collection.IntArrayList
-
Replace the internal storage with a new buffer.
- responsibilities - Variable in class gov.sandia.cognition.learning.algorithm.clustering.AffinityPropagation
-
The array of example-example responsibilities.
- result - Variable in class gov.sandia.cognition.learning.algorithm.factor.machine.AbstractFactorizationMachineLearner
-
The current factorization machine output learned by the algorithm.
- result - Variable in class gov.sandia.cognition.learning.algorithm.hmm.AbstractBaumWelchAlgorithm
-
Result of the Baum-Welch Algorithm
- result - Variable in class gov.sandia.cognition.learning.algorithm.minimization.AbstractAnytimeFunctionMinimizer
-
Resulting minimum input-output pair
- result - Variable in class gov.sandia.cognition.learning.algorithm.perceptron.BatchMultiPerceptron
-
The linear categorizer created by the algorithm.
- Result() - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Forgetron.Result
-
Creates a new Result
with a null kernel.
- Result(Kernel<? super InputType>) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Forgetron.Result
-
Creates a new Result
with the given kernel.
- result - Variable in class gov.sandia.cognition.learning.algorithm.regression.AbstractLogisticRegression
-
Return value from the algorithm
- result - Variable in class gov.sandia.cognition.learning.algorithm.root.RootFinderNewtonsMethod
-
Resulting estimated location of the root.
- result - Variable in class gov.sandia.cognition.learning.algorithm.svm.PrimalEstimatedSubGradient
-
The categorizer learned as a result of the algorithm.
- result - Variable in class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation
-
The result categorizer.
- Result(ConfidenceStatistic, DefaultPair<SummaryType, SummaryType>) - Constructor for class gov.sandia.cognition.learning.experiment.LearnerComparisonExperiment.Result
-
Creates a new instance of Result.
- Result() - Constructor for class gov.sandia.cognition.text.algorithm.ValenceSpreader.Result
-
- result - Variable in class gov.sandia.cognition.text.topic.LatentDirichletAllocationVectorGibbsSampler
-
The result probabilities.
- Result(int, int, int, int) - Constructor for class gov.sandia.cognition.text.topic.LatentDirichletAllocationVectorGibbsSampler.Result
-
Creates a new Result
.
- result - Variable in class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis
-
The result being produced by the algorithm.
- Result(int, ProbabilisticLatentSemanticAnalysis.LatentData[]) - Constructor for class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis.Result
-
Creates a new probabilistic latent semantic analysis transform.
- reverse(boolean[]) - Static method in class gov.sandia.cognition.collection.ArrayUtil
-
Reverses the ordering of elements in an array.
- reverse(int[]) - Static method in class gov.sandia.cognition.collection.ArrayUtil
-
Reverses the ordering of elements in an array.
- reverse(long[]) - Static method in class gov.sandia.cognition.collection.ArrayUtil
-
Reverses the ordering of elements in an array.
- reverse(double[]) - Static method in class gov.sandia.cognition.collection.ArrayUtil
-
Reverses the ordering of elements in an array.
- reverse(Object[]) - Static method in class gov.sandia.cognition.collection.ArrayUtil
-
Reverses the ordering of elements in an array.
- reverse - Variable in class gov.sandia.cognition.data.convert.AbstractReverseCachedDataConverter
-
A cached value of the reverse converter.
- reverse() - Method in class gov.sandia.cognition.data.convert.AbstractReverseCachedDataConverter
-
Gets the data converter that performs the reverse conversion.
- reverse() - Method in class gov.sandia.cognition.data.convert.IdentityDataConverter
-
The reverse converter is this converter, since it is an identity
converter.
- Reverse() - Constructor for class gov.sandia.cognition.data.convert.number.DefaultBooleanToNumberConverter.Reverse
-
Creates a new reverse converter for the
DefaultBooleanToNumberConverter
.
- reverse() - Method in class gov.sandia.cognition.data.convert.number.DefaultBooleanToNumberConverter.Reverse
-
Reverses the converter, which is the original converter.
