Skip navigation links
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

M

m - Variable in class gov.sandia.cognition.learning.algorithm.minimization.matrix.MatrixVectorMultiplier
The matrix to multiply with.
makeProposal(Random) - Method in class gov.sandia.cognition.statistics.bayesian.ImportanceSampling.DefaultUpdater
 
makeProposal(Random) - Method in interface gov.sandia.cognition.statistics.bayesian.ImportanceSampling.Updater
Samples from the parameter prior
makeProposal(ParameterType) - Method in interface gov.sandia.cognition.statistics.bayesian.MetropolisHastingsAlgorithm.Updater
Makes a proposal update given the current parameter set
makeProposal(Random) - Method in class gov.sandia.cognition.statistics.bayesian.RejectionSampling.DefaultUpdater
 
makeProposal(Random) - Method in interface gov.sandia.cognition.statistics.bayesian.RejectionSampling.Updater
Samples from the parameter prior
ManhattanDistanceMetric - Class in gov.sandia.cognition.learning.function.distance
The ManhattanDistanceMetric class implements a distance metric between two vectors that is implemented as the sum of the absolute value of the difference between the elements in the vectors.
ManhattanDistanceMetric() - Constructor for class gov.sandia.cognition.learning.function.distance.ManhattanDistanceMetric
Creates a new instance of ManhattanDistanceMetric.
MannWhitneyUConfidence - Class in gov.sandia.cognition.statistics.method
Performs a Mann-Whitney U-test on the given data (usually simply called a "U-test", sometimes called a Wilcoxon-Mann-Whitney U-test, or Wilcoxon rank-sum test).
MannWhitneyUConfidence() - Constructor for class gov.sandia.cognition.statistics.method.MannWhitneyUConfidence
Creates a new instance of MannWhitneyUConfidence
MannWhitneyUConfidence.Statistic - Class in gov.sandia.cognition.statistics.method
Statistics from the Mann-Whitney U-test
map - Variable in class gov.sandia.cognition.collection.AbstractLogNumberMap.SimpleEntrySet
Backing map
map - Variable in class gov.sandia.cognition.collection.AbstractMutableDoubleMap.SimpleEntrySet
Backing map
map - Variable in class gov.sandia.cognition.collection.AbstractScalarMap
Map backing that performs the storage.
MarkovChain - Class in gov.sandia.cognition.learning.algorithm.hmm
A Markov chain is a random process that has a finite number of states with random transition probabilities between states at discrete time steps.
MarkovChain() - Constructor for class gov.sandia.cognition.learning.algorithm.hmm.MarkovChain
Default constructor.
MarkovChain(int) - Constructor for class gov.sandia.cognition.learning.algorithm.hmm.MarkovChain
Creates a new instance of ContinuousDensityHiddenMarkovModel with uniform initial and transition probabilities.
MarkovChain(Vector, Matrix) - Constructor for class gov.sandia.cognition.learning.algorithm.hmm.MarkovChain
Creates a new instance of ContinuousDensityHiddenMarkovModel
MarkovChainMonteCarlo<ObservationType,ParameterType> - Interface in gov.sandia.cognition.statistics.bayesian
Defines the functionality of a Markov chain Monte Carlo algorithm.
MarkovInequality - Class in gov.sandia.cognition.statistics.method
Implementation of the Markov Inequality hypothesis test.
MarkovInequality() - Constructor for class gov.sandia.cognition.statistics.method.MarkovInequality
Creates a new instance of MarkovInequality
MathUtil - Class in gov.sandia.cognition.math
The MathUtil class implements mathematical utility functions.
MathUtil() - Constructor for class gov.sandia.cognition.math.MathUtil
 
