Skip navigation links
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

U

U - Variable in class gov.sandia.cognition.math.matrix.custom.DenseMatrix.LU
The upper triangular matrix resulting from the factorization.
U - Variable in class gov.sandia.cognition.math.matrix.custom.DenseMatrix.SVD
The left basis matrix.
uncompensatedAlpha - Variable in class gov.sandia.cognition.statistics.method.AbstractMultipleHypothesisComparison.Statistic
Uncompensated alpha (p-value threshold) for the multiple comparison test
UniformDistribution - Class in gov.sandia.cognition.statistics.distribution
Contains the (very simple) definition of a continuous Uniform distribution, parameterized between the minimum and maximum bounds.
UniformDistribution() - Constructor for class gov.sandia.cognition.statistics.distribution.UniformDistribution
Creates a new instance of UniformDistribution
UniformDistribution(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.UniformDistribution
Creates a new instance of UniformDistribution
UniformDistribution(UniformDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.UniformDistribution
Copy constructor
UniformDistribution.CDF - Class in gov.sandia.cognition.statistics.distribution
Cumulative Distribution Function of a uniform
UniformDistribution.MaximumLikelihoodEstimator - Class in gov.sandia.cognition.statistics.distribution
Maximum Likelihood Estimator of a uniform distribution.
UniformDistribution.PDF - Class in gov.sandia.cognition.statistics.distribution
Probability density function of a Uniform Distribution
UniformDistributionBayesianEstimator - Class in gov.sandia.cognition.statistics.bayesian.conjugate
A Bayesian estimator for a conditional Uniform(0,theta) distribution using its conjugate prior Pareto distribution.
UniformDistributionBayesianEstimator() - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.UniformDistributionBayesianEstimator
Creates a new instance of UniformDistributionBayesianEstimator
UniformDistributionBayesianEstimator(ParetoDistribution) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.UniformDistributionBayesianEstimator
Creates a new instance of UniformDistributionBayesianEstimator
UniformDistributionBayesianEstimator(UniformDistribution, ParetoDistribution) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.UniformDistributionBayesianEstimator
Creates a new instance of PoissonBayesianEstimator
UniformDistributionBayesianEstimator(BayesianParameter<Double, UniformDistribution, ParetoDistribution>) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.UniformDistributionBayesianEstimator
Creates a new instance
UniformDistributionBayesianEstimator.Parameter - Class in gov.sandia.cognition.statistics.bayesian.conjugate
Parameter of this conjugate prior relationship.
UniformIntegerDistribution - Class in gov.sandia.cognition.statistics.distribution
Contains the (very simple) definition of a continuous Uniform distribution, parameterized between the minimum and maximum bounds.
UniformIntegerDistribution() - Constructor for class gov.sandia.cognition.statistics.distribution.UniformIntegerDistribution
Creates a new UniformIntegerDistribution with default parameters.
UniformIntegerDistribution(int, int) - Constructor for class gov.sandia.cognition.statistics.distribution.UniformIntegerDistribution
Creates a new UniformIntegerDistribution with the given bounds.
UniformIntegerDistribution(UniformIntegerDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.UniformIntegerDistribution
Creates a new UniformIntegerDistribution that is a copy of the given other distribution.
UniformIntegerDistribution.CDF - Class in gov.sandia.cognition.statistics.distribution
Implements the cumulative distribution function for the discrete uniform distribution.
UniformIntegerDistribution.MaximumLikelihoodEstimator - Class in gov.sandia.cognition.statistics.distribution
Implements a maximum likelihood estimator for the discrete uniform distribution.
UniformIntegerDistribution.PMF - Class in gov.sandia.cognition.statistics.distribution
Probability mass function of a discrete uniform distribution.
UniformUpdate() - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlineMultiPerceptron.UniformUpdate
Creates a new OnlineMultiPerceptron.UniformUpdate.
UniformUpdate(double) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlineMultiPerceptron.UniformUpdate
Creates a new OnlineMultiPerceptron.UniformUpdate with the given minimum margin.
UniformUpdate(double, VectorFactory<?>) - Constructor for class gov.sandia.cognition.learning.algorithm.perceptron.OnlineMultiPerceptron.UniformUpdate
Creates a new OnlineMultiPerceptron.UniformUpdate with the given minimum margin and backing vector factory.
UniqueBooleanVectorEncoder<InputType> - Class in gov.sandia.cognition.data.convert.vector
An encoder for arbitrary objects that encodes an equality comparison between a given input and a set of unique values.
UniqueBooleanVectorEncoder(List<InputType>, DataToVectorEncoder<Boolean>) - Constructor for class gov.sandia.cognition.data.convert.vector.UniqueBooleanVectorEncoder
Creates a new UniqueBooleanVectorEncoder.
UnitTermWeightNormalizer - Class in gov.sandia.cognition.text.term.vector.weighter.normalize
Normalizes term weights to be a unit vector.
UnitTermWeightNormalizer() - Constructor for class gov.sandia.cognition.text.term.vector.weighter.normalize.UnitTermWeightNormalizer
Creates a new UnitTermWeightNormalizer.
unitVector() - Method in class gov.sandia.cognition.math.matrix.AbstractVectorSpace
 