- reverse() - Method in interface gov.sandia.cognition.data.convert.ReversibleDataConverter
-
Gets the data converter that performs the reverse conversion.
- reverse - Variable in class gov.sandia.cognition.evaluator.ForwardReverseEvaluatorPair
-
The reverse evaluator from output type to input type.
- reverse() - Method in class gov.sandia.cognition.evaluator.ForwardReverseEvaluatorPair
-
- reverse() - Method in class gov.sandia.cognition.evaluator.IdentityEvaluator
-
- reverse() - Method in interface gov.sandia.cognition.evaluator.ReversibleEvaluator
-
Gets the data converter that performs the reverse conversion.
- ReversibleDataConverter<InputType,OutputType> - Interface in gov.sandia.cognition.data.convert
-
Represents a DataConverter
whose conversion can be reversed.
- ReversibleEvaluator<InputType,OutputType,ReverseType extends Evaluator<? super OutputType,? extends InputType>> - Interface in gov.sandia.cognition.evaluator
-
Represents a
Evaluator
whose evaluation can be reversed.
- rhs - Variable in class gov.sandia.cognition.learning.algorithm.minimization.matrix.IterativeMatrixSolver
-
The right-hand-side vector (b).
- rightChild - Variable in class gov.sandia.cognition.math.geometry.KDTree
-
Right child of this subtree.
- rightIterator - Variable in class gov.sandia.cognition.math.geometry.KDTree.InOrderKDTreeIterator
-
Iterator for the right subtree.
- Ring<RingType extends Ring<RingType>> - Interface in gov.sandia.cognition.math
-
Defines something similar to a mathematical ring.
- RingAccumulator<RingType extends Ring<RingType>> - Class in gov.sandia.cognition.math
-
The RingAccumulator
class implements a simple object that
is used to accumulate objects that implement the Ring interface.
- RingAccumulator() - Constructor for class gov.sandia.cognition.math.RingAccumulator
-
Creates a new instance of RingAccumulator
- RingAccumulator(Iterable<? extends RingType>) - Constructor for class gov.sandia.cognition.math.RingAccumulator
-
Creates a new instance of RingAccumulator, adding all of the given
items to start with.
- RingAverager<RingType extends Ring<RingType>> - Class in gov.sandia.cognition.math
-
A type of Averager for Rings (Matrices, Vectors, ComplexNumbers).
- RingAverager() - Constructor for class gov.sandia.cognition.math.RingAverager
-
Creates a new instance of RingAverager
- root - Variable in class gov.sandia.cognition.math.geometry.Quadtree
-
The root node of the tree.
- RootBracketer - Interface in gov.sandia.cognition.learning.algorithm.root
-
Defines the functionality of a algorithm that finds a bracket of a root
from an initial guess.
- RootBracketExpander - Class in gov.sandia.cognition.learning.algorithm.root
-
The root-bracketing expansion algorithm.
- RootBracketExpander() - Constructor for class gov.sandia.cognition.learning.algorithm.root.RootBracketExpander
-
Creates a new instance of RootBracketExpander
- RootFinder - Interface in gov.sandia.cognition.learning.algorithm.root
-
Defines the functionality of a root-finding algorithm.
- RootFinderBisectionMethod - Class in gov.sandia.cognition.learning.algorithm.root
-
Bisection algorithm for root finding.
- RootFinderBisectionMethod() - Constructor for class gov.sandia.cognition.learning.algorithm.root.RootFinderBisectionMethod
-
Creates a new instance of RootFinderBisectionMethod
- RootFinderFalsePositionMethod - Class in gov.sandia.cognition.learning.algorithm.root
-
The false-position algorithm for root finding.
- RootFinderFalsePositionMethod() - Constructor for class gov.sandia.cognition.learning.algorithm.root.RootFinderFalsePositionMethod
-
Creates a new instance of RootFinderFalsePositionMethod
- RootFinderNewtonsMethod - Class in gov.sandia.cognition.learning.algorithm.root
-
Newton's method, sometimes called Newton-Raphson method, uses first-order
derivative information to iteratively locate a root.