Matrix - Interface in gov.sandia.cognition.math.matrix
Defines the base functionality for all implementations of a Matrix
MatrixBasedTermSimilarityNetwork - Class in gov.sandia.cognition.text.term.relation
A relation network between terms based on their similarity.
MatrixBasedTermSimilarityNetwork(TermIndex, Matrix) - Constructor for class gov.sandia.cognition.text.term.relation.MatrixBasedTermSimilarityNetwork
Creates a new MatrixBasedTermSimilarityNetwork.
MatrixEntry - Interface in gov.sandia.cognition.math.matrix
Interface that specifies the functionality for a matrix entry
MatrixEntryIndexComparatorMTJ - Class in gov.sandia.cognition.math.matrix.mtj
An index comparator for MTJ matrices.
MatrixEntryIndexComparatorMTJ() - Constructor for class gov.sandia.cognition.math.matrix.mtj.MatrixEntryIndexComparatorMTJ
Creates a new instance of MatrixEntryComparatorMTJ
MatrixFactory<MatrixType extends Matrix> - Class in gov.sandia.cognition.math.matrix
Abstract factory for creating Matrix objects.
MatrixFactory() - Constructor for class gov.sandia.cognition.math.matrix.MatrixFactory
Creates a new MatrixFactory.
matrixFactory - Variable in class gov.sandia.cognition.text.term.relation.TermVectorSimilarityNetworkCreator
The matrix factory to create the matrix that backs the similarity network.
matrixFactory - Variable in class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis
The matrix factory.
MatrixFactoryContainer - Interface in gov.sandia.cognition.math.matrix
Interface for a container for a matrix factory.
MatrixJacobian() - Constructor for class gov.sandia.cognition.math.matrix.NumericalDifferentiator.MatrixJacobian
Default constructor
MatrixJacobian(Evaluator<? super Vector, Vector>) - Constructor for class gov.sandia.cognition.math.matrix.NumericalDifferentiator.MatrixJacobian
Creates a new instance of VectorJacobian
MatrixJacobian(Evaluator<? super Vector, Vector>, double) - Constructor for class gov.sandia.cognition.math.matrix.NumericalDifferentiator.MatrixJacobian
Create a new instance of VectorJacobian
MatrixReader - Class in gov.sandia.cognition.math.matrix
Reads a Matrix from the specified reader.
MatrixReader(Reader) - Constructor for class gov.sandia.cognition.math.matrix.MatrixReader
Creates a new instance of MatrixReader
MatrixUnionIterator - Class in gov.sandia.cognition.math.matrix
Iterator that stops at all nonzero entries for EITHER underlying matrix
MatrixUnionIterator(Iterator<MatrixEntry>, Iterator<MatrixEntry>, TwoMatrixEntry, EntryIndexComparator<MatrixEntry>) - Constructor for class gov.sandia.cognition.math.matrix.MatrixUnionIterator
Creates a new instance of MatrixUnionIterator
MatrixUnionIteratorMTJ - Class in gov.sandia.cognition.math.matrix.mtj
Implementation of MatrixUnionIterator for MTJ-based matrices.
MatrixUnionIteratorMTJ(AbstractMTJMatrix, AbstractMTJMatrix) - Constructor for class gov.sandia.cognition.math.matrix.mtj.MatrixUnionIteratorMTJ
Creates a new instance of AbstractMTJMatrixIntersectionIterator, iterating at rowIndex = 0, columnIndex = 0
MatrixVectorMultiplier - Class in gov.sandia.cognition.learning.algorithm.minimization.matrix
The necessary multiplication wrapper class to match the FunctionMinimizer interface.
MatrixVectorMultiplier(Matrix) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.matrix.MatrixVectorMultiplier
Clones the input matrix to prevent any later edits to the input from changing the results of iterative multiplications.
MatrixVectorMultiplierDiagonalPreconditioner - Class in gov.sandia.cognition.learning.algorithm.minimization.matrix
Implements a diagonal preconditioner for a matrix-vector multiplier.
MatrixVectorMultiplierDiagonalPreconditioner(Matrix) - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.matrix.MatrixVectorMultiplierDiagonalPreconditioner
Creates a new MatrixVectorMultiplierDiagonalPreconditioner for the given matrix.
MatrixVectorMultiplierWithPreconditioner - Class in gov.sandia.cognition.learning.algorithm.minimization.matrix
As various preconditioner operations could be created, this class defines the interface that must be followed by them.
MatrixWriter - Class in gov.sandia.cognition.math.matrix
Writes a Matrix to a Java-based Writer (files, etc.)
MatrixWriter(Writer) - Constructor for class gov.sandia.cognition.math.matrix.MatrixWriter
Creates a new instance of MatrixWriter
max(LogNumber) - Method in class gov.sandia.cognition.math.LogNumber
A new LogNumber that is the maximum of this and another.
max(UnsignedLogNumber) - Method in class gov.sandia.cognition.math.UnsignedLogNumber
A new LogNumber that is the maximum of this and another.
MAX_STEP - Static variable in class gov.sandia.cognition.learning.algorithm.root.RootFinderSecantMethod
Maximum step size allowed, 1.0
MAX_VALUE - Static variable in class gov.sandia.cognition.time.DefaultDuration
The maximum value of a duration.
maxCriterionDecrease - Variable in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
The maximum decrease in training criterion allowed.
maxDepth - Variable in class gov.sandia.cognition.learning.algorithm.tree.CategorizationTreeLearner
The maximum depth for the tree.
maxDepth - Variable in class gov.sandia.cognition.learning.algorithm.tree.RegressionTreeLearner
The maximum depth for the tree.
maxDistance - Variable in class gov.sandia.cognition.learning.algorithm.clustering.AgglomerativeClusterer
The maximum distance between clusters allowed.
maxEquals(LogNumber) - Method in class gov.sandia.cognition.math.LogNumber
Changes this value to be the maximum of this value or the given value.
maxEquals(UnsignedLogNumber) - Method in class gov.sandia.cognition.math.UnsignedLogNumber
Changes this value to be the maximum of this value or the given value.
MaximumAPosterioriCategorizer<ObservationType,CategoryType> - Class in gov.sandia.cognition.learning.function.categorization
Categorizer that returns the category with the highest posterior likelihood for a given observation.
MaximumAPosterioriCategorizer() - Constructor for class gov.sandia.cognition.learning.function.categorization.MaximumAPosterioriCategorizer
Creates a new instance of MaximumAPosterioriCategorizer
MaximumAPosterioriCategorizer.Learner<ObservationType,CategoryType> - Class in gov.sandia.cognition.learning.function.categorization
Learner for the MAP categorizer
maximumLength - Variable in class gov.sandia.cognition.text.term.filter.TermLengthFilter
The maximum allowed length.
MaximumLikelihoodDistributionEstimator<DataType> - Class in gov.sandia.cognition.statistics.method
Estimates the most-likely distribution, and corresponding parameters, of that generated the given data from a pre-determined collection of candidate parameteric distributions.
MaximumLikelihoodDistributionEstimator() - Constructor for class gov.sandia.cognition.statistics.method.MaximumLikelihoodDistributionEstimator
Creates a new instance of MaximumLikelihoodDistributionEstimator
MaximumLikelihoodDistributionEstimator(Collection<? extends ClosedFormComputableDistribution<DataType>>) - Constructor for class gov.sandia.cognition.statistics.method.MaximumLikelihoodDistributionEstimator
Creates a new instance of MaximumLikelihoodDistributionEstimator
MaximumLikelihoodDistributionEstimator.DistributionEstimationTask<DataType> - Class in gov.sandia.cognition.statistics.method
Estimates the optimal parameters of a single distribution
MaximumLikelihoodEstimator() - Constructor for class gov.sandia.cognition.statistics.distribution.BinomialDistribution.MaximumLikelihoodEstimator
Default constructor
MaximumLikelihoodEstimator() - Constructor for class gov.sandia.cognition.statistics.distribution.ExponentialDistribution.MaximumLikelihoodEstimator
Default estimator.
MaximumLikelihoodEstimator() - Constructor for class gov.sandia.cognition.statistics.distribution.GeometricDistribution.MaximumLikelihoodEstimator
Default constructor
MaximumLikelihoodEstimator() - Constructor for class gov.sandia.cognition.statistics.distribution.LaplaceDistribution.MaximumLikelihoodEstimator
Default constructor
MaximumLikelihoodEstimator() - Constructor for class gov.sandia.cognition.statistics.distribution.LogNormalDistribution.MaximumLikelihoodEstimator
Default constructor
MaximumLikelihoodEstimator() - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.MaximumLikelihoodEstimator
Default constructor;
MaximumLikelihoodEstimator(double) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateGaussian.MaximumLikelihoodEstimator
Creates a new instance of MaximumLikelihoodEstimator
MaximumLikelihoodEstimator() - Constructor for class gov.sandia.cognition.statistics.distribution.NegativeBinomialDistribution.MaximumLikelihoodEstimator
Default constructor
MaximumLikelihoodEstimator() - Constructor for class gov.sandia.cognition.statistics.distribution.PoissonDistribution.MaximumLikelihoodEstimator
Default constructor
MaximumLikelihoodEstimator() - Constructor for class gov.sandia.cognition.statistics.distribution.StudentTDistribution.MaximumLikelihoodEstimator
Default constructor
MaximumLikelihoodEstimator(double) - Constructor for class gov.sandia.cognition.statistics.distribution.StudentTDistribution.MaximumLikelihoodEstimator
Creates a new instance of MaximumLikelihoodEstimator
MaximumLikelihoodEstimator() - Constructor for class gov.sandia.cognition.statistics.distribution.UniformDistribution.MaximumLikelihoodEstimator
Default constructor
MaximumLikelihoodEstimator() - Constructor for class gov.sandia.cognition.statistics.distribution.UniformIntegerDistribution.MaximumLikelihoodEstimator
MaximumLikelihoodEstimator() - Constructor for class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.MaximumLikelihoodEstimator
Default constructor
MaximumLikelihoodEstimator(double) - Constructor for class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.MaximumLikelihoodEstimator
Creates a new instance of MaximumLikelihoodEstimator
maxIterations - Variable in class gov.sandia.cognition.algorithm.AbstractAnytimeAlgorithm
Maximum number of iterations before stopping
maxIterations - Variable in class gov.sandia.cognition.learning.algorithm.minimization.matrix.IterativeMatrixSolver
Execution will stop after this number of iterations even if it has not converged.
maxIterations - Variable in class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis.Result
The maximum number of iterations for the E-M evaluation.
maxWeight - Variable in class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation
The maximum weight for a support vector.
mcmcUpdate() - Method in class gov.sandia.cognition.statistics.bayesian.AbstractMarkovChainMonteCarlo
Performs a valid MCMC update step.
mcmcUpdate() - Method in class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel
 
mcmcUpdate() - Method in class gov.sandia.cognition.statistics.bayesian.MetropolisHastingsAlgorithm
 