unitVector() - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
 
unitVector() - Method in interface gov.sandia.cognition.math.matrix.VectorSpace
Returns the unit vector of this vector.
unitVectorEquals() - Method in class gov.sandia.cognition.math.matrix.AbstractVectorSpace
 
unitVectorEquals() - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
 
unitVectorEquals() - Method in interface gov.sandia.cognition.math.matrix.VectorSpace
Modifies this vector to be a the unit vector.
UnivariateDistribution<NumberType extends java.lang.Number> - Interface in gov.sandia.cognition.statistics
A Distribution that takes Doubles as inputs and can compute its variance.
UnivariateGaussian - Class in gov.sandia.cognition.statistics.distribution
This class contains internal classes that implement useful functions based on the Gaussian distribution.
UnivariateGaussian() - Constructor for class gov.sandia.cognition.statistics.distribution.UnivariateGaussian
Creates a new instance of UnivariateGaussian with zero mean and unit variance
UnivariateGaussian(double, double) - Constructor for class gov.sandia.cognition.statistics.distribution.UnivariateGaussian
Creates a new instance of UnivariateGaussian
UnivariateGaussian(UnivariateGaussian) - Constructor for class gov.sandia.cognition.statistics.distribution.UnivariateGaussian
Copy constructor
UnivariateGaussian.CDF - Class in gov.sandia.cognition.statistics.distribution
CDF of the underlying Gaussian.
UnivariateGaussian.CDF.Inverse - Class in gov.sandia.cognition.statistics.distribution
Inverts the CumulativeDistribution function.
UnivariateGaussian.ErrorFunction - Class in gov.sandia.cognition.statistics.distribution
Gaussian Error Function, useful for computing the cumulative distribution function for a Gaussian.
UnivariateGaussian.ErrorFunction.Inverse - Class in gov.sandia.cognition.statistics.distribution
Inverse of the ErrorFunction
UnivariateGaussian.IncrementalEstimator - Class in gov.sandia.cognition.statistics.distribution
Implements an incremental estimator for the sufficient statistics for a UnivariateGaussian.
UnivariateGaussian.MaximumLikelihoodEstimator - Class in gov.sandia.cognition.statistics.distribution
Creates a UnivariateGaussian from data
UnivariateGaussian.PDF - Class in gov.sandia.cognition.statistics.distribution
PDF of the underlying Gaussian.
UnivariateGaussian.SufficientStatistic - Class in gov.sandia.cognition.statistics.distribution
Captures the sufficient statistics of a UnivariateGaussian, which are the values to estimate the mean and variance.
UnivariateGaussian.WeightedMaximumLikelihoodEstimator - Class in gov.sandia.cognition.statistics.distribution
Creates a UnivariateGaussian from weighted data
UnivariateGaussianMeanBayesianEstimator - Class in gov.sandia.cognition.statistics.bayesian.conjugate
Bayesian estimator for the mean of a UnivariateGaussian using its conjugate prior, which is also a UnivariateGaussian.
UnivariateGaussianMeanBayesianEstimator() - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanBayesianEstimator
Creates a new instance of UnivariateGaussianMeanBayesianEstimator
UnivariateGaussianMeanBayesianEstimator(double) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanBayesianEstimator
Creates a new instance of UnivariateGaussianMeanBayesianEstimator
UnivariateGaussianMeanBayesianEstimator(double, UnivariateGaussian) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanBayesianEstimator
Creates a new instance of UnivariateGaussianMeanBayesianEstimator
UnivariateGaussianMeanBayesianEstimator(UnivariateGaussian, UnivariateGaussian) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanBayesianEstimator
Creates a new instance