- RootFinderNewtonsMethod() - Constructor for class gov.sandia.cognition.learning.algorithm.root.RootFinderNewtonsMethod
-
Creates a new instance of RootFinderNewtonsMethod
- RootFinderRiddersMethod - Class in gov.sandia.cognition.learning.algorithm.root
-
The root-finding algorithm due to Ridders.
- RootFinderRiddersMethod() - Constructor for class gov.sandia.cognition.learning.algorithm.root.RootFinderRiddersMethod
-
Creates a new instance of RootFinderRiddersMethod
- RootFinderSecantMethod - Class in gov.sandia.cognition.learning.algorithm.root
-
The secant algorithm for root finding.
- RootFinderSecantMethod() - Constructor for class gov.sandia.cognition.learning.algorithm.root.RootFinderSecantMethod
-
Creates a new instance of RootFinderSecantMethod
- RootMeanSquaredErrorEvaluator<InputType> - Class in gov.sandia.cognition.learning.performance
-
The RootMeanSquaredErrorEvaluator
class implements a method for
computing the performance of a supervised learner for a scalar function by
the root mean squared error (RMSE or RSE) between the target and estimated
outputs.
- RootMeanSquaredErrorEvaluator() - Constructor for class gov.sandia.cognition.learning.performance.RootMeanSquaredErrorEvaluator
-
Creates a new RootMeanSquaredErrorEvaluator
.
- rootNode - Variable in class gov.sandia.cognition.learning.algorithm.tree.DecisionTree
-
The root node of the decision tree.
- roots() - Method in interface gov.sandia.cognition.learning.function.scalar.PolynomialFunction.ClosedForm
-
Finds the real-valued roots (zero crossings) of the polynomial
- roots() - Method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Cubic
-
- roots() - Method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Linear
-
- roots() - Method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Quadratic
-
Finds the roots (zero-crossings) of the quadratic, which has at most
two, but possibly one or zero
- roots(double, double, double) - Static method in class gov.sandia.cognition.learning.function.scalar.PolynomialFunction.Quadratic
-
Finds the roots of the quadratic equation using the quadratic
formula.
- rotate(Vector) - Method in interface gov.sandia.cognition.math.matrix.Quaternion
-
Rotates the given vector by this quaternion by performing a
multiplication with this quaternion's rotation matrix: M * v.
- run() - Method in class gov.sandia.cognition.io.ProcessLauncher
- runExperiment(Collection<PartitionedDataset<FoldDataType>>) - Method in class gov.sandia.cognition.learning.experiment.AbstractValidationFoldExperiment
-
Runs the underlying validation fold experiment using the given data.
- runExperiment(PartitionedDataset<? extends InputDataType>) - Method in class gov.sandia.cognition.learning.experiment.LearnerRepeatExperiment
-
Runs the experiment.
- runExperiment(Collection<PartitionedDataset<FoldDataType>>) - Method in class gov.sandia.cognition.learning.experiment.ParallelLearnerValidationExperiment
-
- runTrial(PartitionedDataset<FoldDataType>) - Method in class gov.sandia.cognition.learning.experiment.AbstractValidationFoldExperiment
-
Runs a single trial of the experiment on one fold of the data.
- runTrial(PartitionedDataset<FoldDataType>) - Method in class gov.sandia.cognition.learning.experiment.LearnerComparisonExperiment
-
Runs a single trial of the experiment on one fold of the data.
- runTrial(PartitionedDataset<? extends InputDataType>) - Method in class gov.sandia.cognition.learning.experiment.LearnerRepeatExperiment
-
Runs one trial in the experiment.
- runTrial(PartitionedDataset<FoldDataType>) - Method in class gov.sandia.cognition.learning.experiment.LearnerValidationExperiment
-