MD5Hash - Class in gov.sandia.cognition.hash
Implementation of the MD5 128-bit (16-byte) cryptographic hash function.
MD5Hash() - Constructor for class gov.sandia.cognition.hash.MD5Hash
Default constructor
mean - Variable in class gov.sandia.cognition.learning.data.feature.StandardDistributionNormalizer
The mean of normalization.
MEAN - Static variable in class gov.sandia.cognition.statistics.distribution.KolmogorovDistribution
Value of the mean, found empirically, as I can't seem to find the answer in any reference I can get my hands on, 0.868481392844716.
mean - Variable in class gov.sandia.cognition.statistics.distribution.LaplaceDistribution
Mean of the distribution
mean - Variable in class gov.sandia.cognition.statistics.distribution.LogisticDistribution
Mean (median and mode) of the distribution.
mean - Variable in class gov.sandia.cognition.statistics.distribution.MultivariateStudentTDistribution
Mean, or noncentrality parameter, of the distribution
mean - Variable in class gov.sandia.cognition.statistics.distribution.StudentTDistribution
Mean, or noncentrality parameter, of the distribution
mean - Variable in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian
First central moment (expectation) of the distribution
mean - Variable in class gov.sandia.cognition.statistics.distribution.UnivariateGaussian.SufficientStatistic
The mean of the Gaussian.
MEAN_GETTER - Static variable in class gov.sandia.cognition.statistics.DefaultDistributionParameter
Getter for the mean, "getMean".
MEAN_NAME - Static variable in class gov.sandia.cognition.statistics.DefaultDistributionParameter
Name of the mean property, "mean".
MEAN_SETTER - Static variable in class gov.sandia.cognition.statistics.DefaultDistributionParameter
Setter for the mean, "setMean".
MeanAbsoluteErrorEvaluator<InputType> - Class in gov.sandia.cognition.learning.performance
The MeanAbsoluteError class implements a method for computing the performance of a supervised learner for a scalar function by the mean absolute value between the target and estimated outputs.
MeanAbsoluteErrorEvaluator() - Constructor for class gov.sandia.cognition.learning.performance.MeanAbsoluteErrorEvaluator
Creates a new instance of MeanAbsoluteError
MeanL1CostFunction - Class in gov.sandia.cognition.learning.function.cost
Cost function that evaluates the mean 1-norm error (absolute value of difference) weighted by a sample "weight" that is embedded in each sample.
MeanL1CostFunction() - Constructor for class gov.sandia.cognition.learning.function.cost.MeanL1CostFunction
Default constructor
MeanL1CostFunction(Collection<? extends InputOutputPair<? extends Vector, Vector>>) - Constructor for class gov.sandia.cognition.learning.function.cost.MeanL1CostFunction
Creates a new instance of MeanL1CostFunction
MeanLearner - Class in gov.sandia.cognition.learning.algorithm.baseline
The MeanLearner class implements a baseline learner that computes the mean of a given set of values.
MeanLearner() - Constructor for class gov.sandia.cognition.learning.algorithm.baseline.MeanLearner
Creates a new MeanLearner.
MeanSquaredErrorCostFunction - Class in gov.sandia.cognition.learning.function.cost
The MeanSquaredErrorCostFunction implements a cost function for functions that take as input a vector and return a vector.
MeanSquaredErrorCostFunction() - Constructor for class gov.sandia.cognition.learning.function.cost.MeanSquaredErrorCostFunction
Creates a new instance of MeanSquaredErrorCostFunction with no initial dataset.
MeanSquaredErrorCostFunction(Collection<? extends InputOutputPair<? extends Vector, Vector>>) - Constructor for class gov.sandia.cognition.learning.function.cost.MeanSquaredErrorCostFunction
Creates a new instance of MeanSquaredErrorCostFunction
MeanSquaredErrorEvaluator<InputType> - Class in gov.sandia.cognition.learning.performance
The MeanSquaredError class implements the method for computing the performance of a supervised learner for a scalar function by the mean squared between the target and estimated outputs.
MeanSquaredErrorEvaluator() - Constructor for class gov.sandia.cognition.learning.performance.MeanSquaredErrorEvaluator
Creates a new instance of MeanSquaredError.
meanSquaredResiduals - Variable in class gov.sandia.cognition.statistics.method.TukeyKramerConfidence.Statistic
Mean-squared difference over all subjects
MeanZeroOneErrorEvaluator<InputType,DataType> - Class in gov.sandia.cognition.learning.performance
The MeanZeroOneErrorEvaluator class implements a method for computing the performance of a supervised learner by the mean number of incorrect values between the target and estimated outputs.
MeanZeroOneErrorEvaluator() - Constructor for class gov.sandia.cognition.learning.performance.MeanZeroOneErrorEvaluator
Creates a new instance of MeanZeroOneErrorEvaluator.
MeasurablePerformanceAlgorithm - Interface in gov.sandia.cognition.algorithm
An interface for an algorithm that has a measurable quantity of performance that can be retrieved.
measure(MultivariateGaussian, Vector) - Method in class gov.sandia.cognition.statistics.bayesian.AbstractKalmanFilter
Integrates a measurement into the system, refining the current belief of the state of the system
measure(MultivariateGaussian, Vector) - Method in class gov.sandia.cognition.statistics.bayesian.ExtendedKalmanFilter
 
measure(MultivariateGaussian, Vector) - Method in class gov.sandia.cognition.statistics.bayesian.KalmanFilter
 
measurementCovariance - Variable in class gov.sandia.cognition.statistics.bayesian.AbstractKalmanFilter
Covariance associated with the measurements.
MedoidClusterCreator<DataType> - Class in gov.sandia.cognition.learning.algorithm.clustering.cluster
The MedoidClusterCreator class creates a CentroidCluster at the sample that minimizes the sum of the divergence to the objects assigned to the cluster.
MedoidClusterCreator() - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.cluster.MedoidClusterCreator
Creates a new instance of MedoidClusterCreator
MedoidClusterCreator(DivergenceFunction<? super DataType, ? super DataType>) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.cluster.MedoidClusterCreator
Creates a new instance of MedoidClusterCreator
members - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractUnweightedEnsemble
The members of the ensemble.
members - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.AbstractWeightedEnsemble
The members of the ensemble.
members - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.VotingCategorizerEnsemble
The members of the ensemble.
members - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.WeightedBinaryEnsemble
The members of the ensemble.
members - Variable in class gov.sandia.cognition.learning.algorithm.ensemble.WeightedVotingCategorizerEnsemble
The members of the ensemble.
mergeClusters(int, int, double) - Method in class gov.sandia.cognition.learning.algorithm.clustering.AgglomerativeClusterer
Merges two clusters together, creating a new BinaryTreeCluster and updating the internal state.
mergeCollections(Collection<InputType>, Collection<OutputType>) - Static method in class gov.sandia.cognition.learning.data.DefaultInputOutputPair
Takes two collections of data of equal size and creates a single ArrayList of InputOutputPairs out of them.
mergeCollections(Collection<? extends TargetType>, Collection<? extends EstimateType>) - Static method in class gov.sandia.cognition.learning.data.DefaultTargetEstimatePair
Merges together two Collections into a single target-estimate pair Collection.
mergeCollections(Collection<InputType>, Collection<OutputType>, Collection<? extends Number>) - Static method in class gov.sandia.cognition.learning.data.DefaultWeightedInputOutputPair
Takes two Collections of data and creates a single ArrayList out of them.
mergeCollections(Collection<FirstType>, Collection<SecondType>) - Static method in class gov.sandia.cognition.util.DefaultPair
Takes two collections of data of the same size and creates a new single ArrayList<DefaultPair> out of their elements.
mergeCollections(Collection<FirstType>, Collection<SecondType>, Collection<ThirdType>) - Static method in class gov.sandia.cognition.util.DefaultTriple
Takes three collections of data of the same size and creates a new single ArrayList<DefaultTriple> out of their elements.
Metric<EvaluatedType> - Interface in gov.sandia.cognition.math
A metric is a non-negative function that satisfies the following properties g(x, y) + g(y, z) >= g(x, z) g(x, y) == g(y, x) g(x, x) == 0.
MetropolisHastingsAlgorithm<ObservationType,ParameterType> - Class in gov.sandia.cognition.statistics.bayesian
An implementation of the Metropolis-Hastings MCMC algorithm, which is the most general formulation of MCMC but can be slow.
MetropolisHastingsAlgorithm() - Constructor for class gov.sandia.cognition.statistics.bayesian.MetropolisHastingsAlgorithm
Creates a new instance of MetropolisHastingsAlgorithm.
MetropolisHastingsAlgorithm.Updater<ObservationType,ParameterType> - Interface in gov.sandia.cognition.statistics.bayesian
Creates proposals for the MCMC steps.
MILLISECOND - Static variable in class gov.sandia.cognition.time.DefaultDuration
A millisecond in duration.
MILLISECONDS_PER_DAY - Static variable in class gov.sandia.cognition.time.DefaultDuration
There are 86400000 milliseoncds per day.
MILLISECONDS_PER_HOUR - Static variable in class gov.sandia.cognition.time.DefaultDuration
There are 3600000 milliseconds per hour.
MILLISECONDS_PER_MINUTE - Static variable in class gov.sandia.cognition.time.DefaultDuration
There are 60000 milliseconds per minute.
MILLISECONDS_PER_SECOND - Static variable in class gov.sandia.cognition.time.DefaultDuration
There are 1000 milliseconds per second.
min(LogNumber) - Method in class gov.sandia.cognition.math.LogNumber
A new LogNumber that is the minimum of this and another.
min(UnsignedLogNumber) - Method in class gov.sandia.cognition.math.UnsignedLogNumber
A new LogNumber that is the minimum of this and another.
MIN_VALUE - Static variable in class gov.sandia.cognition.time.DefaultDuration
The minimum value of a duration.
minChange - Variable in class gov.sandia.cognition.learning.algorithm.factor.machine.FactorizationMachineAlternatingLeastSquares
The minimum change allowed in an iteration.
minChange - Variable in class gov.sandia.cognition.learning.algorithm.svm.SuccessiveOverrelaxation
The minimum change to allow for the algorithm to keep going.
minClusters - Variable in class gov.sandia.cognition.learning.algorithm.clustering.AgglomerativeClusterer
The array of indexes that maps the cluster index to the closest cluster.
minClusterSize - Variable in class gov.sandia.cognition.learning.algorithm.clustering.PartitionalClusterer
The minimum number of elements per cluster allowed.
minDistances - Variable in class gov.sandia.cognition.learning.algorithm.clustering.AgglomerativeClusterer
An array list mapping the cached minimum distance from the cluster with the given index to any other clusters.
minEquals(LogNumber) - Method in class gov.sandia.cognition.math.LogNumber
Changes this value to be the minimum of this value or the given value.
minEquals(UnsignedLogNumber) - Method in class gov.sandia.cognition.math.UnsignedLogNumber
Changes this value to be the minimum of this value or the given value.
MiniBatchCentroidCluster - Class in gov.sandia.cognition.learning.algorithm.clustering.cluster
 