UnivariateGaussianMeanBayesianEstimator(BayesianParameter<Double, UnivariateGaussian, UnivariateGaussian>) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanBayesianEstimator
Creates a new instance
UnivariateGaussianMeanBayesianEstimator.Parameter - Class in gov.sandia.cognition.statistics.bayesian.conjugate
Parameter of this conjugate prior relationship.
UnivariateGaussianMeanVarianceBayesianEstimator - Class in gov.sandia.cognition.statistics.bayesian.conjugate
Computes the mean and variance of a univariate Gaussian using the conjugate prior NormalInverseGammaDistribution
UnivariateGaussianMeanVarianceBayesianEstimator() - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanVarianceBayesianEstimator
Creates a new instance of UnivariateGaussianMeanVarianceBayesianEstimator
UnivariateGaussianMeanVarianceBayesianEstimator(NormalInverseGammaDistribution) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanVarianceBayesianEstimator
Creates a new instance of UnivariateGaussianMeanVarianceBayesianEstimator
UnivariateGaussianMeanVarianceBayesianEstimator(UnivariateGaussian, NormalInverseGammaDistribution) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanVarianceBayesianEstimator
Creates a new instance of UnivariateGaussianMeanVarianceBayesianEstimator
UnivariateGaussianMeanVarianceBayesianEstimator(BayesianParameter<Vector, UnivariateGaussian, NormalInverseGammaDistribution>) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanVarianceBayesianEstimator
Creates a new instance of UnivariateGaussianMeanVarianceBayesianEstimator
UnivariateGaussianMeanVarianceBayesianEstimator.Parameter - Class in gov.sandia.cognition.statistics.bayesian.conjugate
Parameter for this conjugate prior estimator.
UnivariateLinearRegression - Class in gov.sandia.cognition.learning.algorithm.regression
An implementation of simple univariate linear regression.
UnivariateLinearRegression() - Constructor for class gov.sandia.cognition.learning.algorithm.regression.UnivariateLinearRegression
Creates a new UnivariateLinearRegression.
UnivariateMonteCarloIntegrator - Class in gov.sandia.cognition.statistics.montecarlo
A Monte Carlo integrator for univariate (scalar) outputs.
UnivariateMonteCarloIntegrator() - Constructor for class gov.sandia.cognition.statistics.montecarlo.UnivariateMonteCarloIntegrator
Creates a new instance of UnivariateMonteCarloIntegrator
UnivariateProbabilityDensityFunction - Interface in gov.sandia.cognition.statistics
A PDF that takes doubles as input.
UnivariateRandomVariable - Class in gov.sandia.cognition.statistics
This is an implementation of a RandomVariable for scalar distributions.
UnivariateRandomVariable(UnivariateDistribution<? extends Number>, Random) - Constructor for class gov.sandia.cognition.statistics.UnivariateRandomVariable
Creates a new instance of UnivariateRandomVariable
UnivariateRandomVariable(UnivariateDistribution<? extends Number>, Random, int) - Constructor for class gov.sandia.cognition.statistics.UnivariateRandomVariable
Creates a new instance of UnivariateRandomVariable
UnivariateRegression<InputType,EvaluatorType extends Evaluator<? super InputType,? extends java.lang.Double>> - Interface in gov.sandia.cognition.learning.algorithm.regression
A type of Regression algorithm that has a single dependent (output) variable that we are trying to predict.
UnivariateScalarFunction - Interface in gov.sandia.cognition.math
Simple interface that describes a function that maps the reals to the reals, has a Double to Double and double to double.
UnivariateStatisticsUtil - Class in gov.sandia.cognition.math
Some static methods for computing generally useful univariate statistics.
UnivariateStatisticsUtil() - Constructor for class gov.sandia.cognition.math.UnivariateStatisticsUtil
 
