Skip navigation links
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

O

ObjectSerializationHandler - Class in gov.sandia.cognition.io
The ObjectSerializationHandler class implements methods for handling the serialization and deserialization of objects.
ObjectSerializationHandler() - Constructor for class gov.sandia.cognition.io.ObjectSerializationHandler
 
objectToOptimize - Variable in class gov.sandia.cognition.learning.algorithm.regression.AbstractLogisticRegression
The object to optimize, used as a factory on successive runs of the algorithm.
ObjectToStringConverter - Class in gov.sandia.cognition.data.convert
Converts an Object to a String using the toString method.
ObjectToStringConverter() - Constructor for class gov.sandia.cognition.data.convert.ObjectToStringConverter
Creates a new ObjectToStringConverter.
ObjectToStringTextualConverter - Class in gov.sandia.cognition.text.convert
A text converter that can take in any type of object and then returns a new DefaultTextual that wraps that object's toString().
ObjectToStringTextualConverter() - Constructor for class gov.sandia.cognition.text.convert.ObjectToStringTextualConverter
Creates a new ObjectToStringTextualConverter.
ObjectUtil - Class in gov.sandia.cognition.util
The ObjectUtil class implements static utility methods for dealing with Objects.
ObjectUtil() - Constructor for class gov.sandia.cognition.util.ObjectUtil
 