MiniBatchCentroidCluster(Collection<? extends Vector>) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.cluster.MiniBatchCentroidCluster
 
MiniBatchKMeansClusterer<DataType extends Vector> - Class in gov.sandia.cognition.learning.algorithm.clustering
Approximates k-means clustering by working on random subsets of the data.
MiniBatchKMeansClusterer(int) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.MiniBatchKMeansClusterer
Create a clusterer with the default parameters.
MiniBatchKMeansClusterer(int, int, FixedClusterInitializer<MiniBatchCentroidCluster, Vector>, Semimetric<? super Vector>, ClusterCreator<MiniBatchCentroidCluster, Vector>, Random) - Constructor for class gov.sandia.cognition.learning.algorithm.clustering.MiniBatchKMeansClusterer
MiniBatchKMeansClusterer.Builder<DataType extends Vector> - Class in gov.sandia.cognition.learning.algorithm.clustering
Can be used to create custom MiniBatchKMeansClusterers without using the big constructor.
MinimizationStoppingCriterion - Class in gov.sandia.cognition.learning.algorithm.minimization
Implementation of almost zero-gradient convergence test for function minimizers.
MinimizationStoppingCriterion() - Constructor for class gov.sandia.cognition.learning.algorithm.minimization.MinimizationStoppingCriterion
 
minimizeAlongDirection(DirectionalVectorToScalarFunction, Double, Vector) - Method in class gov.sandia.cognition.learning.algorithm.minimization.line.AbstractAnytimeLineMinimizer
 
minimizeAlongDirection(DirectionalVectorToScalarFunction, Double, Vector) - Method in interface gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizer
Minimizes a Vector function along the direction given by the DirectionalVectorToScalarFunction.
MinimizerBasedRootFinder - Class in gov.sandia.cognition.learning.algorithm.root
A root finder that uses minimization techniques to find the roots (zero-crossings).
MinimizerBasedRootFinder() - Constructor for class gov.sandia.cognition.learning.algorithm.root.MinimizerBasedRootFinder
Creates a new instance of MinimizerBasedRootFinder
MinimizerBasedRootFinder(LineMinimizer<Evaluator<Double, Double>>) - Constructor for class gov.sandia.cognition.learning.algorithm.root.MinimizerBasedRootFinder
Creates a new instance of MinimizerBasedRootFinder
MinimizerFunction(ProbabilityFunction<Double>) - Constructor for class gov.sandia.cognition.statistics.bayesian.RejectionSampling.ScalarEstimator.MinimizerFunction
Creates a new instance of MinimizerFunction
minimumChange - Variable in class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis
The minimum change required in log-likelihood to continue iterating.
minimumChange - Variable in class gov.sandia.cognition.text.topic.ProbabilisticLatentSemanticAnalysis.Result
The minimum change in log-likelihood for the E-M evaluation.
minimumLength - Variable in class gov.sandia.cognition.text.term.filter.TermLengthFilter
The minimum allowed length.
MinkowskiDistanceMetric - Class in gov.sandia.cognition.learning.function.distance
An implementation of the Minkowski distance metric.
MinkowskiDistanceMetric() - Constructor for class gov.sandia.cognition.learning.function.distance.MinkowskiDistanceMetric
Creates a new MinkowskiDistanceMetric with the default power of 2.0.
MinkowskiDistanceMetric(double) - Constructor for class gov.sandia.cognition.learning.function.distance.MinkowskiDistanceMetric
Creates a new MinkowskiDistanceMetric with the given power.
minMargin - Variable in class gov.sandia.cognition.learning.algorithm.perceptron.BatchMultiPerceptron
The minimum margin to enforce.
minMargin - Variable in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineBinaryMarginInfusedRelaxedAlgorithm
The minimum margin to enforce.
minMargin - Variable in class gov.sandia.cognition.learning.algorithm.perceptron.OnlineMultiPerceptron
The minimum margin to enforce.
minNumClusters - Variable in class gov.sandia.cognition.learning.algorithm.clustering.AgglomerativeClusterer
The minimum number of clusters allowed.
minSplitSize - Variable in class gov.sandia.cognition.learning.algorithm.tree.AbstractVectorThresholdMaximumGainLearner
The threshold for allowing a split to be made, determined by how many instances fall in each left or right sides of the split.
minSplitSize - Variable in class gov.sandia.cognition.learning.algorithm.tree.VectorThresholdVarianceLearner
The threshold for allowing a split to be made, determined by how many instances fall in each left or right sides of the split.
minus(RingType) - Method in class gov.sandia.cognition.math.AbstractRing
 
minus(LogNumber) - Method in class gov.sandia.cognition.math.LogNumber
 
minus(Vector) - Method in class gov.sandia.cognition.math.matrix.custom.SparseVector
 
minus(InfiniteVector<KeyType>) - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
 
minus(MutableDouble) - Method in class gov.sandia.cognition.math.MutableDouble
 
minus(MutableInteger) - Method in class gov.sandia.cognition.math.MutableInteger
 
minus(MutableLong) - Method in class gov.sandia.cognition.math.MutableLong
 
minus(RingType) - Method in interface gov.sandia.cognition.math.Ring
Arithmetic subtraction of other from this
minus(UnsignedLogNumber) - Method in class gov.sandia.cognition.math.UnsignedLogNumber
 
minus(Duration) - Method in class gov.sandia.cognition.time.DefaultDuration
 
minus(Duration) - Method in interface gov.sandia.cognition.time.Duration
Subtracts the given duration from this duration and returns the difference.
minusEquals(ComplexNumber) - Method in class gov.sandia.cognition.math.ComplexNumber
 
minusEquals(LogNumber) - Method in class gov.sandia.cognition.math.LogNumber
 
minusEquals(Matrix) - Method in class gov.sandia.cognition.math.matrix.AbstractMatrix
 
minusEquals(Vector) - Method in class gov.sandia.cognition.math.matrix.AbstractVector
 
minusEquals(SparseMatrix) - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
 
minusEquals(DenseMatrix) - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
 
minusEquals(DiagonalMatrix) - Method in class gov.sandia.cognition.math.matrix.custom.DenseMatrix
 
minusEquals(DenseVector) - Method in class gov.sandia.cognition.math.matrix.custom.DenseVector
 
minusEquals(SparseVector) - Method in class gov.sandia.cognition.math.matrix.custom.DenseVector
 
minusEquals(SparseMatrix) - Method in class gov.sandia.cognition.math.matrix.custom.DiagonalMatrix
Type-specific version of minusEquals for combining whatever type this is with the input sparse matrix.
minusEquals(DenseMatrix) - Method in class gov.sandia.cognition.math.matrix.custom.DiagonalMatrix
Type-specific version of minusEquals for combining whatever type this is with the input dense matrix.
minusEquals(DiagonalMatrix) - Method in class gov.sandia.cognition.math.matrix.custom.DiagonalMatrix
 