UnivariateSummaryStatistics - Class in gov.sandia.cognition.math
A Bayesian-style synopsis of a Collection of scalar data.
UnivariateSummaryStatistics(double, double, double[], double, double, double, int, double, double, double, double) - Constructor for class gov.sandia.cognition.math.UnivariateSummaryStatistics
Creates a new set of scalar summary statistics.
UnsignedLogNumber - Class in gov.sandia.cognition.math
Represents an unsigned number in log space, storing log(value) and operating directly on it.
UnsignedLogNumber() - Constructor for class gov.sandia.cognition.math.UnsignedLogNumber
Creates the LogNumber representing zero.
UnsignedLogNumber(double) - Constructor for class gov.sandia.cognition.math.UnsignedLogNumber
Creates a new LogNumber from the given value in log-space.
UnsignedLogNumber(UnsignedLogNumber) - Constructor for class gov.sandia.cognition.math.UnsignedLogNumber
Copies a given LogNumber.
update(CognitiveModelInput) - Method in interface gov.sandia.cognition.framework.CognitiveModel
Updates the model by updating all the modules using the given input.
update(CognitiveModelState, CognitiveModuleState) - Method in interface gov.sandia.cognition.framework.CognitiveModule
This method is the main method for a CognitiveModule.
update(CognitiveModelState, CognitiveModuleState) - Method in class gov.sandia.cognition.framework.concurrent.AbstractConcurrentCognitiveModule
This method provides backwards compatibility with the basic, non-concurrent CognitiveModule interface.
update(CognitiveModelInput) - Method in class gov.sandia.cognition.framework.concurrent.MultithreadedCognitiveModel
Updates the state of the model from the new input.
update(CognitiveModelState, CognitiveModuleState) - Method in class gov.sandia.cognition.framework.lite.AbstractSemanticMemoryLite
Updates the state of the cognitive model by modifying the given CognitiveModelState object.
update(CognitiveModelInput) - Method in class gov.sandia.cognition.framework.lite.CognitiveModelLite
Updates the state of the model from the new input.
update(CognitiveModelState, CognitiveModuleState) - Method in class gov.sandia.cognition.framework.lite.VectorBasedPerceptionModule
This method is the main method for a CognitiveModule.
update(byte[], int, int) - Method in class gov.sandia.cognition.hash.MD5Hash
Interior MD5 update step
update(ResultType, Iterable<? extends DataType>) - Method in class gov.sandia.cognition.learning.algorithm.AbstractBatchAndIncrementalLearner
 
update(ResultType, InputOutputPair<? extends InputType, OutputType>) - Method in class gov.sandia.cognition.learning.algorithm.AbstractSupervisedBatchAndIncrementalLearner
 
update(Collection<InputType>, CategoryType) - Method in class gov.sandia.cognition.learning.algorithm.bayes.DiscreteNaiveBayesCategorizer
Updates the probability tables from observing the sample inputs and category.
update(VectorNaiveBayesCategorizer<CategoryType, DistributionType>, InputOutputPair<? extends Vectorizable, CategoryType>) - Method in class gov.sandia.cognition.learning.algorithm.bayes.VectorNaiveBayesCategorizer.OnlineLearner
 
update(DefaultConfidenceWeightedBinaryCategorizer, Vectorizable, Boolean) - Method in class gov.sandia.cognition.learning.algorithm.confidence.AdaptiveRegularizationOfWeights
 
update(DefaultConfidenceWeightedBinaryCategorizer, Vector, boolean) - Method in class gov.sandia.cognition.learning.algorithm.confidence.AdaptiveRegularizationOfWeights
Perform an update for the target using the given input and associated label.
update(DiagonalConfidenceWeightedBinaryCategorizer, Vectorizable, Boolean) - Method in class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalDeviation
 
update(DiagonalConfidenceWeightedBinaryCategorizer, Vector, boolean) - Method in class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalDeviation
Updates the target using the given input and associated label.
update(DiagonalConfidenceWeightedBinaryCategorizer, Vector, boolean) - Method in class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalDeviationProject
 
update(DiagonalConfidenceWeightedBinaryCategorizer, Vectorizable, Boolean) - Method in class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalVariance
 
update(DiagonalConfidenceWeightedBinaryCategorizer, Vector, boolean) - Method in class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalVariance
Updates the target using the given input and associated label.
update(DiagonalConfidenceWeightedBinaryCategorizer, Vector, boolean) - Method in class gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalVarianceProject
 
update(VotingCategorizerEnsemble<InputType, CategoryType, MemberType>, InputType, CategoryType) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.OnlineBaggingCategorizerLearner
 
update(VotingCategorizerEnsemble<InputType, CategoryType, MemberType>, InputOutputPair<? extends InputType, CategoryType>) - Method in class gov.sandia.cognition.learning.algorithm.ensemble.OnlineBaggingCategorizerLearner
 