ObservationAssignmentTask(Collection<? extends ObservationType>) - Constructor for class gov.sandia.cognition.statistics.bayesian.ParallelDirichletProcessMixtureModel.ObservationAssignmentTask
Creates a new instance of ObservationAssignmentTask
ObservationLikelihoodTask() - Constructor for class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel.ObservationLikelihoodTask
Default constructor.
observationLikelihoodTasks - Variable in class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel
Observation likelihood tasks
observationModel - Variable in class gov.sandia.cognition.statistics.bayesian.ExtendedKalmanFilter
Model that determines how the state is observed.
observations - Variable in class gov.sandia.cognition.learning.algorithm.hmm.ParallelHiddenMarkovModel.ObservationLikelihoodTask
Observations
OccurrenceInText<DataType> - Interface in gov.sandia.cognition.text
An interface for a marker that some data occurred in some span of text.
occurrenceTopicAssignments - Variable in class gov.sandia.cognition.text.topic.LatentDirichletAllocationVectorGibbsSampler
The assignments of term occurrences to topics.
offer(PairType, double) - Method in class gov.sandia.cognition.math.geometry.KDTree.Neighborhood
Offers the neighbor if there is space or it's closer than the furthest neighbor.
offset - Variable in class gov.sandia.cognition.learning.function.scalar.LinearFunction
The offset (b).
oneMinusDampingFactor - Variable in class gov.sandia.cognition.learning.algorithm.clustering.AffinityPropagation
The cached value of one minus the damping factor.
OnlineBaggingCategorizerLearner<InputType,CategoryType,MemberType extends Evaluator<? super InputType,? extends CategoryType>> - Class in gov.sandia.cognition.learning.algorithm.ensemble
An implementation of an online version of the Bagging algorithm for learning an ensemble of categorizers.
OnlineBaggingCategorizerLearner() - Constructor for class gov.sandia.cognition.learning.algorithm.ensemble.OnlineBaggingCategorizerLearner
Creates a new OnlineBaggingCategorizerLearner with a null learner and default parameters.
OnlineBaggingCategorizerLearner(IncrementalLearner<? super InputOutputPair<? extends InputType, CategoryType>, MemberType>) - Constructor for class gov.sandia.cognition.learning.algorithm.ensemble.OnlineBaggingCategorizerLearner
Creates a new OnlineBaggingCategorizerLearner with the given base learner and default parameters.
OnlineBaggingCategorizerLearner(IncrementalLearner<? super InputOutputPair<? extends InputType, CategoryType>, MemberType>, int, double, Random) - Constructor for class gov.sandia.cognition.learning.algorithm.ensemble.OnlineBaggingCategorizerLearner
Creates a new OnlineBaggingCategorizerLearner with the given parameters.
OnlineBinaryMarginInfusedRelaxedAlgorithm - Class in gov.sandia.cognition.learning.algorithm.perceptron
An implementation of the binary MIRA algorithm.
OnlineBinaryMarginInfusedRelaxedAlgorithm() - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlineBinaryMarginInfusedRelaxedAlgorithm
Creates a new OnlineBinaryMarginInfusedRelaxedAlgorithm with default parameters.
OnlineBinaryMarginInfusedRelaxedAlgorithm(double) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlineBinaryMarginInfusedRelaxedAlgorithm
Creates a new OnlineBinaryMarginInfusedRelaxedAlgorithm with the given minimum margin.
OnlineBinaryMarginInfusedRelaxedAlgorithm(double, VectorFactory<?>) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlineBinaryMarginInfusedRelaxedAlgorithm
Creates a new OnlineBinaryMarginInfusedRelaxedAlgorithm with the new minimum margin.
OnlineKernelPerceptron<InputType> - Class in gov.sandia.cognition.learning.algorithm.perceptron.kernel
An implementation of the online version of the Perceptron algorithm.
OnlineKernelPerceptron() - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.OnlineKernelPerceptron
Creates a new OnlineKernelPerceptron with no kernel.
OnlineKernelPerceptron(Kernel<? super InputType>) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.OnlineKernelPerceptron
Creates a new OnlineKernelPerceptron with the given kernel.
OnlineKernelRandomizedBudgetPerceptron<InputType> - Class in gov.sandia.cognition.learning.algorithm.perceptron.kernel
An implementation of a fixed-memory kernel Perceptron algorithm.
OnlineKernelRandomizedBudgetPerceptron() - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.OnlineKernelRandomizedBudgetPerceptron
Creates a new OnlineKernelRandomizedBudgetPerceptron with default parameters and a null kernel.