minusEquals(SparseMatrix) - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
Type-specific version of minusEquals for combining whatever type this is with the input sparse matrix.
minusEquals(DenseMatrix) - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
Type-specific version of minusEquals for combining whatever type this is with the input dense matrix.
minusEquals(DiagonalMatrix) - Method in class gov.sandia.cognition.math.matrix.custom.SparseMatrix
Type-specific version of minusEquals for combining whatever type this is with the input diagonal matrix.
minusEquals(DenseVector) - Method in class gov.sandia.cognition.math.matrix.custom.SparseVector
Type-specific version of minusEquals for combining whatever type this is with the input dense vector.
minusEquals(SparseVector) - Method in class gov.sandia.cognition.math.matrix.custom.SparseVector
 
minusEquals(InfiniteVector<KeyType>) - Method in class gov.sandia.cognition.math.matrix.DefaultInfiniteVector
 
minusEquals(Matrix) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJMatrix
 
minusEquals(AbstractMTJMatrix) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJMatrix
Subtracts the elements of matrix from the elements of this, modifies the elements of this
minusEquals(Vector) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJVector
 
minusEquals(AbstractMTJVector) - Method in class gov.sandia.cognition.math.matrix.mtj.AbstractMTJVector
Inline subtraction of the elements of other from the elements of this
minusEquals(MutableDouble) - Method in class gov.sandia.cognition.math.MutableDouble
 
minusEquals(MutableInteger) - Method in class gov.sandia.cognition.math.MutableInteger
 
minusEquals(MutableLong) - Method in class gov.sandia.cognition.math.MutableLong
 
minusEquals(RingType) - Method in interface gov.sandia.cognition.math.Ring
Inline arithmetic subtraction of other from this
minusEquals(UnsignedLogNumber) - Method in class gov.sandia.cognition.math.UnsignedLogNumber
 
minusEquals(RandomVariable<Number>) - Method in class gov.sandia.cognition.statistics.UnivariateRandomVariable
 
MINUTE - Static variable in class gov.sandia.cognition.time.DefaultDuration
A minute in duration.
MINUTES_PER_HOUR - Static variable in class gov.sandia.cognition.time.DefaultDuration
There are 60 minutes per hour.
MixtureOfGaussians - Class in gov.sandia.cognition.statistics.distribution
Creates a probability density function (pdf) comprising of a collection of MultivariateGaussian and corresponding prior probability distribution that a particular MultivariateGaussian generates observations.
MixtureOfGaussians() - Constructor for class gov.sandia.cognition.statistics.distribution.MixtureOfGaussians
 