update(InputOutputPair<? extends Vector, Double>) - Method in class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachineStochasticGradient
Performs a single update of step of the stochastic gradient descent by updating according to the given example.
update(ResultType, DataType) - Method in interface gov.sandia.cognition.learning.algorithm.IncrementalLearner
The update method updates an object of ResultType using the given new data of type DataType, using some form of "learning" algorithm.
update(ResultType, Iterable<? extends DataType>) - Method in interface gov.sandia.cognition.learning.algorithm.IncrementalLearner
The update method updates an object of ResultType using the given new Iterable containing some number of type DataType, using some form of "learning" algorithm.
update(DefaultKernelBinaryCategorizer<InputType>, Iterable<? extends InputOutputPair<? extends InputType, Boolean>>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.AbstractKernelizableBinaryCategorizerOnlineLearner
 
update(DefaultKernelBinaryCategorizer<InputType>, InputOutputPair<? extends InputType, Boolean>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.AbstractKernelizableBinaryCategorizerOnlineLearner
 
update(DefaultKernelBinaryCategorizer<InputType>, InputType, Boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.AbstractKernelizableBinaryCategorizerOnlineLearner
 
update(LinearBinaryCategorizer, Vector, boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.AbstractLinearCombinationOnlineLearner
 
update(DefaultKernelBinaryCategorizer<InputType>, InputType, boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.AbstractLinearCombinationOnlineLearner
 
update(LinearBinaryCategorizer, Vectorizable, Boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.AbstractOnlineLinearBinaryCategorizerLearner
 
update(LinearBinaryCategorizer, Vector, boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.AbstractOnlineLinearBinaryCategorizerLearner
The update method updates an object of ResultType using the given a new supervised input-output pair, using some form of "learning" algorithm.
update(LinearBinaryCategorizer, Vector, boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.AggressiveRelaxedOnlineMaximumMarginAlgorithm
 
update(DefaultKernelBinaryCategorizer<InputType>, InputType, boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.AggressiveRelaxedOnlineMaximumMarginAlgorithm
 
update(LinearBinaryCategorizer, Vector, boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.Ballseptron
 
update(DefaultKernelBinaryCategorizer<InputType>, InputType, boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.Ballseptron
 
update(DefaultKernelBinaryCategorizer<InputType>, InputType, Boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.AbstractOnlineKernelBinaryCategorizerLearner
 
update(DefaultKernelBinaryCategorizer<InputType>, InputType, boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.AbstractOnlineKernelBinaryCategorizerLearner
Updates the target categorizer based on the given input and its associated output.
update(DefaultKernelBinaryCategorizer<InputType>, InputType, boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Forgetron.Basic
 
update(DefaultKernelBinaryCategorizer<InputType>, InputType, boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Forgetron
 
update(DefaultKernelBinaryCategorizer<InputType>, InputOutputPair<? extends InputType, Boolean>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelBinaryCategorizerOnlineLearnerAdapter
 
update(DefaultKernelBinaryCategorizer<InputType>, InputType, Boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelBinaryCategorizerOnlineLearnerAdapter
 
update(DefaultKernelBinaryCategorizer<InputType>, InputType, boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.KernelBinaryCategorizerOnlineLearnerAdapter
 
update(DefaultKernelBinaryCategorizer<InputType>, InputType, boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.OnlineKernelPerceptron
 
update(DefaultKernelBinaryCategorizer<InputType>, InputType, boolean, boolean) - Static method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.OnlineKernelPerceptron
Performs a Perceptron update step on the given target.
update(DefaultKernelBinaryCategorizer<InputType>, InputType, boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.OnlineKernelRandomizedBudgetPerceptron
 
update(DefaultKernelBinaryCategorizer<InputType>, InputType, boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Projectron
 
update(DefaultKernelBinaryCategorizer<InputType>, InputType, boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.RemoveOldestKernelPerceptron
 
update(DefaultKernelBinaryCategorizer<InputType>, InputType, boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.kernel.Stoptron
 