OnlineKernelRandomizedBudgetPerceptron(Kernel<? super InputType>, int, Random) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.kernel.OnlineKernelRandomizedBudgetPerceptron
Creates a new OnlineKernelRandomizedBudgetPerceptron with the given parameters.
OnlineLearner() - Constructor for class gov.sandia.cognition.learning.algorithm.bayes.VectorNaiveBayesCategorizer.OnlineLearner
Creates a new learner with a null distribution learner.
OnlineLearner(IncrementalLearner<? super Double, DistributionType>) - Constructor for class gov.sandia.cognition.learning.algorithm.bayes.VectorNaiveBayesCategorizer.OnlineLearner
Creates a new learner with a given distribution learner.
OnlineLearnerValidationExperiment<DataType,LearnedType,StatisticType,SummaryType> - Class in gov.sandia.cognition.learning.experiment
Implements an experiment where an incremental supervised machine learning algorithm is evaluated by applying it to a set of data by successively testing on each item and then training on it.
OnlineLearnerValidationExperiment() - Constructor for class gov.sandia.cognition.learning.experiment.OnlineLearnerValidationExperiment
Creates a new instance of IncrementalLearnerValidationExperiment.
OnlineLearnerValidationExperiment(PerformanceEvaluator<? super LearnedType, ? super Collection<? extends DataType>, ? extends StatisticType>, Summarizer<? super StatisticType, ? extends SummaryType>) - Constructor for class gov.sandia.cognition.learning.experiment.OnlineLearnerValidationExperiment
Creates a new instance of IncrementalLearnerValidationExperiment.
OnlineMultiPerceptron<CategoryType> - Class in gov.sandia.cognition.learning.algorithm.perceptron
An online, multiple category version of the Perceptron algorithm.
OnlineMultiPerceptron() - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlineMultiPerceptron
Creates a new OnlineMultiPerceptron.
OnlineMultiPerceptron(double) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlineMultiPerceptron
Creates a new OnlineMultiPerceptron with the given minimum margin.
OnlineMultiPerceptron(double, VectorFactory<?>) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlineMultiPerceptron
Creates a new OnlineMultiPerceptron with the given minimum margin and backing vector factory.
OnlineMultiPerceptron.ProportionalUpdate<CategoryType> - Class in gov.sandia.cognition.learning.algorithm.perceptron
Variant of a multi-category Perceptron that performs a proportional weight update on all categories that are scored higher than the true category such that the weights sum to 1.0 and are proportional how much larger the score was for each incorrect category than the true category.
OnlineMultiPerceptron.UniformUpdate<CategoryType> - Class in gov.sandia.cognition.learning.algorithm.perceptron
Variant of a multi-category Perceptron that performs a uniform weight update on all categories that are scored higher than the true category such that the weights are equal and sum to -1.
OnlinePassiveAggressivePerceptron - Class in gov.sandia.cognition.learning.algorithm.perceptron
An implementation of the Passive-Aggressive algorithm for learning a linear binary categorizer.
OnlinePassiveAggressivePerceptron() - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlinePassiveAggressivePerceptron
Creates a new OnlinePassiveAggressivePerceptron.
OnlinePassiveAggressivePerceptron(VectorFactory<?>) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlinePassiveAggressivePerceptron
Creates a new OnlinePassiveAggressivePerceptron with the given vector factory.
OnlinePassiveAggressivePerceptron.AbstractSoftMargin - Class in gov.sandia.cognition.learning.algorithm.perceptron
An abstract class for soft-margin versions of the Passive-Aggressive algorithm.
OnlinePassiveAggressivePerceptron.LinearSoftMargin - Class in gov.sandia.cognition.learning.algorithm.perceptron
An implementation of the linear soft-margin variant of the Passive- Aggressive algorithm (PA-I).
OnlinePassiveAggressivePerceptron.QuadraticSoftMargin - Class in gov.sandia.cognition.learning.algorithm.perceptron
An implementation of the quadratic soft-margin variant of the Passive- Aggressive algorithm (PA-II).
OnlinePerceptron - Class in gov.sandia.cognition.learning.algorithm.perceptron
An online version of the classic Perceptron algorithm.
OnlinePerceptron() - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlinePerceptron
Creates a new OnlinePerceptron.
OnlinePerceptron(VectorFactory<?>) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlinePerceptron
Creates a new OnlinePerceptron with the given vector factory.
OnlineRampPassiveAggressivePerceptron - Class in gov.sandia.cognition.learning.algorithm.perceptron
An implementation of the Ramp Loss Passive Aggressive Perceptron (PA^R) from the referenced paper.
OnlineRampPassiveAggressivePerceptron() - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlineRampPassiveAggressivePerceptron
Creates a new OnlineRampPassiveAggressivePerceptron with default parameters.
OnlineRampPassiveAggressivePerceptron(double) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlineRampPassiveAggressivePerceptron
Creates a new OnlineRampPassiveAggressivePerceptron with the given aggressiveness.
OnlineRampPassiveAggressivePerceptron(double, VectorFactory<?>) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlineRampPassiveAggressivePerceptron
Creates a new OnlineRampPassiveAggressivePerceptron with the given parameters.
OnlineShiftingPerceptron - Class in gov.sandia.cognition.learning.algorithm.perceptron
An implementation of the Shifting Perceptron algorithm.
OnlineShiftingPerceptron() - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlineShiftingPerceptron
Creates a new OnlineShiftingPerceptron with default parameters.
OnlineShiftingPerceptron(double) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlineShiftingPerceptron
Creates a new OnlineShiftingPerceptron with the given parameters.
OnlineShiftingPerceptron(double, VectorFactory<?>) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlineShiftingPerceptron
Creates a new OnlineShiftingPerceptron with the given parameters.
OnlineShiftingPerceptron.LinearResult - Class in gov.sandia.cognition.learning.algorithm.perceptron
This is the result learned by the shifting perceptron.
OnlineVotedPerceptron - Class in gov.sandia.cognition.learning.algorithm.perceptron
An online version of the Voted-Perceptron algorithm.
OnlineVotedPerceptron() - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlineVotedPerceptron
Creates a new OnlinePerceptron.
OnlineVotedPerceptron(VectorFactory<?>) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlineVotedPerceptron
Creates a new OnlinePerceptron with the given vector factory.
OperationNotConvergedException - Exception in gov.sandia.cognition.math
The OperationNotConvergedException class is an exception that is thrown when some mathematical operation does not converge, when it is expected to converge.
OperationNotConvergedException(String) - Constructor for exception gov.sandia.cognition.math.OperationNotConvergedException
Creates a new OperationNotConvergedException.
OperationNotConvergedException(String, Throwable) - Constructor for exception gov.sandia.cognition.math.OperationNotConvergedException
Creates a new OperationNotConvergedException.
OperationNotConvergedException(Throwable) - Constructor for exception gov.sandia.cognition.math.OperationNotConvergedException
Creates a new OperationNotConvergedException.
OPTIMAL_THREADS - Static variable in class gov.sandia.cognition.algorithm.ParallelUtil
Indicates to the createThreadPool() method to estimate the "optimal" number of threads for the computer currently executing the codes.
OptimizedKMeansClusterer<DataType> - Class in gov.sandia.cognition.learning.algorithm.clustering
This class implements an optimized version of the k-means algorithm that makes use of the triangle inequality to compute the same answer as k-means while using less distance calculations.
OptimizedKMeansClusterer(int, int, FixedClusterInitializer<CentroidCluster<DataType>, DataType>, Metric<? super DataType>, ClusterCreator<CentroidCluster<DataType>, DataType>) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.OptimizedKMeansClusterer
Creates a new instance of OptimizedKMeansClusterer.
optimizeEdges() - Method in class gov.sandia.cognition.graph.DenseMemoryGraph
This private helper sorts all edges for quicker edge-lookup times.
out - Variable in class gov.sandia.cognition.algorithm.event.IterationMeasurablePerformanceReporter
The print stream to report performance to.
out - Variable in class gov.sandia.cognition.algorithm.event.IterationStartReporter
The print stream to report performance to.
out - Variable in class gov.sandia.cognition.learning.performance.AnytimeBatchLearnerValidationPerformanceReporter
The print stream to report performance to.
out - Variable in class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis.StatusPrinter
The stream to write the status to.
outerProduct(Vector) - Method in class gov.sandia.cognition.math.matrix.AbstractVector
 