MixtureOfGaussians.EMLearner - Class in gov.sandia.cognition.statistics.distribution
An Expectation-Maximization based "soft" assignment learner.
MixtureOfGaussians.Learner - Class in gov.sandia.cognition.statistics.distribution
A hard-assignment learner for a MixtureOfGaussians
MixtureOfGaussians.PDF - Class in gov.sandia.cognition.statistics.distribution
PDF of the MixtureOfGaussians
model - Variable in class gov.sandia.cognition.statistics.bayesian.KalmanFilter
Motion model of the underlying system.
modelCovariance - Variable in class gov.sandia.cognition.statistics.bayesian.AbstractKalmanFilter
Covariance associated with the system's model.
ModelFileHandler - Class in gov.sandia.cognition.framework.io
The ModelFileHandler class is an entry point for reading files that contain a CognitiveModel or CognitiveModelFactory objects.
ModelFileHandler() - Constructor for class gov.sandia.cognition.framework.io.ModelFileHandler
Creates a new instance of ModelIOHandler
ModelingApproximation - Annotation Type in gov.sandia.cognition.annotation
The ModelingApproximation annotation indicates that an approximation is being used in modeling a component.
ModelJacobianEvaluator() - Constructor for class gov.sandia.cognition.statistics.bayesian.ExtendedKalmanFilter.ModelJacobianEvaluator
Creates a new instance of ModelJacobianEvaluator
modelStateChanged(CognitiveModelStateChangeEvent) - Method in interface gov.sandia.cognition.framework.CognitiveModelListener
This method is called on the listener when the model's state has changed.
modularity() - Method in class gov.sandia.cognition.graph.community.Louvain
Returns the modularity of the most recent partitioning of the graph
MODULE_NAME - Static variable in class gov.sandia.cognition.framework.lite.ArrayBasedPerceptionModule
The name of the module.
MODULE_NAME - Static variable in class gov.sandia.cognition.framework.lite.VectorBasedPerceptionModule
The name of the module.
MomentMatchingEstimator() - Constructor for class gov.sandia.cognition.statistics.distribution.BetaBinomialDistribution.MomentMatchingEstimator
Default constructor
MomentMatchingEstimator() - Constructor for class gov.sandia.cognition.statistics.distribution.BetaDistribution.MomentMatchingEstimator
Default constructor
MomentMatchingEstimator() - Constructor for class gov.sandia.cognition.statistics.distribution.GammaDistribution.MomentMatchingEstimator
Default constructor
MonteCarloIntegrator<OutputType> - Interface in gov.sandia.cognition.statistics.montecarlo
Monte Carlo integration is a way of compute the integral of a function using samples from another.
MonteCarloSampler<DataType,SampleType,FunctionType extends Evaluator<? super DataType,java.lang.Double>> - Interface in gov.sandia.cognition.statistics.montecarlo
A sampling technique based on the Monte Carlo method.
MostFrequentLearner<OutputType> - Class in gov.sandia.cognition.learning.algorithm.baseline
The MostFrequentLearner class implements a baseline learner that computes the most frequent output value.
MostFrequentLearner() - Constructor for class gov.sandia.cognition.learning.algorithm.baseline.MostFrequentLearner
Creates a new MostFrequentLearner.
MostFrequentSummarizer<DataType> - Class in gov.sandia.cognition.learning.function.summarizer
Summarizes a set of values by returning the most frequent value.
MostFrequentSummarizer() - Constructor for class gov.sandia.cognition.learning.function.summarizer.MostFrequentSummarizer
Creates a new MostFrequentSummarizer.
motionModel - Variable in class gov.sandia.cognition.statistics.bayesian.ExtendedKalmanFilter
Model that determines how inputs and the previous state are updated.
MovingAverageFilter - Class in gov.sandia.cognition.math.signals
A type of filter using a moving-average calculation.
MovingAverageFilter(int) - Constructor for class gov.sandia.cognition.math.signals.MovingAverageFilter
Creates a new instance of MovingAverageFilter
MovingAverageFilter(double...) - Constructor for class gov.sandia.cognition.math.signals.MovingAverageFilter
Creates a new instance of MovingAverageFilter
MovingAverageFilter(Vector) - Constructor for class gov.sandia.cognition.math.signals.MovingAverageFilter
Creates a new instance of MovingAverageFilter
MultiCategoryAdaBoost<InputType,CategoryType> - Class in gov.sandia.cognition.learning.algorithm.ensemble
An implementation of a multi-class version of the Adaptive Boosting (AdaBoost) algorithm, known as AdaBoost.M1.
MultiCategoryAdaBoost() - Constructor for class gov.sandia.cognition.learning.algorithm.ensemble.MultiCategoryAdaBoost
Creates a new MultiCategoryAdaBoost with default parameters and a null weak learner.
MultiCategoryAdaBoost(BatchLearner<? super Collection<? extends InputOutputPair<? extends InputType, CategoryType>>, ? extends Evaluator<? super InputType, ? extends CategoryType>>, int) - Constructor for class gov.sandia.cognition.learning.algorithm.ensemble.MultiCategoryAdaBoost
Creates a new MultiCategoryAdaBoost with the given parameters.
MultiCollection<T> - Interface in gov.sandia.cognition.collection
An interface for a collection that is made up of a group of subcollections.
multicollection - Variable in class gov.sandia.cognition.learning.algorithm.hmm.BaumWelchAlgorithm
The multi-collection of sequences
MultiIterator<EntryType> - Class in gov.sandia.cognition.collection
The MultiIterator class implements an iterator that iterates over a bunch of internal iterators, exhausting one before moving to the next.
MultiIterator(Collection<? extends Iterable<EntryType>>) - Constructor for class gov.sandia.cognition.collection.MultiIterator
Creates a new instance of MultiIterator.
MultinomialBayesianEstimator - Class in gov.sandia.cognition.statistics.bayesian.conjugate
A Bayesian estimator for the parameters of a MultinomialDistribution using its conjugate prior distribution, the DirichletDistribution.
MultinomialBayesianEstimator() - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.MultinomialBayesianEstimator
Creates a new instance of MultinomialBayesianEstimator
MultinomialBayesianEstimator(int) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.MultinomialBayesianEstimator
Creates a new instance of MultinomialBayesianEstimator
MultinomialBayesianEstimator(int, int) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.MultinomialBayesianEstimator
Creates a new instance of MultinomialBayesianEstimator
MultinomialBayesianEstimator(DirichletDistribution, int) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.MultinomialBayesianEstimator
Creates a new instance of MultinomialBayesianEstimator
MultinomialBayesianEstimator(MultinomialDistribution, DirichletDistribution) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.MultinomialBayesianEstimator
Creates a new instance of PoissonBayesianEstimator
MultinomialBayesianEstimator(BayesianParameter<Vector, MultinomialDistribution, DirichletDistribution>) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.MultinomialBayesianEstimator
Creates a new instance
MultinomialBayesianEstimator.Parameter - Class in gov.sandia.cognition.statistics.bayesian.conjugate
Parameter of this conjugate prior relationship.
MultinomialDistribution - Class in gov.sandia.cognition.statistics.distribution
A multinomial distribution is the multivariate/multiclass generalization of the Binomial distribution.
MultinomialDistribution() - Constructor for class gov.sandia.cognition.statistics.distribution.MultinomialDistribution
Creates a new instance of MultinomialDistribution
MultinomialDistribution(int, int) - Constructor for class gov.sandia.cognition.statistics.distribution.MultinomialDistribution
Creates a new instance of MultinomialDistribution
MultinomialDistribution(Vector, int) - Constructor for class gov.sandia.cognition.statistics.distribution.MultinomialDistribution
Creates a new instance of MultinomialDistribution
MultinomialDistribution(MultinomialDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.MultinomialDistribution
Copy constructor
MultinomialDistribution.Domain - Class in gov.sandia.cognition.statistics.distribution
Allows the iteration through the set of subsets.
MultinomialDistribution.Domain.MultinomialIterator - Class in gov.sandia.cognition.statistics.distribution
An Iterator over a Domain
MultinomialDistribution.PMF - Class in gov.sandia.cognition.statistics.distribution
Probability Mass Function of the Multinomial Distribution.
MultinomialIterator(int, int) - Constructor for class gov.sandia.cognition.statistics.distribution.MultinomialDistribution.Domain.MultinomialIterator
Creates a new instance of Domain
MultipartiteValenceMatrix - Class in gov.sandia.cognition.learning.algorithm.semisupervised.valence
This class implements a semi-supervised learning algorithm for spreading "valence" across a multi-partite graph.
MultipartiteValenceMatrix() - Constructor for class gov.sandia.cognition.learning.algorithm.semisupervised.valence.MultipartiteValenceMatrix
NEVER call this from real code.
MultipartiteValenceMatrix(List<Integer>, int) - Constructor for class gov.sandia.cognition.learning.algorithm.semisupervised.valence.MultipartiteValenceMatrix
Initializees this with the expected size of each partition, and the power to raise the L_tilde matrix to.
MultipartiteValenceMatrix(List<Integer>, int, int) - Constructor for class gov.sandia.cognition.learning.algorithm.semisupervised.valence.MultipartiteValenceMatrix
Initializes this with the expected size of each partition, and the power to raise the L_tilde matrix to.
MultipleComparisonExperiment - Class in gov.sandia.cognition.statistics.method
A multiple comparisons experiment that does a block comparison and then a post-hoc test.
MultipleComparisonExperiment() - Constructor for class gov.sandia.cognition.statistics.method.MultipleComparisonExperiment
Creates a new instance of MultipleComparisonExperiment
MultipleComparisonExperiment(BlockExperimentComparison<Number>, MultipleHypothesisComparison<Collection<? extends Number>>, double) - Constructor for class gov.sandia.cognition.statistics.method.MultipleComparisonExperiment
Creates a new instance of MultipleComparisonExperiment
MultipleComparisonExperiment.Statistic - Class in gov.sandia.cognition.statistics.method
Result of running the MultipleHypothesisComparison hypothesis test
multipleComparisonResult - Variable in class gov.sandia.cognition.statistics.method.MultipleComparisonExperiment.Statistic
Result from the multiple hypothesis comparison null-hypothesis test, which will exist if the block-experiment null hypothesis is rejected
MultipleHypothesisComparison<TreatmentData> - Interface in gov.sandia.cognition.statistics.method
Describes the functionality of an algorithm for accepting or rejecting multiple null hypothesis at the same time.
MultipleHypothesisComparison.Statistic - Interface in gov.sandia.cognition.statistics.method
Statistic associated with the multiple hypothesis comparison
multiply(double, double) - Static method in class gov.sandia.cognition.math.LogMath
Multiplies two log-domain values.
MultiReproducer<GenomeType> - Class in gov.sandia.cognition.learning.algorithm.genetic.reproducer
The MultiReproducer class implements a Reproducer that takes multiple Reproducers and applies them to a population.
MultiReproducer(Collection<Reproducer<GenomeType>>) - Constructor for class gov.sandia.cognition.learning.algorithm.genetic.reproducer.MultiReproducer
Creates a new instance of MultiReproducer.
MultiTextualConverter<InputType,OutputType extends Textual> - Interface in gov.sandia.cognition.text.convert
Interface for an TextConverter that converts an input into possibly multiple output textual objects.
MultithreadedCognitiveModel - Class in gov.sandia.cognition.framework.concurrent
This class provides a multithreaded implementation of the CognitiveModel interface.
MultithreadedCognitiveModel(int, CognitiveModuleFactory...) - Constructor for class gov.sandia.cognition.framework.concurrent.MultithreadedCognitiveModel
Creates a new instance of MultithreadedCognitiveModel.
MultithreadedCognitiveModel(int, Iterable<? extends CognitiveModuleFactory>) - Constructor for class gov.sandia.cognition.framework.concurrent.MultithreadedCognitiveModel
Creates a new instance of MultithreadedCognitiveModel.
MultithreadedCognitiveModel.ModuleEvaluator - Class in gov.sandia.cognition.framework.concurrent
Implements a Callable class for executing the evaluation of a CognitiveModule on a thread
MultithreadedCognitiveModelFactory - Class in gov.sandia.cognition.framework.concurrent
This class defines a CognitiveModelFactory for creating MultithreadedCognitiveModel objects.
MultithreadedCognitiveModelFactory(int) - Constructor for class gov.sandia.cognition.framework.concurrent.MultithreadedCognitiveModelFactory
Creates a new instance of MultithreadedCognitiveModelFactory.
MultivariateCumulativeDistributionFunction - Class in gov.sandia.cognition.statistics.montecarlo
Utility class for multivariate cumulative distribution functions (CDF).
MultivariateCumulativeDistributionFunction() - Constructor for class gov.sandia.cognition.statistics.montecarlo.MultivariateCumulativeDistributionFunction
 