update(DefaultKernelBinaryCategorizer<InputType>, Iterable<? extends InputOutputPair<? extends InputType, Boolean>>) - Method in interface gov.sandia.cognition.learning.algorithm.perceptron.KernelizableBinaryCategorizerOnlineLearner
Performs a kernel-based incremental update step on the given object using the given supervised data.
update(DefaultKernelBinaryCategorizer<InputType>, InputOutputPair<? extends InputType, Boolean>) - Method in interface gov.sandia.cognition.learning.algorithm.perceptron.KernelizableBinaryCategorizerOnlineLearner
Performs a kernel-based incremental update step on the given object using the given supervised data.
update(DefaultKernelBinaryCategorizer<InputType>, InputType, Boolean) - Method in interface gov.sandia.cognition.learning.algorithm.perceptron.KernelizableBinaryCategorizerOnlineLearner
Performs a kernel-based incremental update step on the given object using the given supervised data.
update(DefaultKernelBinaryCategorizer<InputType>, InputType, boolean) - Method in interface gov.sandia.cognition.learning.algorithm.perceptron.KernelizableBinaryCategorizerOnlineLearner
Performs a kernel-based incremental update step on the given object using the given supervised data.
update(LinearBinaryCategorizer, Iterable<? extends InputOutputPair<? extends Vectorizable, Boolean>>, VectorFactory<?>) - Method in interface gov.sandia.cognition.learning.algorithm.perceptron.LinearizableBinaryCategorizerOnlineLearner
Performs a linear incremental update step on the given object using the given supervised data.
update(LinearBinaryCategorizer, InputOutputPair<? extends Vectorizable, Boolean>, VectorFactory<?>) - Method in interface gov.sandia.cognition.learning.algorithm.perceptron.LinearizableBinaryCategorizerOnlineLearner
Performs a linear incremental update step on the given object using the given supervised data.
update(LinearBinaryCategorizer, Vectorizable, Boolean, VectorFactory<?>) - Method in interface gov.sandia.cognition.learning.algorithm.perceptron.LinearizableBinaryCategorizerOnlineLearner
Performs a linear incremental update step on the given object using the given supervised data.
update(LinearBinaryCategorizer, Vectorizable, boolean, VectorFactory<?>) - Method in interface gov.sandia.cognition.learning.algorithm.perceptron.LinearizableBinaryCategorizerOnlineLearner
Performs a linear incremental update step on the given object using the given supervised data.
update(LinearMultiCategorizer<CategoryType>, InputOutputPair<? extends Vectorizable, CategoryType>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineMultiPerceptron.ProportionalUpdate
 
update(LinearMultiCategorizer<CategoryType>, InputOutputPair<? extends Vectorizable, CategoryType>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineMultiPerceptron.UniformUpdate
 
update(LinearMultiCategorizer<CategoryType>, InputOutputPair<? extends Vectorizable, CategoryType>) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineMultiPerceptron
 
update(WeightedBinaryEnsemble<Vectorizable, LinearBinaryCategorizer>, Vectorizable, Boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineVotedPerceptron
 
update(WeightedBinaryEnsemble<Vectorizable, LinearBinaryCategorizer>, Vector, boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineVotedPerceptron
The update method updates an object of ResultType using the given a new supervised input-output pair, using some form of "learning" algorithm.
update(LinearBinaryCategorizer, Vector, boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.RelaxedOnlineMaximumMarginAlgorithm
 
update(DefaultKernelBinaryCategorizer<InputType>, InputType, boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.RelaxedOnlineMaximumMarginAlgorithm
 
update(LinearBinaryCategorizer, Vector, boolean) - Method in class gov.sandia.cognition.learning.algorithm.perceptron.Winnow
 
update(ResultType, InputType, OutputType) - Method in interface gov.sandia.cognition.learning.algorithm.SupervisedIncrementalLearner
The update method updates an object of ResultType using the given a new supervised input-output pair, using some form of "learning" algorithm.
update - Variable in class gov.sandia.cognition.learning.algorithm.svm.PrimalEstimatedSubGradient
A vector used to compute the update for the weight vector.
update(SuccessiveOverrelaxation<InputType>.Entry) - Method in class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation
Performs an update step on the given entry using the successive overrelaxation procedure.
update(SufficientStatisticsType, DataType) - Method in class gov.sandia.cognition.statistics.AbstractIncrementalEstimator
 
update(Iterable<? extends DataType>) - Method in class gov.sandia.cognition.statistics.AbstractSufficientStatistic
 
update(MultivariateGaussian, Vector) - Method in class gov.sandia.cognition.statistics.bayesian.AbstractKalmanFilter
 
update(InputOutputPair<? extends Vectorizable, Double>) - Method in class gov.sandia.cognition.statistics.bayesian.BayesianLinearRegression.IncrementalEstimator.SufficientStatistic
 
update(BayesianLinearRegression.IncrementalEstimator.SufficientStatistic, InputOutputPair<? extends Vectorizable, Double>) - Method in class gov.sandia.cognition.statistics.bayesian.BayesianLinearRegression.IncrementalEstimator
 
update(BayesianLinearRegression.IncrementalEstimator.SufficientStatistic, Iterable<? extends InputOutputPair<? extends Vectorizable, Double>>) - Method in class gov.sandia.cognition.statistics.bayesian.BayesianLinearRegression.IncrementalEstimator
 