outerProduct(DenseVector) - Method in class gov.sandia.cognition.math.matrix.custom.DenseVector
 
outerProduct(SparseVector) - Method in class gov.sandia.cognition.math.matrix.custom.DenseVector
 
outerProduct(DenseVector) - Method in class gov.sandia.cognition.math.matrix.custom.SparseVector
 
outerProduct(SparseVector) - Method in class gov.sandia.cognition.math.matrix.custom.SparseVector
 
outerProduct(Vector) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJVector
 
outerProduct(AbstractMTJVector) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJVector
Computes the outer matrix product between the two vectors
outerProduct(AbstractMTJVector) - Method in class gov.sandia.cognition.math.matrix.mtj.DenseVector
 
outerProduct(AbstractMTJVector) - Method in class gov.sandia.cognition.math.matrix.mtj.SparseVector
 
outerProduct(Vector) - Method in interface gov.sandia.cognition.math.matrix.Vector
Computes the outer matrix product between the two vectors
outlierPercent - Variable in class gov.sandia.cognition.learning.data.feature.StandardDistributionNormalizer.Learner
The percentage of outliers to exclude from learning.
outOfBagCorrect - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractCategorizerOutOfBagStoppingCriteria
A boolean for each example indicating whether or not it is currently a correct or incorrect out-of-bag vote.
outOfBagErrorCount - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractCategorizerOutOfBagStoppingCriteria
The total number of out-of-bag errors.
OutOfBagErrorStoppingCriteria() - Constructor for class gov.sandia.cognition.learning.algorithm.ensemble.BaggingCategorizerLearner.OutOfBagErrorStoppingCriteria
Creates a new OutOfBagErrorStoppingCriteria.
OutOfBagErrorStoppingCriteria(int) - Constructor for class gov.sandia.cognition.learning.algorithm.ensemble.BaggingCategorizerLearner.OutOfBagErrorStoppingCriteria
Creates a new OutOfBagErrorStoppingCriteria with the given smoothing window size.
OutOfBagErrorStoppingCriteria() - Constructor for class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner.OutOfBagErrorStoppingCriteria
Creates a new OutOfBagErrorStoppingCriteria.
OutOfBagErrorStoppingCriteria(int) - Constructor for class gov.sandia.cognition.learning.algorithm.ensemble.IVotingCategorizerLearner.OutOfBagErrorStoppingCriteria
Creates a new OutOfBagErrorStoppingCriteria with the given smoothing window size.
outOfBagEstimates - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.BaggingCategorizerLearner.OutOfBagErrorStoppingCriteria
The running estimate of the ensemble for each example where an ensemble member can only vote on elements that were not in the bag used to train it.
output - Variable in class gov.sandia.cognition.framework.learning.EvaluatorBasedCognitiveModule
A place to temporarily store the output generated by a call to evaluate; this temporary store is blown away as soon as it used by evaluate, because we NEVER retain state interally across module update cycles
output - Variable in class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation.Entry
The output represented as a raw boolean, to enforce that the label exists.
outputCategory - Variable in class gov.sandia.cognition.learning.algorithm.tree.CategorizationTreeNode
The output category of the node.
outputDimensionality - Variable in class gov.sandia.cognition.learning.data.feature.FeatureHashing
The output size of the hash.
outputDouble - Variable in class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation.Entry
The output converted to a double form (+1.0 or -1.0).
outputLearner - Variable in class gov.sandia.cognition.learning.algorithm.InputOutputTransformedBatchLearner
The unsupervised learning algorithm for creating the output transformation, which must be reversible for evaluation.
outputsList(Iterable<? extends InputOutputPair<?, ? extends OutputType>>) - Static method in class gov.sandia.cognition.learning.data.DatasetUtil
Creates a list containing all of the output values from the given data.
outputVariance - Variable in class gov.sandia.cognition.statistics.bayesian.BayesianLinearRegression
Assumed known variance of the outputs (measurements), must be greater than zero.
OverconstrainedConjugateGradientMatrixMinimizer - Class in gov.sandia.cognition.learning.algorithm.minimization.matrix
Implements a overconstrained conjugate gradient matrix optimizer.
OverconstrainedConjugateGradientMatrixMinimizer(Vector, Vector) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.matrix.OverconstrainedConjugateGradientMatrixMinimizer
Initializes a steepest-descent solver with the minimum values
OverconstrainedConjugateGradientMatrixMinimizer(Vector, Vector, double) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.matrix.OverconstrainedConjugateGradientMatrixMinimizer
Initializes a steepest-descent solver with some additional parameters
OverconstrainedConjugateGradientMatrixMinimizer(Vector, Vector, double, int) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.matrix.OverconstrainedConjugateGradientMatrixMinimizer
Initializes a steepest-descent solver with all user-definable parameters
OverconstrainedMatrixVectorMultiplier - Class in gov.sandia.cognition.learning.algorithm.minimization.matrix
Implements an overconstrainted matrix-vector multiplication.
overrelaxation - Variable in class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation
The overrelaxation parameter.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Skip navigation links