MultivariateDecorrelator - Class in gov.sandia.cognition.learning.data.feature
Decorrelates a data using a mean and full or diagonal covariance matrix.
MultivariateDecorrelator() - Constructor for class gov.sandia.cognition.learning.data.feature.MultivariateDecorrelator
Creates a new instance of MultivariateDecorrelator with no underlying Gaussian.
MultivariateDecorrelator(Vector, Matrix) - Constructor for class gov.sandia.cognition.learning.data.feature.MultivariateDecorrelator
Creates a new instance of MultivariateDecorrelator with the given mean and variance.
MultivariateDecorrelator(MultivariateGaussian) - Constructor for class gov.sandia.cognition.learning.data.feature.MultivariateDecorrelator
Creates a new instance of MultivariateDecorrelator with the given multivariate Gaussian.
MultivariateDecorrelator(MultivariateDecorrelator) - Constructor for class gov.sandia.cognition.learning.data.feature.MultivariateDecorrelator
Copy constructor.
MultivariateDecorrelator.DiagonalCovarianceLearner - Class in gov.sandia.cognition.learning.data.feature
The DiagonalCovarianceLearner class implements a BatchLearner object for a MultivariateDecorrelator.
MultivariateDecorrelator.FullCovarianceLearner - Class in gov.sandia.cognition.learning.data.feature
The FullCovarianceLearner class implements a BatchLearner object for a MultivariateDecorrelator.
MultivariateDiscriminant - Class in gov.sandia.cognition.learning.function.vector
Allows learning algorithms (vectorizing, differentiating) on a matrix*vector multiply.
MultivariateDiscriminant() - Constructor for class gov.sandia.cognition.learning.function.vector.MultivariateDiscriminant
Default constructor.
MultivariateDiscriminant(int, int) - Constructor for class gov.sandia.cognition.learning.function.vector.MultivariateDiscriminant
Creates a new MultivariateDiscriminant
MultivariateDiscriminant(Matrix) - Constructor for class gov.sandia.cognition.learning.function.vector.MultivariateDiscriminant
Creates a new instance of MatrixVectorMultiplyFunction.
MultivariateDiscriminant(MultivariateDiscriminant) - Constructor for class gov.sandia.cognition.learning.function.vector.MultivariateDiscriminant
Copy constructor
MultivariateDiscriminantWithBias - Class in gov.sandia.cognition.learning.function.vector
A multivariate discriminant (matrix multiply) plus a constant vector that gets added to the output of the discriminant.
MultivariateDiscriminantWithBias() - Constructor for class gov.sandia.cognition.learning.function.vector.MultivariateDiscriminantWithBias
Default constructor.
MultivariateDiscriminantWithBias(int, int) - Constructor for class gov.sandia.cognition.learning.function.vector.MultivariateDiscriminantWithBias
Creates a new MultivariateDiscriminantWithBias
MultivariateDiscriminantWithBias(Matrix) - Constructor for class gov.sandia.cognition.learning.function.vector.MultivariateDiscriminantWithBias
Creates a new instance of MultivariateDiscriminantWithBias.
MultivariateDiscriminantWithBias(Matrix, Vector) - Constructor for class gov.sandia.cognition.learning.function.vector.MultivariateDiscriminantWithBias
Creates a new instance of MultivariateDiscriminantWithBias.
MultivariateGammaFunction() - Constructor for class gov.sandia.cognition.statistics.distribution.InverseWishartDistribution.MultivariateGammaFunction
 
MultivariateGaussian - Class in gov.sandia.cognition.statistics.distribution
The MultivariateGaussian class implements a multidimensional Gaussian distribution that contains a mean vector and a covariance matrix.
MultivariateGaussian() - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateGaussian
Default constructor.
MultivariateGaussian(int) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateGaussian
Creates a new instance of MultivariateGaussian.
MultivariateGaussian(Vector, Matrix) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateGaussian
Creates a new instance of MultivariateGaussian.
MultivariateGaussian(MultivariateGaussian) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateGaussian
Creates a new instance of MultivariateGaussian.
MultivariateGaussian.IncrementalEstimator - Class in gov.sandia.cognition.statistics.distribution
The estimator that creates a MultivariateGaussian from a stream of values.
MultivariateGaussian.IncrementalEstimatorCovarianceInverse - Class in gov.sandia.cognition.statistics.distribution
The estimator that creates a MultivariateGaussian from a stream of values by estimating the mean and covariance inverse (as opposed to the covariance directly), without ever performing a matrix inversion.
MultivariateGaussian.MaximumLikelihoodEstimator - Class in gov.sandia.cognition.statistics.distribution
Computes the Maximum Likelihood Estimate of the MultivariateGaussian given a set of Vectors
MultivariateGaussian.PDF - Class in gov.sandia.cognition.statistics.distribution
PDF of a multivariate Gaussian
MultivariateGaussian.SufficientStatistic - Class in gov.sandia.cognition.statistics.distribution
Implements the sufficient statistics of the MultivariateGaussian.
MultivariateGaussian.SufficientStatisticCovarianceInverse - Class in gov.sandia.cognition.statistics.distribution
Implements the sufficient statistics of the MultivariateGaussian while estimating the inverse of the covariance matrix.
MultivariateGaussian.WeightedMaximumLikelihoodEstimator - Class in gov.sandia.cognition.statistics.distribution
Computes the Weighted Maximum Likelihood Estimate of the MultivariateGaussian given a weighted set of Vectors
MultivariateGaussianInverseGammaDistribution - Class in gov.sandia.cognition.statistics.distribution
A distribution where the mean is selected by a multivariate Gaussian and a variance parameter (either for a univariate Gaussian or isotropic Gaussian) is determined by an Inverse-Gamma distribution.
MultivariateGaussianInverseGammaDistribution() - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateGaussianInverseGammaDistribution
Default constructor
MultivariateGaussianInverseGammaDistribution(int) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateGaussianInverseGammaDistribution
Creates a new instance of MultivariateGaussianInverseGammaDistribution
MultivariateGaussianInverseGammaDistribution(MultivariateGaussian, InverseGammaDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateGaussianInverseGammaDistribution
Creates a new instance of MultivariateGaussianInverseGammaDistribution
MultivariateGaussianMeanBayesianEstimator - Class in gov.sandia.cognition.statistics.bayesian.conjugate
Bayesian estimator for the mean of a MultivariateGaussian using its conjugate prior, which is also a MultivariateGaussian.
MultivariateGaussianMeanBayesianEstimator() - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanBayesianEstimator
Creates a new instance of MultivariateGaussianMeanBayesianEstimator
MultivariateGaussianMeanBayesianEstimator(int) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanBayesianEstimator
Creates a new instance of MultivariateGaussianMeanBayesianEstimator
MultivariateGaussianMeanBayesianEstimator(Matrix) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanBayesianEstimator
Creates a new instance of MultivariateGaussianMeanBayesianEstimator
MultivariateGaussianMeanBayesianEstimator(Matrix, MultivariateGaussian) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanBayesianEstimator
Creates a new instance of MultivariateGaussianMeanBayesianEstimator
MultivariateGaussianMeanBayesianEstimator(MultivariateGaussian, MultivariateGaussian) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanBayesianEstimator
Creates a new instance of PoissonBayesianEstimator
MultivariateGaussianMeanBayesianEstimator(BayesianParameter<Vector, MultivariateGaussian, MultivariateGaussian>) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanBayesianEstimator
Creates a new instance
MultivariateGaussianMeanBayesianEstimator.Parameter - Class in gov.sandia.cognition.statistics.bayesian.conjugate
Parameter of this conjugate prior relationship.
MultivariateGaussianMeanCovarianceBayesianEstimator - Class in gov.sandia.cognition.statistics.bayesian.conjugate
Performs robust estimation of both the mean and covariance of a MultivariateGaussian conditional distribution using the conjugate prior Normal-Inverse-Wishart distribution.
MultivariateGaussianMeanCovarianceBayesianEstimator() - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanCovarianceBayesianEstimator
Creates a new instance of MultivariateGaussianMeanCovarianceBayesianEstimator
MultivariateGaussianMeanCovarianceBayesianEstimator(int) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanCovarianceBayesianEstimator
Creates a new instance of MultivariateGaussianMeanCovarianceBayesianEstimator
MultivariateGaussianMeanCovarianceBayesianEstimator(NormalInverseWishartDistribution) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanCovarianceBayesianEstimator
Creates a new instance of MultivariateGaussianMeanCovarianceBayesianEstimator
MultivariateGaussianMeanCovarianceBayesianEstimator(MultivariateGaussian, NormalInverseWishartDistribution) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanCovarianceBayesianEstimator
Creates a new instance
MultivariateGaussianMeanCovarianceBayesianEstimator(BayesianParameter<Matrix, MultivariateGaussian, NormalInverseWishartDistribution>) - Constructor for class gov.sandia.cognition.statistics.bayesian.conjugate.MultivariateGaussianMeanCovarianceBayesianEstimator
Creates a new instance
MultivariateGaussianMeanCovarianceBayesianEstimator.Parameter - Class in gov.sandia.cognition.statistics.bayesian.conjugate
Parameter for this conjugate prior estimator.
MultivariateLinearRegression - Class in gov.sandia.cognition.learning.algorithm.regression
Performs multivariate regression with an explicit bias term, with optional L2 regularization.
MultivariateLinearRegression() - Constructor for class gov.sandia.cognition.learning.algorithm.regression.MultivariateLinearRegression
Creates a new instance of MultivariateLinearRegression
MultivariateMeanCovarianceUpdater() - Constructor for class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.MultivariateMeanCovarianceUpdater
Default constructor
MultivariateMeanCovarianceUpdater(int) - Constructor for class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.MultivariateMeanCovarianceUpdater
Creates a new instance of MultivariateMeanCovarianceUpdater
MultivariateMeanCovarianceUpdater(MultivariateGaussianMeanCovarianceBayesianEstimator) - Constructor for class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.MultivariateMeanCovarianceUpdater
Creates a new instance of MultivariateMeanCovarianceUpdater
MultivariateMeanUpdater() - Constructor for class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.MultivariateMeanUpdater
Default constructor
MultivariateMeanUpdater(int) - Constructor for class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.MultivariateMeanUpdater
Creates a new instance of MeanCovarianceUpdater
MultivariateMeanUpdater(MultivariateGaussianMeanBayesianEstimator) - Constructor for class gov.sandia.cognition.statistics.bayesian.DirichletProcessMixtureModel.MultivariateMeanUpdater
Creates a new instance of MeanUpdater
MultivariateMixtureDensityModel<DistributionType extends ClosedFormComputableDistribution<Vector>> - Class in gov.sandia.cognition.statistics.distribution
A LinearMixtureModel of multivariate distributions with associated PDFs.
MultivariateMixtureDensityModel(Collection<? extends DistributionType>) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateMixtureDensityModel
Creates a new instance of MultivariateMixtureDensityModel
MultivariateMixtureDensityModel(Collection<? extends DistributionType>, double[]) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateMixtureDensityModel
Creates a new instance of MultivariateMixtureDensityModel
MultivariateMixtureDensityModel(MultivariateMixtureDensityModel<? extends DistributionType>) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateMixtureDensityModel
Copy Constructor
MultivariateMixtureDensityModel.PDF<DistributionType extends ClosedFormComputableDistribution<Vector>> - Class in gov.sandia.cognition.statistics.distribution
PDF of the MultivariateMixtureDensityModel
MultivariateMonteCarloIntegrator - Class in gov.sandia.cognition.statistics.montecarlo
A Monte Carlo integrator for multivariate (vector) outputs.
MultivariateMonteCarloIntegrator() - Constructor for class gov.sandia.cognition.statistics.montecarlo.MultivariateMonteCarloIntegrator
Creates a new instance of MultivariateMonteCarloIntegrator
MultivariatePolyaDistribution - Class in gov.sandia.cognition.statistics.distribution
A multivariate Polya Distribution, also known as a Dirichlet-Multinomial model, is a compound distribution where the parameters of a multinomial are drawn from a Dirichlet distribution with fixed parameters and a constant number of trials and then the observations are generated by this multinomial.
MultivariatePolyaDistribution() - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariatePolyaDistribution
Creates a new instance of DirichletDistribution
MultivariatePolyaDistribution(int, int) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariatePolyaDistribution
Creates a new instance of MultivariatePolyaDistribution
MultivariatePolyaDistribution(Vector, int) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariatePolyaDistribution
Creates a new instance of MultivariatePolyaDistribution
MultivariatePolyaDistribution(MultivariatePolyaDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariatePolyaDistribution
Copy Constructor.
MultivariatePolyaDistribution.PMF - Class in gov.sandia.cognition.statistics.distribution
PMF of the MultivariatePolyaDistribution
MultivariateRegression<InputType,EvaluatorType extends Evaluator<? super InputType,? extends Vectorizable>> - Interface in gov.sandia.cognition.learning.algorithm.regression
A regression algorithm that maps one or more independent (input) variables onto multiple output variables.
MultivariateStatisticsUtil - Class in gov.sandia.cognition.math
Some static methods for computing generally useful multivariate statistics.
MultivariateStatisticsUtil() - Constructor for class gov.sandia.cognition.math.MultivariateStatisticsUtil
 