update(InputOutputPair<? extends Vectorizable, Double>) - Method in class gov.sandia.cognition.statistics.bayesian.BayesianRobustLinearRegression.IncrementalEstimator.SufficientStatistic
 
update(BayesianRobustLinearRegression.IncrementalEstimator.SufficientStatistic, InputOutputPair<? extends Vectorizable, Double>) - Method in class gov.sandia.cognition.statistics.bayesian.BayesianRobustLinearRegression.IncrementalEstimator
 
update(BayesianRobustLinearRegression.IncrementalEstimator.SufficientStatistic, Iterable<? extends InputOutputPair<? extends Vectorizable, Double>>) - Method in class gov.sandia.cognition.statistics.bayesian.BayesianRobustLinearRegression.IncrementalEstimator
 
update(BetaDistribution, Number) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.BernoulliBayesianEstimator
 
update(BetaDistribution, Number) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.BinomialBayesianEstimator
 
update(GammaDistribution, Double) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.ExponentialBayesianEstimator
 
update(GammaDistribution, Double) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.GammaInverseScaleBayesianEstimator
 
update(DirichletDistribution, Vector) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.MultinomialBayesianEstimator
 
update(MultivariateGaussian, Iterable<? extends Vector>) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanBayesianEstimator
 
update(MultivariateGaussian, Vector) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanBayesianEstimator
 
update(NormalInverseWishartDistribution, Vector) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanCovarianceBayesianEstimator
 
update(NormalInverseWishartDistribution, Iterable<? extends Vector>) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanCovarianceBayesianEstimator
 
update(GammaDistribution, Number) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.PoissonBayesianEstimator
 
update(ParetoDistribution, Double) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.UniformDistributionBayesianEstimator
 
update(UnivariateGaussian, Double) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanBayesianEstimator
 
update(NormalInverseGammaDistribution, Double) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanVarianceBayesianEstimator
 
update(NormalInverseGammaDistribution, Iterable<? extends Double>) - Method in class gov.sandia.cognition.statistics.bayesian.conjugate.UnivariateGaussianMeanVarianceBayesianEstimator
 
update(ParameterType) - Method in interface gov.sandia.cognition.statistics.bayesian.ParticleFilter.Updater
Makes a proposal update given the current parameter set
update(DataDistribution<ParameterType>, ObservationType) - Method in class gov.sandia.cognition.statistics.bayesian.SamplingImportanceResamplingParticleFilter
 
update(DefaultDataDistribution.PMF<KeyType>, KeyType) - Method in class gov.sandia.cognition.statistics.distribution.DefaultDataDistribution.Estimator
 
update(DefaultDataDistribution.PMF<KeyType>, WeightedValue<? extends KeyType>) - Method in class gov.sandia.cognition.statistics.distribution.DefaultDataDistribution.WeightedEstimator
 
update(Vector) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.SufficientStatistic
 
update(Vector) - Method in class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.SufficientStatisticCovarianceInverse
 
update(ScalarDataDistribution, Double) - Method in class gov.sandia.cognition.statistics.distribution.ScalarDataDistribution.Estimator
 
update(Double) - Method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.SufficientStatistic
 
update(double) - Method in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.SufficientStatistic
Adds a value to the sufficient statistics for the Gaussian.
update(DataType) - Method in interface gov.sandia.cognition.statistics.SufficientStatistic
Updates the sufficient statistics from the given value
update(Iterable<? extends DataType>) - Method in interface gov.sandia.cognition.statistics.SufficientStatistic
Updates the sufficient statistics from the given set of values
update(SimpleStatisticalSpellingCorrector, String) - Method in class gov.sandia.cognition.text.spelling.SimpleStatisticalSpellingCorrector.Learner
 
updateAlpha(double, int) - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel
Runs the Gibbs sampler for the concentration parameter, alpha, given the data.
updateAssignments() - Method in class gov.sandia.cognition.learning.algorithm.clustering.AffinityPropagation
Updates the assignments of all the examples to their exemplars (clusters) using the current availability and responsibility values.
updateAvailabilities() - Method in class gov.sandia.cognition.learning.algorithm.clustering.AffinityPropagation
Updates the availabilities matrix based on the current responsibility values.
updateBias - Variable in class gov.sandia.cognition.learning.algorithm.perceptron.AbstractLinearCombinationOnlineLearner
An option controlling whether or not the bias is updated or not.
updateCluster(Vector) - Method in class gov.sandia.cognition.learning.algorithm.clustering.cluster.MiniBatchCentroidCluster
Updates the cluster for the given point.
updateCluster(Collection<? extends Vector>) - Method in class gov.sandia.cognition.learning.algorithm.clustering.cluster.MiniBatchCentroidCluster
Updates the clusters for all the given points.
updateClusters(ArrayList<Collection<ObservationType>>) - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel
Update each cluster according to the data assigned to it
updateClusters(ArrayList<Collection<ObservationType>>) - Method in class gov.sandia.cognition.statistics.bayesian.ParallelDirichletProcessMixtureModel
 
updateConditionalDistribution(Random) - Method in class gov.sandia.cognition.statistics.bayesian.AbstractBayesianParameter
 
updateConditionalDistribution(Random) - Method in interface gov.sandia.cognition.statistics.bayesian.BayesianParameter
Updates the conditional distribution by sampling from the prior distribution and assigning through the DistributionParameter.
updateConditionalDistribution(Random) - Method in class gov.sandia.cognition.statistics.bayesian.DefaultBayesianParameter
 
updateHessianInverse(Matrix, Vector, Vector) - Method in class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerBFGS
 
updateHessianInverse(Matrix, Vector, Vector) - Method in class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerDFP
 
updateHessianInverse(Matrix, Vector, Vector) - Method in class gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerQuasiNewton
The step that makes BFGS/DFP/SR1 different from each other.
updateInitialProbabilities(ArrayList<Vector>) - Method in class gov.sandia.cognition.learning.algorithm.hmm.BaumWelchAlgorithm
Updates the initial probabilities from sequenceGammas
updateMinDistance(int) - Method in class gov.sandia.cognition.learning.algorithm.clustering.AgglomerativeClusterer
Updates the cached minimum distance for this cluster by comparing it to all the other clusters.
updateOutOfBagEstimates() - Method in class gov.sandia.cognition.learning.algorithm.ensemble.BaggingCategorizerLearner.OutOfBagErrorStoppingCriteria
Updates the out-of-bag estimates that this ensemble keeps.
updateProbabilityFunctions(ArrayList<Vector>) - Method in class gov.sandia.cognition.learning.algorithm.hmm.BaumWelchAlgorithm
Updates the probability function from the concatenated gammas from all sequences
updateProbabilityFunctions(ArrayList<Vector>) - Method in class gov.sandia.cognition.learning.algorithm.hmm.ParallelBaumWelchAlgorithm
 
updater - Variable in class gov.sandia.cognition.statistics.bayesian.AbstractParticleFilter
Updates the particle given an existing particle.
updater - Variable in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel
Creates the clusters and predictive prior distributions
updater - Variable in class gov.sandia.cognition.statistics.bayesian.ImportanceSampling
Updater for the ImportanceSampling algorithm.
updater - Variable in class gov.sandia.cognition.statistics.bayesian.MetropolisHastingsAlgorithm
The object that makes proposal samples from the current location.
updater - Variable in class gov.sandia.cognition.statistics.bayesian.RejectionSampling
Updater for the ImportanceSampling algorithm.
updateResponsibilities() - Method in class gov.sandia.cognition.learning.algorithm.clustering.AffinityPropagation
Updates the responsibilities matrix using the similarity values and the current availability values.
updateSequenceLogLikelihoods(HiddenMarkovModel<ObservationType>) - Method in class gov.sandia.cognition.learning.algorithm.hmm.BaumWelchAlgorithm
Updates the internal sequence likelihoods for the given HMM
updateTransitionMatrix(ArrayList<Matrix>) - Method in class gov.sandia.cognition.learning.algorithm.hmm.BaumWelchAlgorithm
Computes an updated transition matrix from the scaled estimates
upperBounds - Variable in class gov.sandia.cognition.learning.algorithm.clustering.OptimizedKMeansClusterer
The upper bounds on the distance to the current assigned cluster.
UpperEnvelope() - Constructor for class gov.sandia.cognition.statistics.bayesian.AdaptiveRejectionSampling.UpperEnvelope
Default constructor
upperLeft - Variable in class gov.sandia.cognition.math.geometry.Quadtree.Node
The child for the upper-left quadrant of this node.
upperRight - Variable in class gov.sandia.cognition.math.geometry.Quadtree.Node
The child for the upper-right quadrant of this node.
useCachedClusters - Variable in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
Whether or not the current learning is using cached cluster results.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Skip navigation links