MultivariateStudentTDistribution - Class in gov.sandia.cognition.statistics.distribution
Multivariate generalization of the noncentral Student's t-distribution.
MultivariateStudentTDistribution() - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateStudentTDistribution
Creates a new instance of MultivariateStudentTDistribution
MultivariateStudentTDistribution(int) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateStudentTDistribution
Creates a distribution with the given dimensionality.
MultivariateStudentTDistribution(double, Vector, Matrix) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateStudentTDistribution
Creates a distribution with the given dimensionality.
MultivariateStudentTDistribution(MultivariateStudentTDistribution) - Constructor for class gov.sandia.cognition.statistics.distribution.MultivariateStudentTDistribution
Copy constructor
MultivariateStudentTDistribution.PDF - Class in gov.sandia.cognition.statistics.distribution
PDF of the MultivariateStudentTDistribution
Murmur32Hash - Class in gov.sandia.cognition.hash
Implementation of the MurmurHash2 32-bit (4-byte) non-cryptographic hash function.
Murmur32Hash() - Constructor for class gov.sandia.cognition.hash.Murmur32Hash
Default constructor
MutableDouble - Class in gov.sandia.cognition.math
A mutable object containing a double.
MutableDouble() - Constructor for class gov.sandia.cognition.math.MutableDouble
Creates an MutableDouble with an initial value of zero.
MutableDouble(double) - Constructor for class gov.sandia.cognition.math.MutableDouble
Creates an MutableDouble with the given value.
MutableDouble(MutableDouble) - Constructor for class gov.sandia.cognition.math.MutableDouble
Creates a copy of a MutableDouble.
MutableInteger - Class in gov.sandia.cognition.math
A mutable object containing an integer.
MutableInteger() - Constructor for class gov.sandia.cognition.math.MutableInteger
Creates an MutableInteger with an initial value of zero.
MutableInteger(int) - Constructor for class gov.sandia.cognition.math.MutableInteger
Creates an MutableInteger with the given value.
MutableInteger(MutableInteger) - Constructor for class gov.sandia.cognition.math.MutableInteger
Creates a copy of a MutableInteger.
MutableLong - Class in gov.sandia.cognition.math
A mutable object containing a long.
MutableLong() - Constructor for class gov.sandia.cognition.math.MutableLong
Creates an MutableLong with an initial value of zero.
MutableLong(long) - Constructor for class gov.sandia.cognition.math.MutableLong
Creates an MutableLong with the given value.
MutableLong(MutableLong) - Constructor for class gov.sandia.cognition.math.MutableLong
Creates a copy of a MutableLong.
MutablePatternRecognizerLite - Interface in gov.sandia.cognition.framework.lite
The MutablePatternRecognizerLite interface extends the PatternRecognizerLite interface to add methods for changing the recognizer dynamically.
MutableSemanticMemoryLite - Class in gov.sandia.cognition.framework.lite
The MutableSemanticMemoryLite implements a SemanticMemory that can be dynamically changed.
MutableSemanticMemoryLite(SemanticIdentifierMap, MutablePatternRecognizerLite) - Constructor for class gov.sandia.cognition.framework.lite.MutableSemanticMemoryLite
Creates a new instance of MutableSemanticMemoryLite.
MutableSemanticMemoryLiteFactory - Class in gov.sandia.cognition.framework.lite
The MutableSemanticMemoryLiteFactory implements a CognitiveModuleFactory for MutableSemanticMemoryLite modules.
MutableSemanticMemoryLiteFactory(MutablePatternRecognizerLite) - Constructor for class gov.sandia.cognition.framework.lite.MutableSemanticMemoryLiteFactory
Creates a new instance of MutableSemanticMemoryLiteFactory.
MutationReproducer<GenomeType> - Class in gov.sandia.cognition.learning.algorithm.genetic.reproducer
The MutationReproducer class implements a Reproducer that applies a Perturber to the supplied population to produce a new population.
MutationReproducer(Perturber<GenomeType>, Selector<GenomeType>) - Constructor for class gov.sandia.cognition.learning.algorithm.genetic.reproducer.MutationReproducer
Creates a new instance of MutationReproducer
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Skip navigation links